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Preface

The Center for Interdisciplinary Research (ZiF) of the University of Bielefeld
hosted a research group under the title “General Theory of Information Transfer
and Combinatorics,” abbreviated as GTIT-C, from October 1, 2001 to September
30, 2004. As head of the research group the editor shaped the group’s scientific
directions and its personal composition.

He followed ideas, problems and results which had occupied him during the
past decade and which seem to extend the frontiers of information theory in
several directions. The main contributions concern information transfer by chan-
nels. There are also new questions and some answers in new models of source
coding. While many of the investigations are in an explorative state, there are
also hard cores of mathematical theories. In particular, a unified theory of infor-
mation transfer was presented, which naturally incorporates Shannon’s Theory
of Information Transmission and the Theory of Identification in the presence of
noise as extremal cases. It provides several novel coding theorems. On the source
coding side the concept of identification entropy is introduced. Finally, beyond
information theory new concepts of solutions for probabilistic algorithms arose.

In addition to this book there will be a special issue of Discrete Applied Math-
ematics “General Theory of Information Transfer and Combinatorics” in three
parts, which covers primarily work with a stronger emphasis on the second com-
ponent, combinatorics. It begins with an updated version of “General Theory
of Information Transfer” in order to make the theory known to a broader au-
dience and continues with other new directions such as bioinformatics, search,
sorting and ordering, cryptology and number theory, and networks with many
new suggestions for connections.

It includes in a special volume works and abstracts of lectures devoted to
the great Levon Khachatrian at the memorial held for him during the Opening
Conference, November 4-9, 2002.

In a preparatory year, October 1, 2001 – September 30, 2002, guided by the
general concepts and ideas indicated and described in greater detail in the present
introduction, researchers and research institutions were approached worldwide in
order to find out which possible participants might be and which more concrete
projects could be realized in the main research year, October 1, 2002 to August
31, 2003.

Central events in this phase were two weekly preparatory meetings in Febru-
ary: General Theory of Information Transfer, abbreviated as GTIT, and Informa-
tion in Natural Sciences, Social Sciences, Humanities and Engineering. Abstracts
of the lectures can be found at
http://www.math.uni-bielefeld.de/ahlswede/zif.

The main goals were to test the applicability of the GTIT, particularly iden-
tification, and to strive for new information phenomena in the sciences, which



VI Preface

can be modelled mathematically. Readers are strongly advised to read the In-
troduction for guidance.

Our special thanks go to the members of the administration of the “Zentrum
für interdisziplinäre Forschung” (ZiF) in Bielefeld for a very pleasant cooperation
and, in particular, to Gertrude Lübbe-Wolf, who as acting director authorized
and generously supported this project, and to Ibke Wachsmuth, who continued
her policy. Dr. Roggenhöfer, who was always responsive to new ideas and wishes
is also thanked for his assistance.

June 2006 Rudolf Ahlswede
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3 Identification and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Lars Bäumer

4 Watermarking Identification Codes with Related Topics
on Common Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Rudolf Ahlswede, Ning Cai

5 Notes on Conditions for Successive Refinement of Information . . . . . . . 154
Ashot N. Harutyunyan

6 Coding for the Multiple-Access Adder Channel . . . . . . . . . . . . . . . . . . . . 165
Bálint Laczay

7 Bounds of E-Capacity for Multiple-Access Channel with Random
Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Mariam E. Haroutunian

8 Huge Size Codes for Identification Via a Multiple Access Channel
Under a Word-Length Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Sándor Csibi, Edward von der Meulen

9 Codes with the Identifiable Parent Property and the Multiple-Access
Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Rudolf Ahlswede, Ning Cai



VIII Table of Contents

II Cryptology – Pseudo Random Sequences

10 Transmission, Identification and Common Randomness Capacities
for Wire-Tape Channels with Secure Feedback from the Decoder . . . 258

Rudolf Ahlswede, Ning Cai

11 A Simplified Method for Computing the Key Equivocation
for Additive-Like Instantaneous Block Encipherers . . . . . . . . . . . . . . . . 276

Zhaozhi Zhang

12 Secrecy Systems for Identification Via Channels with Additive-Like
Instantaneous Block Encipherer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Rudolf Ahlswede, Ning Cai, Zhaozhi Zhang

13 Large Families of Pseudorandom Sequences of k Symbols and
Their Complexity – Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Rudolf Ahlswede, Christian Mauduit, András Sárközy
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47 Zipf’s Law, Hyperbolic Distributions and Entropy Loss . . . . . . . . . . . . 788
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More than restoring
strings of symbols transmitted

means transfer today

Rudolf Ahlswede

Introduction

The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.

Claude E. Shannon

What is information?

Cn bits in Shannon’s fundamental theorem

or

logCn bits in our Theory of Identification ?

Among the directions of research in GTIT-C, which could be established,
we present in Chapters I-IX contributions of participants, which took shape in
written form. The papers were thoroughly refereed. For the ease of reference
they are numbered and in addition labelled by the letter B, which hints at this
book.

There are other lists of publications we refer to. They are labelled by A,C,
and D, where

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1– , 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Introduction

A indicates the editors present list of publications at the end of the book

C is used for papers mentioned in the preface, in particular in these comments

D gives the titles of the papers in the related Special Issue in Discrete Applied
Mathematics (3 volumes)

It must be emphasized that there were several lectures and discussions with
many ideas, which influenced work, which appears elsewhere. Also, several sub-
jects with noticeable informational components are not ready for a theoretical
and in particular mathematical frame.

For instance in Bio-Chemistry there are many advanced experiments con-
cerning “signalling”, where some kind of intensity is measured, but essentially
nothing is known about transmission rates. Still we learnt a lot from several
very stimulating lectures of Raimund Apfelbach about the “state of the art”.
Moreover, we are particularly thankful for his engagement in helping to shape a
group for Animal Communication beyond his own work related to smelling.

In many lectures, especially also by young German emigrants to Great Britain,
we were excited by an extremely rich and very active field in recent years. There
are fascinating ways of encoding information (well-known a long time for bees
and more recently for ants etc). Mathematical models are more in a beginning
state. Our hope that in the kingdom of animals nature has chosen other forms
of information transfer, like in identification, could not be verified. It seems
that knowledge of these forms is a necessary prerequisite for setting up suitable
experiments.

At least we know where one may start. Several abstracts from the April 2004
Final Meeting the reader can find at
http://www.math.uni-bielefeld.de/ahlswede/zif. We also mention two in-
structive books [C10], [C49]. With advanced technology many new experiments
have become possible here.

Similar observations can be made about Psychology. However, there have
been signals encouraging careful reading, intuitive perception or enjoyment of
G. Dueck’s book [C25] with its classification of people into “right”, “true” or
“natural” and corresponding different key roles identification seems to play for
them.

A last statement in this context we want to make about Philosophical Ideas
concerning information concepts and measures, in particular about K.F. von
Weizsäcker’s monumental attempt [C100] to base all of Physics on an information
concept – central even for time and space. We found that the newly discovered
concept of identification entropy [B33], which has an unquestionable operational
meaning, is not covered by that approach and therefore challenges it! Philosophers
are called again to share a world with mathematicians and vice versa.

We hope to have made understandable why we did not receive contributions
to Bio-Chemistry, Animal Communication, Psychology and Philosophy for this
book.

There is, however, for instance a contribution to Language Evolution [B46],
in which a Conjecture of Nowak, the man who has been running a five year
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project at the Institute for Advanced Study in Princeton on language evolution,
was fairly generally established.

There are also contributions to Genomic and Chemical Structure
Theory.

In Engineering a group of practical people working on the construction of
alarm systems incorporating incentives from the theory of identification started
to take shape, when sadly, the leading person, Sandor Csibi, unexpectedly passed
away and there was no one who could take his role in combining the necessary
engineering and mathematical know-how. We are very grateful to Sandor for
devoting his last work, which he had pursuit with great enthusiasm, to this
book.

In the course of the main research year (October 1, 2002 – August 31, 2003)
more than 100 scientists from various disciplines were guests at the Center for
Interdisciplinary Research and took part in the research group’s activities. About
45 of them could be won for a longer stay (more than 1 month). Furthermore,
permanent opportunities for conversations, work on joint papers and especially
the research group’s seminars held twice a week with all guests gave a frame for
stimulating transfer of knowledge and ideas through lectures and discussions.
The themes of the seminar talks were assembled into blocks along main directions
of research, normally two in parallel.

The year ended with the “Wunschkonzert” symposium in August 2003, where
speakers were invited with a prescribed title for their lecture, and two weeks as
the beginning of intense efforts to solve problems, which came up and which
were continued by the local Bielefeld group in the last year of the project and
joined with the efforts of others at the final conference in April 2004, where
every morning experts from typically one of seven groups we had established
gave lectures. For the rest of the days (and nights) there were three rooms and
a forest available for problem sessions and hikes. All invited speakers provided
abstracts. Additional talks came from attendance, who came to us “in the last
minute” and managed to present their work in problem sessions.

We now outline the general concepts and ideas leading to the project, driven
by great expectations.

The Pre-Socratic Philosopher Protagoras is reported to have said (in our free
translation) “Nothing exists. If something would exist, it could not be under-
stood. If it could be understood, it could not be communicated” ([C22]).

These are perhaps the most basic three forms of nihilism. Kant was primarily
concerned with the second and Wittgenstein with the third form.

Communication and thus also information has become a prime issue in the
past century (For insightful description and assessments we recommend E.C.
Cherry [C13] and J.R. Pierce [C74]).

The main credit for the advancements goes to the electrical engineers. The
highlight was Shannon’s Statistical Theory of Communication. Quite remark-
ably, Shannon insisted that his theory was intended to serve engineering pur-
poses and was somewhat skeptical about attempts to apply it in others areas
or at least asks for great care ([C85]). Still, we take the position that he was
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too modest. This conforms with C. Cherry [C12], from whom we quote some
enlightening statements.

In the Appendix of [C12] one finds the following definition or explication of
the concept “communication”:

“The establishment of a social unit from individuals, by the shared usage of
language or signs. The sharing of common sets of rules, for various goal–seeking
activities. (There are many shades of opinions.)” We like to add that this has
by now taken more concrete forms: Embodied Communication. Again in [C12]
on page 41 we read:

“Perhaps the most important technical development which has assisted in
the birth of communication theory is that of telegraphy. With its introduction
the speed of transmission of “intelligence” arose. When its economic value was
fully realized, the problems of compressing signals exercised many minds, leading
eventually to the concept of “quantity of information” and to theories of times
and speed of signalling” and on page 43:

“Hartley went further and defined information as the successive selection of
signs or words from a given list, rejecting all “meaning” as a more subjective
factor (it is the signs we transmit, or physical signs; we do not transmit their
“meaning”). He showed that a message of N signs chosen from an “alphabet” or
code book of S signs has SN possibilities and that the “quantity of information”
is most reasonably defined as the logarithm, that is, H = N logS.”

This concept of information is closely related to the idea of selection or dis-
crimination and therefore sometimes called selective–information. It is also at
the very basis of Shannon’s statistical theory of communication.

This theory has by now been developed into a sophisticated mathematical
discipline with many branches and facets. Sometimes more concrete engineering
problems led to or gave the incentive to new directions of research and in other
cases new discoveries were made by exploring inherent properties of the math-
ematical structures. Some of our views on the state of this theory, to which we
also shall refer as the “Shannon Island”, are expressed in [A35] and [A36].

The price for every good theory is simplification and its permanent challenge
is reality.

“We live in a world vibrating with information” and in most cases we don’t
know how the information is processed or even what it is at the semantic and
pragmatic levels. How does our brain deal with information? It is still worthwhile
to read von Neumann’s ideas about this [C98].

Cherry writes in [C12]:
“It is remarkable that human communication works at all, for so much seems

to be against it; yet it does. The fact that it does depends principally upon
the vast store of habits which one of us possess, the imprints of all our past
experiences. With this, we can hear snatches of speech, the vague gestures and
grimaces, and from this shreds of evidence we are able to make a continual series
of inferences, guesses, with extra ordinary effectiveness.”

We shall come to the issue of “prior knowledge” later and just mention that
some aspects are accessible to a rigorous mathematical treatment.
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There are various stimuli concerning the concepts of communication and in-
formation from the sciences, for instance from quantum theory in physics, the
theory of learning in psychology, theories in linguistics, etc.

These hints give an idea of the size of the ocean around the Shannon Island.
We don’t have the intention to drown in this ocean. However, since the ocean

is large there ought to be some other islands. In fact there are.
Among those, which are fairly close to the Shannon Island we can see for

instance

1.) Mathematical Statistics
2.) Communication Networks
3.) Computer Storage and Distributive Computing
4.) Memory Cells

Since those islands are close there is hope that they can be connected by dams.
A first attempt to explore connections between multi–user source coding and

hypothesis testing was made in [A51] (IEEE Best paper award 1989). For in-
teresting ideas about relations between multiple–access channels and commu-
nication networks see Gallager [C38]. A multitude of challenges to information
theory comes from computer science. A proper frame for storage in memory cells
is our abstract coding theory [A35],[A36].

However, a real step beyond the founding father Shannon was made with our
creation of a theory of identification in the presence of noise. Randomization in
the encoding was a key idea! The mathematical formulations were carried out
together with G. Dueck (IEEE Best paper award 1991) and continued by many
others (Anantharam, Bassalygo, Bäumer, Burnashev, Cai, Csibi, Csiszár, Han,
Kleinewächter, Löber, Merhav, Narayan, Shamai, Steinberg, van der Meulen,
Venkatesan, Verboven, Verdu, Wei, Winter, Yang, Yeong, Zhang, ...).

To fix first ideas, Transmission (classical) concerns the question “How
many messages can we transmit over a noisy channel?” One tries to give an
answer to the question “What is the actual message from M = {1, . . . ,M}?”

On the other hand in Identification it is asked “How many possible mes-
sages can the receiver of a noisy channel identify?” One tries to give an answer
to the question “Is the actual message i?”

Here i can be any member of the set of possible messages N = {1, 2, . . . , N}.
Certain error probabilities are again permitted. From the theory of trans-

mission one cannot derive answers for these questions in the theory
of identification!

Actually, this theory initiated other research areas like Common Random-
ness, Authentication in Cryptology, Alarm Systems. It also led to the
discovery of new methods which become fruitful also for the classical theory of
transmission, for instance in studies of robustness like arbitrarily varying chan-
nels, optimal coding procedures in case of complete feedback, novel approxima-
tion problems for output statistics and generation of common randomness, the
key issue in Cryptology.

Moreover our work on identification has led us to reconsider the
basic assumptions of Shannon’s Theory. It deals with “messages”, which
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are elements of a prescribed set of objects, known to the communicators. The
receiver wants to know the true message. This basic model occurring in all
engineering work on communication channels and networks addresses a very
special communication situation. More generally they are characterized by

(I) The questions of the receivers concerning the given “ensemble”, to be an-
swered by the sender(s)

(II) The prior knowledge of the receivers
(III) The senders prior knowledge.

It seems that the whole body of present day Information Theory will undergo
serious revisions and some dramatic expansions. [A208] extends the frontiers
of information theory in several directions.

The main contributions concern information transfer by channels. There are
also new questions and some answers in new models of source coding. While
many of our investigations are in an explorative state, there are also hard cores
of mathematical theories. In particular we present a unified theory of information
transfer, which naturally incorporates Shannon’s theory of information transmis-
sion and the theory of identification in the presence of noise as extremal cases.
It provides several novel coding theorems. On the source coding side it strives
for a concept of identification entropy.

Finally we mention as the perhaps most promising direction the study of
probabilistic algorithms with identification as concept of solution. (For
example: for any i, is there a root of a polynomial in interval i or not?)

The algorithm should be fast and have small error probabilities. Every al-
gorithmic problem can be thus considered. This goes far beyond information
theory. Of course, like in general information transfer also here a more general
set of questions can be considered. As usual in Complexity Theory one may try
to classify problems. What rich treasures do we have in the much wider areas of
information transfer?!

The main goal of the research project was a further development of the GTIT
and an exploration of phenomena in the sciences, particular for instance in psy-
chology and in animal communication, where this theory is applied or is chal-
lenged with improvements of the model. This apparently requires a highly inter-
disciplinary community. By past experiences (see [A159]) Combinatorics is the
mathematical discipline which provides most mathematical methods for formal
solutions and, conversely, gets enriched the most by the problems we are dealing
with.

This fact naturally gave the duality in the structure of the project, which is
also expressed in the title.

We comment now chapterwise on the contributions to this book.

I

More than half a century ago in 1948 C. E. Shannon published his well-known pa-
per [C83]. This laid the foundation of an important field now known as Informa-
tion Theory. Two fundamental problems in communication were treated: source
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coding, also known as noiseless coding or data compression and (noisy) channel
coding. Correspondingly two fundamental theorems were presented known as
Shannon’s Source- and Channel Coding Theorems. (In fact there are two Source
Coding Theorems, lossy and lossless, in the well-known paper.)

By now Information Theory has been developed to a mature science. Many
refinements and generalizations of concepts and models have been introduced.
For quite a long time, until the late 80’s, a majority of researchers in the area was
mainly interested in information transmission. That is, the receivers in the
communication have to reproduce the messages with certain fidelity levels.
However the transmission is not the only goal of communication for human
beings. Consider the following example: a man was injured in an accident on
a highway. The people whose relatives were driving on the highway only want
to know whether the poor man is their relative or not. If not, they do not care
who he/she is. Based on this a new concept, identification, was introduced by
R. Ahlswede and analysed together with G. Dueck [A59] for which a receiver
only has to answer whether the message sent by the sender is the specified one
or not, in any of all possible those “yes-no” questions. The sender’s encoding
must be suitable at the same time for these questions.

Still he provides less than what would be needed for the reproduc-
tion of a message. This relaxation dramatically speeds up the communication
from exponentially fast to double exponentially fast or first order rates to second
order rates. So far Identification has become a very active direction of research
in Information Theory.

It was observed in [A60] that in Identification the second order rate is essen-
tially determined by the first order rate of a random experiment set up by the
communicators and whose outcome is known to both, sender and receiver, with
high probability. In other words instead of the requirement for the receiver to
recover the message sent by the sender with high probability it is required for the
communicators to know the value of the same random variable with high prob-
ability. Thus a new concept, different from both transmission and identification,
but with interesting connections to them was introduced. It is now called com-
mon randomness. A systematic presentation can be found in [A79], [A131].
Many interesting and important results and applications of common randomness
have been obtained so far. When we speak of GTIT today we mean it to
include at its core the theory of information transmission, common
randomness, identification and its generalizations and applications,
but it goes far beyond it even outside communication theory when
we think about probabilistic algorithms with identification (or more
general tasks) as concepts of solution!

Actually, the origin of the concepts common randomness and common
randomness capacity took a fascinating path. Immediately after [A59] the
results of [A60] were discovered – the papers appeared face by face in the same
volume. An output process Y1, . . . , Yn produced by a DMC from an input process
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X1, . . . , Xn is not only known to the receiver of the channel W , but also to its
sender, if there is a noiseless (passive) feedback channel. This common knowledge
of the random process was used in [A60] for the randomization in a randomized
identification procedure, which devotes a blocklength n to creating Y1, . . . , Yn
and does then the identification in blocklength

√
n (also called

√
n-trick). The

size of the identification code obtained is of order ee
H(Y )n

! Making a best choice
of X one gets the second order rate CF = maxX H(Y ), and the identification
works if Shannon’s transmission capacity CSh = maxX(H(Y ) − H(Y |X)) is
positive.

Now the second idea was to wonder whether there is also or can be constructed
also a random experiment (or process) in the original case of no feedback in [A59],
where the second order identification capacity equals CSh. Well, just choose a
channel λ-code {(ui, Di) : 1 ≤ i ≤ exp{(CSh − δ)n}} and define Xn as the RV
taking codewords as values with equal probabilities.

Thus of course the sender knows Xn, but the receiver knows it almost, namely
with an error probability not exceeding λ, if he uses the decoding sets Di. This
slight deviation from exact knowledge was not essential, the described experi-
ment in conjunction with the

√
n-trick gave a second proof of the direct part of

the coding theorem in [A59].
This discovery was followed up by R. Ahlswede and B. Verboven, a student

from Leuven at that time, and led to solutions of identification problems for
multi-way channels with noiseless feedback in [A71]. The paper contains a novel
method by R. Ahlswede to prove weak converses by exploiting Schur concavity
of the entropy function. In addition it has two new features, firstly it settles a
rather rich class of channel models unheard of in multi-user theory for trans-
mission, where it can be said - ”cum grano salis” - that after struggles of more
than 30 years the frontiers could not be moved very far beyond [A12], secondly
the identification schemes are all constructive modulo the production of rich
random experiments. This richness is measured by what was called Mystery
Numbers or Regions of k-tuples of Mystery Numbers in [A71].

The constructions are based on Freivald’s Lemma for hashing. As byproduct
it gives also a constructive scheme for deterministic channels because they auto-
matically have feedback. Shortly thereafter another construction was given for
these special channels by Verdu and Wei [C96].

Mystery numbers have been subsequently called by R. Ahlswede in his lectures
and papers, in particular also in [A208] common randomness capacities, a
further enlightening development concerned what he formulated as a PRINCI-
PLE::

Second order identification capacity equals (first order) common
randomness capacity.

After [A59], [A60], and [A71] a lot spoke for it and it became a driving dream
leading to many results like [A100], coauthored by Z. Zhang, where the remark-
able fact, that a wire-tapper cannot reduce identification capacity, if he cannot
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prohibit identification for 2 alternatives, and otherwise the identification capaci-
ty equals zero, was discovered and proved by arguments, which are by no means
simple.

The same paper also started the investigation of identification in the presence
of noisy (passive) feedback channels. This is discussed in [D1].

Continuing the line of children of the principle there are [A107] and striking
work on the AVC with Ning Cai [A130] and arbitrarily varying MAC [A139],
[A140], and above all for the maximal error concept for the AVC with complete
feedback a determination of the capacity formula, which has a trichotomy.

Let’s recall that the Ahlswede-dichotomy was for average error and no feed-
back [A29].

What was called “correlation in random codes”, originally introduced in the
pioneering paper [C8], can now be understood as common randomness.

Also its elimination in [A29] is an early version of what now Computer Sci-
entists call derandomization.

Finally, we report on the removal of another heavy stone. Having understood
how correlation in random codes, a form of common randomness, helps the
communicators for AVC a next question is how a Slepian/Wolf type correlated
source (Un, V n) [C89] helps the identification for a DMC W , when the sender
knows Un and the receiver knows V n. Well, the principle says that it should
be equivalent to asking how much common randomness can the communicators
extract from (Un, V n), if they are assisted by the DMC W with capacityCSh(W ).

Now just notice that the case CSh(W ) = 0 leads to the problem of finding
what I. Csiszar asked for, and according to [C109] also D. Slepian, and named
Common Information. It was determined by P. Gács and J. Körner [C36]. As
expressed in their title the question was to know how this common information
relates to Shannon’s mutual information, in particular whether they are equal.

As we know the quantities are far apart, and under natural conditions,
CGK(U, V ) equals zero and it only depends on the positions of positivity of
the joint distribution PUV .

This got A. Wyner started, who believed that the quantity CW (U, V ) he
introduced was the right notion of common information. For one thing it does
depend on the actual values of PXY . On the other hand it satisfies CW (U, V ) ≥
I(U ∧V ) and is therefore rather big. The authors of [B38] gave a critical analysis
about the problems at hand.

By the forgoing it is clear that the common randomness capacity of R. Ahlswede
and V. Balakirsky, say CWAB(U, V ), equals CGK(U, V ), if CSh(w) = 0. However,
if CSh(w) > 0
CWAB(U, V ) nicely depends on the actual value of PUV . Furthermore,CGK(U, V ),

which was always considered to be somewhat outside Information Theory proper,
turns out be a common randomness capacity. The proof of the characterization
of CWAB(U, V ) is a natural extension of the one in case CSh(w) = 0 given in [B38].

More importantly we feel that the analysis and discussion in [B38] are still of
interest today, therefore we include that old (unpublished) manuscript here (as
an Appendix).
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“Der Mohr hat seine Schuldigkeit getan, der Mohr kann gehen”

The reader may consult [B17] to get help in deciding whether this is a quote
from the “Merchant of Venice” and whether it is due to Shakespeare, Marlow
(see also [C79]) or somebody else.

Here independently of the answer to this question the quote expresses our
“gratefulness to the principle” for the inspirations we received from it.

After many lectures, in which we expressed firm believe in it we were chal-
lenged at the World Congress of the Bernoulli Society in Vienna in 1996.

At a slightly forced one night stay at a railway station in Serbia, we took a
pencil ... (see the counter example in [A208]). There are two theories: theory
of identification and theory of common randomness (see also [B10]). However,
often they fall together as was shown by Y. Steinberg [C90] under reasonable
conditions.

The first systematic investigation of common randomness started in [A79] and
was continued after ideas had matured with [A131], in particular, with a revival
of another old friend: balanced coloring for hypergraphs, which led also to a
sharper converse for Wyner’s wire-tap channel [C108].

Very remarkable work has been done since then by Csiszar and Narayan, and
we are particular intrigued by the work of Venkatesan and Anantharam [C94],
[C95].

In conclusion of the subject, we mention that common randomness and entan-
glement go into the center of Quantum Information Theory. But there according
to [B24] already for simple channels identification and common randomness can
be far apart.

The exploration of new concepts, ideas and models does not end at the the
discovery of identification. It actually was a starting point for them. In [A208]
more general communication systems were introduced and studied. Let M be a
finite set of messages observed by a sender (or in general more than one sender)
and Π be a set of partitions of M. Then there are |Π | receivers in a new commu-
nication system introduced in [A208], all access the output of the communication
system, for example a noisy channel. Each receiver’s responsible for a partition
π = {Mπ,i}i in Π in the sense that he has to find the subset Mπ,i in π, which
contains the message observed by the sender. Let us first fix the communication
system as a noisy channel and as the goal of the communicators the maximiza-
tion of the size of the message sets. Then in the case that Π contains only
partitions {{m} : m ∈ M} the problem is the transmission problem in Shan-
non’s sense, coding for noisy channels. When Π = {{{m},M\ {m}},m ∈ M}
the problem becomes identification via noisy channels. Thus this model covers
both transmission and identification.

Several interesting special problems are studied. For K-identification, that is
Π consists of all partitions of M into a K-subset of M and its complement, lower
and upper bounds of the optimal (second order) rates are found. An interesting
relation between it and a well known combinatorial problem, the superimposed
codes also called “r-cover-free families”, is observed.
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Several naturally defined sets Π of partitions for which the rates of transfer
may not be larger than rates of transmissions, are presented.

The roles of feedback are discussed as well.
A family of problems on information transfer is introduced by the assumption

that the receivers have certain prior knowledge. In particular it is called “K-
separation” when the receiver knows initially that the message sent by the sender
is in a K-subset of messages. It is shown in [A208] that K-identifiability and K-
separability are closely related.

When one takes an information source as the communication system and uses
variable-length codes to minimize the waiting time for the solution in which sub-
set in π ∈ Π the message is, several new problems of information transfer arise.
Among them is an analogon to identification via a noisy channel, identifica-
tion for sources, obtained by taking Π = {{{m},M\{m}},m ∈ M}. Several
contributions to identification theory are made in [A208] as well. They are iden-
tification capacity regions for multiple access channels and broadcast channels
and the capacity region for simultaneous transmission and identification in the
presence of noiseless feedback. Determining the identification capacity region for
broadcast channels is surprising as determining the transmission capacity region
for broadcast channels is among the well known hardest open problems in Multi-
User Information Theory. Still many more problems, (for example, identification
after group testing, binning via channels ...), solutions, and their relation to dif-
ferent types of problems in Information Theory, Statistics, Computer Science,
and Combinatorics can be found in [A208] updated in [D1]. They can be recom-
mended to the readers as a rich source of ideas, concepts, and proof techniques.

In [B1] more generalizations of identification for sources, namely generalized
identification and generalized identification with decoder are posed. A proba-
bilistic tool to study the bounds for the optimal waiting times of those models is
introduced. Several results for identification for sources are obtained, including
the limit of waiting times (in the worst case) for the code obtained by a nearly
equal partition as the size of the alphabet of the uniformly distributed source
goes to infinity, general bounds on the identification waiting times (in the worst
case) and the limit of the average waiting times for block codes. Identification
for sources is a new direction in the GTIT. In [B33] an interesting new quantity,
identification entropy, is introduced and its operational properties are discussed.
It takes the role analogue to classical entropy in Shannon’s Noiseless
Coding Theorem.

We have explained the role of common randomness for identification (The
Principle!).

In the absence of feedback, one possibility to achieve the maximal possible
rate of such a common random experiment is that the sender performs a uniform
random experiment and transmits the result to the receiver using an ordinary
transmission code. If noiseless feedback is available, the sender sends letters in
such a way, that the entropy of the channel output (which he gets to know by
the feedback channel) is maximized, where he can either use a deterministic or
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randomized input strategy, depending on the kind of code he may use. This
interpretation proved to be the right one also for other kind of channels like the
multiple access channel (see [A71]).

Thus the question arises if this equality is valid in general.
The answer is negative. In [A208] Ahlswede gives an example of a non-

stationary memoryless channel with double exponentially growing input alpha-
bet with identification capacity 1 and common randomness capacity 0. The struc-
ture of this channel has some similarities to the structure of ID-codes used in
most of the achievability proofs for ID-coding theorems, thus it can be viewed
as a channel with “built–in” ID-encoder.

In [B2] Kleinewächter presents a counterexample for the other direction. For
given real numbers CID and CCR with 0 < CID < CCR, constructed is a discrete
channel with memory and noiseless passive feedback with identification capacity
CID and common randomness capacity CCR. This channel is constructed in such
a way that it can be used in two ways. In one respect, the channel is good for the
generation of common randomness, in the other it is suitable for identification.

It is quite reasonable to consider channels with memory. One may think for
example of a system where data is transmitted by different voltage levels at high
frequency. Because of the electrical capacity of the system it can be difficult to
switch from a low voltage level to a high one and vice versa. There are also certain
types of magnetic recording devices which have problems with long sequences
of the same letter. These examples for instance lead to the notion of run length
limited codes. A third example are systems requiring the use of binary codewords
which have approximately the same number of zeroes and ones. This limitation
arises if the system can only transmit an unbiased alternating current, therefore
these codes are called DC-free.

In [A100] Ahlswede and Zhang gave bounds on the maximal rate for ID-
codes for discrete memoryless channels with noisy feedback. Channels without
feedback can in this model be described by a feedback channel that maps all input
letters with probability 1 on one special feedback letter. The case with noiseless
feedback is described by a feedback channel that has positive probability for a
pair (y, z) of output respectively feedback letters only if y = z. In the cases of
either no feedback or noiseless feedback, the upper and lower bound coincide
and therefore this can be viewed as a generalization and unification of the
results of [A59], [A60] and [C45], where the identification capacities for those
channels were determined. Unfortunately in general there is a gap between the
upper and lower bound.

Also in [B2] the upper bound on the size of deterministic codes given in
[A100] for the channels where the main channel is noiseless is analyzed. The
known bound states that the second order rate of deterministic ID codes is inde-
pendently bounded by the maximal mutual information that channel input and
feedback give about the channel output and the maximal entropy of the feedback.
The improved bound is obtained by showing that these two quantities cannot be
maximized independently, instead one has to choose an input distribution that is
good for both, transmission and the generation of randomness. For the channels
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considered the new upper bound equals the known lower bound, therefore the
deterministic identification capacity for these channels is now known.

In [B3] we see that the concept of identification is introduced in prediction
theory. A framework of universal prediction of individual sequences is worked out
in [C34]. There the authors used finite state machines to predict the outcoming
letters of individual sequences according to the past parts of the sequences. As
a main criterion the frequency of prediction errors is applied. Based on the work
[C34] a universal predictor is developed and Markov predictors and Markov pre-
dictability of sequences are studied in [B3]. As a more general criterion, general
loss functions are considered. After that the author of [B3] introduced identifica-
tion into the prediction of sequences. That is, instead of predicting the outcom-
ing letters in the sequences, the finite state machine has to answer an “easier”
question, whether the outcoming letter is a specified one. Two identifiabilities,
identifiability and strong identifiability, are defined according to the freedom of
the users to use the finite state machines. Then a universal identification scheme
is presented. The relations between predictability and identifiability are studied.
For Markov machines it is shown that identifiability and strong identifiability
asymptotically coincide. It was shown in [A59] that randomizations dramatically
enlarge the sizes of message sets from exponential to double exponential in the
blocklength. However it turns out here that randomization does not help at all
in the asymptotic sense.

Next we turn to an application of identification in watermarking. Watermark-
ing is a way to hide a secret message from a finite set, the watermark, in a
data set, the covertext which is often used in protection of copyright. Water-
marking may be viewed as a problem of transfer in a communication system in
the sense that an attacker uses noisy channels to attack the watermark and a
decoder tries to recover it. Watermarking identification codes were introduced
by Y. Steinberg and N. Merhav [C91]. There the decoder identifies whether the
watermark hidden in the covertext is the specific one instead of recovering it.
This enables the size of watermarks to enlarge from exponential to double expo-
nential. In the models in [C91] the attacker attacks the watermark with a single
channel and the decoder knows either completely the covertext or nothing about
the covertext. Since the assumption that the attack channel is single, meaning
that the encoder (or the information hider) and the decoder know enough about
the attack channel, the models are not robust. In [B4] robust models are stud-
ied. That is, the attacker is assumed to use an unknown channel from a set
of attack channels to attack the watermark. More general assumptions on the
knowledge of the decoder about the covertext are considered in two models, the
component-wise key and block key, sent by the encoder to the decoder. Lower
bounds on identification capacities for these models are obtained. Additionally
to obtain the lower bound the authors in [B4] introduce two coding problems for
common randomness and obtain their capacities for single channels. In the case
of compound channels, lower and upper bounds are obtained for both models.



14 Introduction

The successive refinement of information under error exponent or reliabili-
ty constraints is discussed in [B5]. It was studied independently by Ahlswede
[A50,A52] and by Koshelev, and then by Equitz and Cover. In the communi-
cation system the output of a discrete memoryless source is encoded and then
sent to two users. The first user has to reproduce the output of the source in a
∆1 level with respect to a distortion measure. The second user, who receives the
message received by the first user and an additional message, has to reproduce
the output of the source with a more accurate distortion level ∆2 ≤ ∆1. An addi-
tional criterion, two levels of exponents of errors, was introduced in the model in
[C46]. In [B5] the author refines the proof on the successive refinability condition
in [C46] and re-establishes a result by E. Tuncel and K.Rose [C93], a single-letter
characterization of the achievable rate region for successive refinement.

The coding problem for deterministic binary adder channels is considered
in [B6]. The paper consists of two parts. In the first part the permanent user
activity model and in the second part the partial user activity model are dealt
with.

The E-capacity region for the multiple access channel is the object of the work
[B7]. The multiple access channel is a multi-user channel with two senders (or
more) and one receiver, whose capacity region was determined by R. Ahlswede
([A12]). Here by E-capacity region we mean the region of achievable rates under
the constraint of the error probability exponent. The multiple access channels
with states that are studied in [B7] are specified by a set of ordinary multiple
access channels labeled by elements (which are called states) in a set S of states
and a probability distribution Q on it. The channel takes values of channels
labeled by st ∈ S at each time moment t independently. By combination of the
cases where the two encoders, one encoder or/and the decoder know the states
the author divides the problem into five models. Inner and outer bounds are
derived for the capacity regions in the different models.

To realize identification via noisy channels it is necessary to find ways of
constructing identification codes with the ability to correct errors as the proof of
the achievability in [A59] is an existence proof. Constructive identification codes
were first studied in [A71] as a special case of a feedback scheme, in which the
channel is noiseless and therefore feedback automatically given. Then they were
studied in [C96]. Notice that to achieve the capacity of identification codes, the
length of codes are required to be sufficiently long whereas in practice the lengths
of codes are bounded by technical constraints. So the constructive identification
codes with length constraint are practically important. In this volume the paper
[B8] is on this subject. Based on [C96] and their previous work [C18], the authors
analyze a family of identification codes with length constraint and apply it to a
simple kind of noiseless multiple access channel.

Codes with identifiable parent property were introduced by H.D.L. Hollmann,
J.H. van Lint, J.P. Lennartz, and L.M.G.M. Tolhuizen [C51] for protection of
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copyright. Let an and bn be two words of the same length from a finite alpha-
bet. Then a descendant of them is a word of the same length such that each
component coincides with the corresponding component of either an or bn, who
are called its parents. Identifiable parent property of a code means that one can
discover at least one parent from the descendant of any pair of codewords in
the code. R. Ahlswede and N. Cai observed in [B9] its relation with coding for
multiple access channels. Its probabilistic version is coding for a multiple access
channel such that two senders have the same codebook and the receiver has to
decode the message at least from one of the two senders. This leads them to a
coding problem for the multiple access channel, where the two senders are al-
lowed to use different codebooks and again the receiver only needs to decode the
message sent by anyone of the two senders. The capacity region is determined
and the result shows that an optimal strategy for the receiver is to always decode
the message from a fixed sender. The result has a simple consequence for the
interference channel with one deterministic component which seems to be new.

II

Problems on GTIT, particularly, transmission, identification and common ran-
domness, via a wire-tap channel with secure feedback are studied in the work
[B10]. Recall that wire-tap channels were introduced by A. D. Wyner [C108]
and were generalized by I. Csiszár and J. Körner [C19]. Its identification capac-
ity was determined by R. Ahlswede and Z. Zhang in [A100]. In the article here
secure feedback is introduced to wire-tap channels. Here by secure feedback we
mean that the feedback is noiseless and that the wire-tapper has no knowledge
about the content of the feedback except via his own output. Lower and upper
bounds to the transmission capacity are derived. The two bounds are shown to
coincide for two families of degraded wire-tap channels, including Wyner’s origi-
nal version of the wire-tap channel. The identification and common randomness
capacities for the channels are completely determined. Also here again iden-
tification capacity is much bigger than common randomness capacity,
because the common randomness used for the (secured) identification needs not
to be secured!

In the work of Z. Zhang [B11] the scheme of encrypting the data Xn by using
the key set Kn and function f : Kn × Xn → Y n is considered. Under given
distribution of Xn the value of the conditional entropy 1

nH(Kn|Y n) which is
offered as the measure of the secrecy of the system is investigated. In several
natural cases an expression for this measure (which is called ‘key equivocation
rate’) in terms of sizes of alphabets and distributions of Xn is derived.

The secrecy system with ALIB encipherers was investigated in [A42] and is
adapted in [B12] to satisfy the model of identification via channels. The small-
est key rate of the ALIB encipherers needed for the requirement of security is
analyzed.
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Several papers in this section are devoted to the investigation of the problem
of generating pseudorandom sequences and their statistical properties. This is an
important task for cryptology since for instance these pseudorandom sequences
can serve as a source of key bits needed for encryption. The first problem in
[B13] is to find a proper test for sequences of elements from a finite alphabet to
be pseudorandom. For a binary sequence with alphabet {−1,+1} the authors
choose the criterium of a small modul of the sum of subsets of the elements
of the sequence maximized over the choice of the subset of positions of these
elements and small correlation measure which is the absolute value of the sum
of products of elements from some set of subsets of positions maximized over
the special choice of the positions of these elements.

Then these measures are extended in [B14] to a nonbinary alphabet and as one
generalization the frequency criterium is chosen, i.e. the deviation of the num-
ber of given patterns on given positions from the expected value, maximized
over the choice of the positions. Relations are proved which show the equiva-
lence (in some sense) of these different tests of pseudorandomness in the binary
case. Also proved is that the number of the sequences with large measures of
pseudorandomness is exponentially small in comparison with the number of all
sequences.

Algorithms were introduced in [B15] for constructing pseudorandom sequences.
These constructions can find applications in cryptology and simulations ([B16]).
Also considered was the notion of f−complexity of the set of n−tuples which
is the maximal number t s.t. arbitrary t positions have an arbitrary pattern in
some n−tuple from this set. It was introduced in [A171].

More explanations are given by the excellent introductions also in
earlier work, where C. Mauduit and A. Sarkozy explain their approach
to cryptology. Roughly speaking their philosophy is that less can be
more: instead of going after complex problems whose high complexity
till now cannot be proved and therefore always there can be a bad end
of a dream, they suggest to work with number theoretical functions of
likely not highest complexity, but for which some degree of complexity
can be proved.

Now about the work [B17] which approaches the study of the text authorship
identification. Eventhough this problem is rather delicate the attempt to study it
here in a particular case of the identification of Shakespeare text can be consid-
ered as an example for applying different methods of word choices and stylistic
analysis to establish the author of the text. The reader can agree or disagree
with the conclusions of this work, but in any case, it is interesting research of
the authorship identification.

III

Since the end of the last century, quantum information and computation have
become a more and more important and attractive research area for physicists,
computer scientists, information theorists, and cryptographers.
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Although the rules of quantum mechanics are fairly simple, even several
experts find them counter-intuitive. The earliest antecedents of quantum infor-
mation and computation may be found in the long-standing desire of physicists
to better understand quantum mechanics. Generations of physicists have wres-
tled with quantum mechanics in an effort to make its predictions more palatable.
One goal of research in quantum information and computation is to develop tools
which sharpen our intuition about quantum mechanics and make its predictions
more transparent to human minds.

In the recent years, the historic connection between information and physics
has been revitalized as the methods in the theory of information and compu-
tation have been extended to treat the transmission and processing of intact
quantum states, and interaction of such quantum information with classical in-
formation. As this book is devoted to the GTIT, we consider here also research
on quantum information. The Theory of Quantum Mechanics shows that quan-
tum information has a very different behavior than classical information. For
example data can be copied freely, but can only be transmitted forward in time,
to a receiver in the sender’s forward light cone, whereas quantum entanglement
cannot be copied but can connect any two points in space-time. Those differences
not only enlarge the powers of information transfer and cryptography, but also
provide a wide range for research on Theory of Information and Computation.

The problem of transferring quantum information from one quantum system
into another quantum system is linked to the well-known work [C31] by A.
Einstein, B. Podolski, and N. Rosen. They posed a far reaching question, but
doubted that the answer can be given by Quantum Theory. As they pointed out
later, it asserts the possibility to create simultaneously and at different places
exactly the same random events. This phenomenon is often called “EPR effect”,
or for short EPR. So far the discussions on EPR have become a very attractive
topic in the study of Quantum Information Theory. One can find a huge number
of papers on or related to this topic. A beautiful work [B19] in this direction is
included in this volume, where several nice and basic contributions are made.
There are some anti-linear maps governing EPR tasks in the case that no refer-
ence bases are distinguished; some results on imperfect quantum teleportation
and composition rules; quantum teleportation with distributed measurements;
and some remarks on EPR with mixed state, triggered by a Lüders [C67] mea-
surement. We expect that they contribute to the richness of the EPR study and
related topics.

So far many important concepts in Classical Information Theory have been
extended to Quantum Information Theory. Among them is the noisy channel,
which is one of the most important objects in Information Theory. Classically
a noisy channel is specified by a stochastic matrix in discrete communication
systems, or more general a collection of conditional probability distributions on
the output space indexed by the input symbols. The physical interpretation is
that due to the classical noise, random errors may change input symbols into
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outputs of the channels. Such models have been extended into a quantum ver-
sion, where the role of stochastic matrices is replaced by a quantum operation,
that is, a linear trace preserving or more general trace-non-increasing, complete-
ly positive mapping. The physical interpretation is that a measurement on the
environment, whose result is unknown by the communicators, is performed after
a unitary transformation has been applied to the inputs coupled to the envi-
ronment. In contrast to classical noisy channels, people have known very little
about quantum noisy channels. A problem to study quantum channels is their
characterization. A quantum channel of rank two is characterized by the rank
and the determinant, or by the determinant alone under the assumption of trace
preservation, up to unitary transformations. In the nice paper [B20] based on
some identities for determinants of quantum channels of rank two, concurrences
are calculated or estimated.

We recommend to our readers the excellent paper [B21], which surveys sev-
eral basic concepts of universality in quantum information processing
and deals with various universal sets of quantum primitives as well with
their optimal use. To exploit the potential of the nature for quantum informa-
tion processing appears to be very difficult. So it is very important for quantum
information processing to explore what kind of quantum primitives form sets of
primitives that are universal in a reasonable sense and that are easy to implement
with various technologies for design of quantum registers. Finding rudimentary
quantum information processing primitives, which perform efficient quantum in-
formation processing, and methods for their optimal use is fundamentally impor-
tant. They help us to understand in depth the laws and limitations of quantum
information processing and communication and also quantum mechanics itself.
The search for sets of elementary, or even very rudimentary, but powerful, quan-
tum computational primitives and their optimal use is one of the major tasks of
quantum information processing research and has brought a variety of deep and
surprising results. In this work, different types of universalities of sets of quan-
tum gates and basic concepts used in their definitions are stated. Then based
on them various results are presented. A rather comprehensive list of references
in the area is provided. All this is quite transparent and helpful for people who
want to get into this area.

One of the most exciting things in the area of computation brought by quan-
tum mechanics perhaps is that quantum computation has more power than clas-
sical computation. Many excellent examples can be found in the literature. One
of the well-known algorithms among the examples is Grover’s Algorithm [C40],
[C41]. The problem is to search a target element in an unstructured search uni-
verse of N elements using an oracle. For a classical algorithm the computation
complexity is of order N

2 queries. It was shown in [C4] that no quantum al-
gorithm can solve the search problem in fewer than O(

√
N) queries. Grover’s

algorithm solves the problem in approximately π
4

√
N queries. So it is optimal

in this sense. The problems have been generalized and discussed by different
authors (for example see [C14] and its list of references). An alternative proof
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to the optimality of Grover’s algorithm is presented by E. Arikan in [B22]. The
proof is elegant and an information theoretic method is used in the analysis. In-
formation theoretic analysis has been applied in classical computation and often
is powerful. Here its power is shown in the analysis of quantum computation.
It is reasonable to expect that it will play an important role in the Theory of
Quantum Computation in the future.

As we have mentioned, many powerful methods and techniques in Classi-
cal Information Theory have been extended to Quantum Information Theory. A
well-known example is in [C82], where the concept of typical sequences, an essen-
tial tool in Classical Information Theory is extended to typical subspaces. Those
extensions not only provide a rich resource of ideas, tools and techniques in the
study of Quantum Information Theory but also help us to better understand
the physical meaning and structure of quantum information. It is considered
by us as an important direction in the GTIT. The quantum channels closest
to classical channels perhaps are the classical quantum channels introduced
by A. Holevo [C50], which are among the few kinds of quantum channels, for
which the additivity of capacities is known. Perhaps due to their similarity
to classical communication systems classical quantum channels are among the
quantum communication systems, for which the ideas and methods in Classical
Information Theory often can be well extended. Several examples can be found
in A. Winter’s dissertation [C104]. In this volume there are two works of such
extensions in Multi-user Information Theory. The first paper [B23] is on classical
quantum multiple access channels. The coding and weak converse theorem for
classical multiple access channels of [A12] was extended to classical quantum
multiple access channels in [C105]. But the extension of the strong converse the-
orem has been open for several years. One reason, but likely not the only one,
for it is that so far an analogue to the Blowing Up Lemma [A23] has not been
discovered. The Wringing Technique, a powerful technique of [A44], could be
extended in [B23] to the quantum case and then gave the desired strong converse.
We expect that the work not only helps us to better understand quantum
multiple access channels, but also brings new ideas and techniques into the
whole area of quantum multi-user information theory. Readers can find more ex-
tensions of results in Multi-user Information Theory from classical to quantum in
[C103]. The broadcast channel is a well known multi-user channel introduced in
[C16] and in general its capacity region is still unknown. What we know is about
its capacity region in two special cases, degraded broadcast channels ([C6], [C37],
[A21])) and asymmetric broadcast channels ([C97], [C56]). Their extensions to
a classical quantum version are obtained in [C103]. Some results, which extend
the protocols for two users sharing different terminals of a correlated source to
generate a private key in [A79], are obtained in [C103] for the quantum case as
well. These extensions, however, are still incomplete. On the other hand an inves-
tigation of the difficulty may help understanding the difference between classical
and quantum information systems. The readers who would like to study Quan-
tum Multi-user Information Theory may find interesting open problems there
as well.
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Identification via channels was analyzed in [A59] in Classical Information The-
ory and today it has been developed as an important subject. Its extension to
Quantum Information Theory began with the dissertation [C66]. Actually two
models of identification arise in quantum which could be proved to be different! A
strong converse theorem for classical quantum channels was obtained in [A161].
Once again this strong converse theorem shows the similarity of classical and
classical quantum channels although more powerful inequalities and in particu-
lar a lemma of [B37] are needed in the proof. For both channels the identification
capacities (in second order) are equal to the transmission capacities (in first or-
der). However in general the situation is different. It was discovered in [C106]
for the ideal qubit channel, one of the simplest quantum channels, that the
identification capacity is two, twice its transmission capacity. The result
shows the essential difference between classical and quantum channels. Classi-
cally such gaps occur in more artificial cases (see [A208]) or in cryptographic
systems like wire-tap channels (see [A100] and [B4]). The paper [B24] continues
the work along this line, where several interesting and nice results are presented.
At first two alternative proofs for the capacity of the ideal qubit channel being
equal to 2 are given. Then the author applies the results to prove the capaci-
ty formulas for quantum channels with two forms of feedback: passive classical
feedback for quantum-classical channels, and coherent feedback for general quan-
tum channels. The results are considered as generalization of Ahlswede/Dueck’s
earlier results in [A59] and [A60]. Due to the No-Cloning Theorem there is no
direct way to extend the concept of feedback to a quantum channel. Actually
for quantum channels feedback is a problematic issue. We hope that the discus-
sion on feedback in the work will be helpful for readers concerned about ways
to introduce feedback in transmission over quantum communication systems as
well.

In the work of Nathanson [B25] the natural arithmetical structure of the so-
called quantum integers is established.

IV

In [B26] the author discusses the foundations of Statistics focusing on the fidu-
cial argument. This concept was introduced by Fisher in 1930, but unfor-
tunately was misinterpreted by Fisher himself in his later work and by other
statisticians. The author considers the fiducial argument as a first attempt to
bridge the gap between two directions in Statistics: the Neyman-Pearson Theo-
ry and the Bayesian Theory. When interpreted properly, it leads to a unifying
Theory of Statistics.

[B27] is an interesting discussion on the appropriateness of different asymp-
totic tools for sequential discrimination problems.

[B28] continues the work [A121] by R. Ahlswede, E. Yang and Z. Zhang, in
which a new model was introduced and analyzed. “Identification” here has a new
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meaning. One motivation for its study was to estimate a joint distribution PXY
of a pair X,Y of random variables, by the observer of Y when he gets informed
at a prescribed rate from the observer of X . Rather precise estimates of the
error probability are given. A new method described in the Inherently-
Typical Subset Lemma was introduced. It solves new cases of shadow
problems.

A broad class of statistical problems arises in the framework of hy-
pothesis testing in the spirit of identification for different kinds of sources,
with complete or partial side information or without it. [B29] is devoted to the
investigation of a hypothesis testing problem for arbitrarily varying sources with
complete side information. [B30] considers the more difficult but more promising
problem of hypothesis identification.

A very basic inequality, known as the Ahlswede-Daykin inequality and called
Four Function Theorem by some authors, which is more general and also sharper
than known correlation inequalities in Statistical Physics, Probability Theory,
Combinatorics and Number Theory (see the preface and survey by Fishburn and
Shepp in [C1]) is extended elegantly to function spaces. That is, the inequality
of the same type holds for a Borel measure on R[0,1]. We expect that it will have
wide applications.

There are some earlier results stating upper bounds on the rate of convergence
in the Central Limit Theorem. In [B32] the author proposes a new method for
establishing a lower bound for the information divergence (or relative entropy),
which is then used to determine the rate of convergence in the information-
theoretic Central Limit Theorem.

V

Shannon (1948) has shown that a source (U , P, U) with output U satisfying Prob
(U = u) = Pu, can be encoded in a prefix code C = {cu : u ∈ U} ⊂ {0, q − 1}∗
such that for the entropy

H(P ) =
∑
u∈U

−pu log pu ≤
∑

pu||cu|| ≤ H(P ) + 1,

where ||cu|| is the length of cu.
In [B33] a prefix code C is used for another purpose, namely noiseless iden-

tification, that is every user who wants to know whether a u (u ∈ U) of his
interest is the actual source output or not can consider the RV C with C = cu =
(cu1 , . . . , cu||cu||) and check whether C = (C1, C2, . . . ) coincides with cu in the
first, second etc. letter and stop when the first different letter occurs or when
C = cu. Let LC(P, u) be the expected number of checkings, if code C is used.
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Discovered is an identification entropy, namely the function

HI,q(P ) =
q

q − 1

(
1 −

∑
u∈U

P 2
u

)
.

We prove that LC(P, P ) =
∑
u∈U

Pu LC(P, u) ≥ HI,q(P ) and thus also that

L(P ) = min
C

max
u∈U

LC(P, u) ≥ HI,q(P )

and related upper bounds, which demonstrate the operational significance of
identification entropy in noiseless source coding similar as Boltzmann/Shannon
entropy does in noiseless data compression.

It has been brought to our attention that in Statistical Physics an entropy
Sα(P ) = f(α)(1 −

∑
u∈U P

α
u ) has been used in Equilibrium Theory for more

pathological cases, where Boltzmann’s H(P ) fails.
Attempts to find operational justifications in Coding Theory have failed.
It is important here that Sα(P ) (in particular also S2(P )), which is to be

compared with HI,q(P ), does not have the parameter q, the size of the alphabet
for coding. The factor q

q−1 equals the sum of the geometric series 1+ 1
q + 1

q2 + . . . ,
which also has an operational meaning for identification. H(P ) also has a q in
its formula, it is the basis of the log- function for which Shannon’s result holds!

We emphasize, that storing the outcome of a source as a leaf in a prefix code
constitutes a data structure which is very practical. Let for instance the
cu specify the person u out of a group U of persons, who has to do a certain
service. Then every person traces along the tree to find out whether he/she has
to go on service. We know that its expected reading time is always < 3 no matter
how big |U| is. This goes so fast, because the persons care in this model only
about themselves. If they don’t have service, then they don’t care in this model
who has.

Finding out the latter takes time ∼ H(P ) and goes to infinity as H(P ) does.
Notice that HI,q ≤ q

q−1 ≤ 2.

The paper [B34] describes the concept of weakly chaotic (0-entropy) dynam-
ical systems and how new ideas are needed to characterize them. Compression
algorithms play a key role in this theory.

The difference between coarse optimality of a compression algorithm and the
new concept, asymptotic optimality, are described. For instance the well-known
Ziv/Lempel 77 and 78 compression algorithms are not asymptotically optimal.
At the moment it is not clear whether the definition of “Asymptotic optimality”
exactly captures what one is interested in regarding weakly chaotic systems. The
main result states the asymptotic optimality of a compression algorithm similar
to the Kolmogorov Frequency Coding Algorithm.

This compression algorithm is not of practical use because of its computational
time cost. Presently no “fast” asymptotically optimal compression algorithm is
known.
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As entropy measure use is made of the empirical entropy Ĥl of a given
string s as a sequence of numbers giving statistical measures of the average
information content of the digits of the string.

Other conceptual instruments have been developed to understand physical
phenomena related to weakly chaotic dynamical systems: self organized critical-
ity, anomalous diffusion processes, transition to turbulence, formation of complex
structures and others.

Among them are works using the generalized entropies f(α)(1 −
∑

pαi ) men-
tioned above (lately called Tsallis entropies), many of these works are – according
to the authors – “ heuristic or experimental (mainly computer simulations) and
few rigorous definitions and results can be found. Conversely there are rigor-
ous negative results ([C92], [C9]) about the use of generalized entropies for the
construction of invariants for 0-entropy measure preserving systems.”

The book has no contributions to Algorithmic Information Theory ([C65]) or
its applications. We mention work of Biochemists ([C27], [C28], [C29], [C30], and
[C63] with several references) who think about information as a kind of program
complexity in the context of selforganisation of matter.

Write efficient memories, or for short WEM, is a model for storing and updat-
ing repeatedly on a medium. It was introduced by R. Ahlswede and Z. Zhang in
[A63]. Given a finite alphabet and a cost function of the pairs of letters in the
alphabet a WEM code is a collection of subsets of codewords in the alphabet
and a subset stands for a message. When a user is going to update the content
of the memory to a new message, he changes the current codeword written on
the medium to a codeword in the subset standing for the new message such that
the cost he pays for the change is minimum in respect to the cost function. The
goal is to maximize the set of messages under a constraint on the update cost.
According to the knowledge of the encoder and decoder about the current code-
word, the model is divided into four sub-models. In the original model, there
is no assumption for the updating error. In [B35] R. Ahlswede and M. Pinsker
introduced defect errors and localized errors to WEM. For binary alphabet and
Hamming cost function, the capacities of the following WEM codes are obtained:
in the case that only the encoder knows the current codeword the codes correct-
ing defect errors and codes correcting localized errors and in the case that both
encoder and decoder know the current codeword the code correcting localized
errors.

Codes for k-ary trees are important in Computer Science and Data Compres-
sion. A stochastic generation of a k-ary tree was considered in [B36]. Starting
from the root, extend k branches and append k children with probability p, or
terminate with probability 1 − p. This process gives the ideal codeword length
if 0 ≤ p ≤ 1/k. The expectation and variance of the length of ideal codes are
determined. Also, the probability of obtaining infinite trees is established.

Perhaps many researchers in the area of Information Theory have not recog-
nized that the definitions of several basic quantities, including that of the
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capacity of a noisy channel, the most important quantity in channel coding,
are problematical in the precise sense. Probably it is because their research
interests mainly focus on stationary memoryless (or more general ergodic) com-
munication systems and for those systems the problems of non-proper defini-
tions do not likely show up. R. Ahlswede noticed that information theory suffers
from a lack of precision in terminology and it is necessary to clarify this. [B37]
in this volume, first made available as a preprint of the SFB-343 in the year
2000 (see [A196]), opens an important discussion on this issue. The paper be-
gins with basic concepts, namely, channels and codes and their performance
parameters blocklength, error probability and code size, and moves on to con-
cepts like capacities, converses,.... Then the author sketches the problems aris-
ing there. The readers may be very surprised about the difference it makes for
systems when stationarity and/or component-wise independence are removed
and the damage caused by misleading or less precise definitions in the history
of research in Information Theory. Ways to get out of this dilemma are pro-
posed with new concepts. Finally the author draws the reader’s attention to
important combinatorial methods in probabilistic coding theory and especially,
shows its power in the proof of the strong converse for the identification coding
theorem.

The following comments to
“On concepts of performance parameters for channels” are written
solely by R. Ahlswede

This contribution has appeared in the preprint series of the SFB 343 at Biele-
feld University in the year 2000 [A195].

Its declared purpose was to open a discussion about basic concepts in Infor-
mation Theory in order to gain more clarity.

This had become necessary after the work [A59] for identification gave also
new interpretation to classical theory of transmission leading in particular to “A
general formula for channel capacity” by S. Verdu and T.S. Han, which however,
does not cover the results of [A2]. Moreover, discussions at meetings bore no
fruits. Finally, quite amazingly the name information spectrum reminded us of
the name code spectrum in [A47].

Also, some responses have send us through hell: per aspera ad asctra.
We give now a brief reaction to some comments and criticism we received.

1. Strong objections were made against statement α) after (10.3), which im-
plies the claim that the inequality

λ ≥ F (logM −Θ) − e−Θ, Θ > 0 (a1)

is essentially not new. Particularly it has been asserted that this inequality
is not comparable to Shannon’s
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λ ≥ 1
2
F (log

M

2
) (a2)

in (3.3) of Shannon’s Theorem, because it is stronger.
Therefore we have to justify our statement by a proof. Indeed, just notice

that Shannon worked with the constant 1
2 for simplicity in the same way as one

usually extracts from a code with average error probability λ a subcode of size
M
2 with maximal probability of error not exceeding 2λ. However, again by the

pigeon-hole principle for any β ∈ (0, 1
2 ) there are Mβ codewords with individual

error probabilities ≤ λ
1−β . (This argument was used in [A1], [A2], [A5]).

Now just replace in Shannon’s proof 1
2 by β to get the inequality

λ ≥ (1 − β)F (logMβ). (a3)

Equating now F (logM − Θ) with F (logMβ) we get β = e−Θ and it suffices
to show that

(1 − e−Θ)F (logM −Θ) ≥ F (logM −Θ) − e−Θ.

Indeed e−Θ ≥ e−ΘF (logM−Θ), because F is a distribution function. So (a3)
is even slightly stronger than (a1).

Q.E.D.
For beginners we carry out the details.
Introduce W ∗(u|y) = P̃ (u,y)

Q(y) and notice that I(u, y) ≤ logMβ is equivalent

with W∗(u|y)
P (u) ≤Mβ or, since P (u) = M−1,

W ∗(u|y) ≤ β. (b1)

Now concentrate attention on those pairs (u, y) for which (b1) holds.
Consider the bipartite graph G = (U ,Y, E) with vertix sets U = {u1, . . . , uM},

Y, and edge set E = {(u, y) : W ∗(u|y) ≤ β}
Clearly,

P̃ (E) = F (logMβ) (b2)

We partition now Y into

Y+ = {y ∈ Y : exists u with W ∗(u|y) > β}, Y− = Y\Y+ (b3)

and correspondingly we partition E into

E+ = {(u, y) ∈ E : y ∈ Y+}, E− = E\E+. (b4)

Clearly P̃ (E) = P̃ (E+) + P (E−). For y ∈ Y+ ML-decoding chooses a u with
W ∗(u|y) > β, but (u, y) is not in E and not in E+. Therefore all (u′, y) ∈ E+

contribute to the error probability. The total contribution is P̃ (E+).
The contribution of the edges in E− to the error probability is, if f is the

ML-decoder,
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∑
y∈Y−

Q(y)(1 −W ∗(f(y)|y)) ≥ P̃ (E−)(1 − β)

and hence

λ ≥ P̃ (E+) + P̃ (E−)(1 − β)

(even slightly stronger than (a3)), written explicitly

λ ≥ P̃ ({(u, y) : log
W (y|u)
Q(y)

≤ logM −Θ}) − eΘP̃ ({(u, y) :

for all u′ ∈ U log
W (y|u′)
Q(y)

≤ logM −Θ}).

For those who do not accept it as Shannon’s result it would be only conse-
quential to name it then the Shannon/Ahlswede inequality.

2. We also have some good news. In Section 5 we argued that the optimistic
capacity concept seems absurd and we provided convincing examples.

Investigations [B12] in Cryptography, made us aware that this concept, a dual
to the pessimistic capacity, finds a natural place here, because one wants to
protect also against enemies having fortunate time for themself in
using their wire-tapping channel!

3. Finally, being concerned about performance criteria, we should not forget
that in Information Theory, similarly as in Statistics, asymptotic theory gives a
first coarse understanding, but never should be the last word.

In particular with the availability of a lot of computing power not only small,
but even medium size samples call for algorithmic procedures with suitable pa-
rameters. This was the message from J. Ziv in his contribution [C112].

4. S. Dodunekov in [C23] explained that for linear codes with parameters
blocklength n, dimension k and minimal distance d, fixing two parameters and
optimizing the third of the quantities (a) Nq(k, d), (b) Kq(n, d), (c) Dq(n, k)
the first one gives the most accurate description.

5. It has been pointed out that there are different concepts of capacity, but
that usually in a paper it is clearly explained which is used and a definition
is given. It can be felt from those reactions that Doob’s famous (and infamous
with respect to Shannon and his work) criticism [C24] about the way in which
Information Theory proceeds from Coding Theorem n to Coding Theorem n+1
keeps people alert.

That mostly researchers know which concepts they are using and
that they sometimes even give definitions, that is still not enough.
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For instance we have been reminded that our statement “there seems to be no
definition of the weak converse in the book [C20]” is wrong and that a look at the
index leads to the problem session, where a definition is given. This is correct.

However, it is not stated there on page 112 that this definition of a converse,
referred to by us as “weak weak converse, ... or ...”, is not the definition, which
was established in Information Theory at least since the book [C107] by J. Wol-
fowitz came out in 1961 and was used at least by most of the Mathematicians
and Statisticians working in the field.

Unfortunately this happened eventhough since 1974 we had many discussions
and joint work with J. Körner and I. Csiszar, a great part of which entered the
book and influenced the shape of the later parts of the book. It was also given
to us for reading prior to publication and we have to apologize for being such a
poor reader. Otherwise we would have noticed what we only noticed in 1998.

It is clear now why [A2] and [A3] are not cited in the book, because they don’t
fit into the frame.

This frame became the orientation for people starting to learn Information
Theory via typical sequences. Shannon’s stochastic inequalities ([C86]) perhaps
were not taught anymore.

6. We know that the weak capacity has the additivity property for parallel
channels. We draw attention to the fact that Shannon (and also later Lovasz)
conjectured this property to hold also for his zero-error capacity (which was
disproved by Haemers [C43]). Apparently, Shannon liked to have this property!

We all do, often naively, time-sharing, which is justified, if there is an addi-
tivity property!

We like to add that without thinking in terms of time-sharing we never would
have discovered and proved our characterization of the (weak) capacity region
for the MAC in [A12] (with a different proof in [A18]).

So our message is “Shannon also seems to think that additivity is an important
property” and not “Shannon made a wrong conjecture”.

The additivity property for quantum channels is of great interest to the com-
munity of Quantum Informationtheorists. This led M. Horodecki to his question
quoted in [C52]. The answer is positive for degraded channels, but not in general!

7. Once the situation is understood it is time to improve it. We suggest below
a unified description of capacity concepts with conventions for their notations.

In every science it is occasionally necessary to agree on some standards - a
permanent fight against the second law of thermodynamics. We all know how im-
portant the settings of such standards have been in Physics, Chemistry, Biology
etc. Every advice to the standards proposed here is welcome.

We start here with the case corresponding to B) under 4. above and restrict
ourself to one-way channels.

We consider a general channel K with time structure, which is defined in (1.2)
of [B37]. Recall that for a positive integer n and a non-negative real number λ
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N(n, λ) denotes for K the maximal cardinality of a code of block-length n
with an error probability not exceeding λ.

Often λ depends on n and we write λ(n). The sequence {λ(n)} is typically of
one of the following forms

(i) λ(n) = 0 for all n ∈ N
(ii) λ(n) = λ, 0 < λ ≤ 1, for all n ∈ N
(iii) λ(n) = n−α, 0 < α, for all n ∈ N
(iv) λ(n) = e−En, 0 < E, for all n ∈ N

We speak about zero, constant, polynomial, and exponential error probabilities.
With the sequence {N(n, λ(n)} we associate a very basic and convenient per-

formance parameter for the channel K the

rate-error function R : Λ→ R+,

where Λ is the space of all non-negative real-valued sequences and for every
{λ(n)} ∈ Λ.
R({λ(n)} is the largest real number with 1

n logN(n, λ(n)) ≥ R({λ(n)}− δ for
every δ > 0 and all large n.

How does it relate to capacities? In the four cases described we get for
R({λ(n)}) the values

(i’) C(0), that is, Shannon’s zero error capacity
(ii’) C(λ), that is, the λ-capacity introduced in [A5]
(iii’) C(α), that is, a novel α-capacity
(iv’) C(E), that is, the E-capacity introduced by Evgueni Haroutunian in [C47].

A word about notation is necessary. The functions C(0), C(λ), C(α), and C(E)
are distinguished only by their arguments, these will always appear explicitly.
All our results have to be interpreted with this understanding.

This convention was made already in [A5] where not only the maximal error
probability λ but also the average error probability λ, the maximal error prob-
ability λR for randomized encoding, and the average error probability λR for
randomized encoding were considered. For example, one of our theorems in [A5]
says that

C(λR) = C(λ) = C(λR).

under certain conditions where λR = λ = λR. Taken literally this is a trivial
statement. In the light of our notation it means that these functions coincide for
certain values of the argument. This notation result is no confusion or ambiguity,
and has the advantage of suggestiveness new and typographical simplicity.

An important point about the introduced rate-error function and the capaci-
ties is their existence for every channel K.

The same is the case for the (ordinary) capacity

C = inf
0<λ≤1

C(λ).

Our rate-error function may be called pessimistic and it has an optimistic
twin R({λ(n)}), the largest real number with
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limn→∞
1
n

logN(n, λ(n)) ≥ R({λ(n)}).

Correspondingly we get the optimistic capacities C(0), C(λ), C(α), C(E),
and C. Of course for a DMC C(0) = C(0) etc.

They are relevant, for example, if a wire-tapper chooses the times of an attack.
Again all these quantities exist. Moreover, the error criteria λ, λR, λR lead

to analoga of the capacities in (iii)-(iv’), namely, C(α), C(αR), C(αR), C(E),
C(ER), and C(ER) and similarly for C. In [A5] compound channels, a certain
class of channels, were considered. The concepts are even more relevant for the
more sophisticated AVC, for example.

8. Well-known is Shannon’s rate-distortion function in source coding. It
is amazing that our preceding analogue for channel coding was not introduced.
However, it must be said that Shannon introduced his function “informationally”
(and so does Toby Berger in [C7]) and not “operational” as we did . In channel
coding he gave two definitions for the channel capacity, an informational and
an operational one. This is very well discussed in the explanation of Aaron
Wyner, which we cite in [B37]. Unfortunately, some well-known text books like
[C17] or [C110] give the informational one. But {maxPn I(Wn|Pn)} describes
the operational capacity C only in special cases like the DMC and is too large
for instance for averaged channels (memory!). Here lies one of the main roots for
conceptional confusions about channel capacity!

9. As we have explained earlier a nice property to have is additivity of a
capacity for parallel channels. This is the case for the ordinary capacity C, if
C = C and this is exactly in the case where the weak converse holds. We also
say in this case that the weak capacity exists (see [A3]). So this quantity
does not exist automatically. This is sometimes overlooked and even more
true for the strong capacity introduced in [A3], when the strong converse holds.

This must be kept in mind when we compare results. Generality is of course
easier to obtain for capacities with weaker properties than for those with stronger
properties.

In proving upper bounds like the weak converse it is helpful to prove first
bounds, which can be obtained easier, like polynomial or exponential (see also
soft converse in [A59]) weak converses discussed in [A208] and [D1].

10. We just indicate that in the spirit of [B37] one should introduce also

rate sequence-error functions
- saying in particular much more about non-stationary channels than rate-

error functions,
classes of rate sequence-error functions

- catching tighter descriptions suggested in Section 11 of [B37].

Of course associated with these performance criteria are capacity concepts.
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11. The discussion should be continued and should some time include oth-
er performance criteria like the analoga to (a) and (c) above. Also analoga of
(a),(b),(c) for combinatorial channel models and also criteria for sources are to
be classified.

It should be specific about distinctions stemming from

multi-way channels – feedback situations – non-block codes – delay – synchro-
nization.

Beyond capacities for Shannon’s transmission there are those for

identification (second order) – common randomness – general information
transfer (first and second order).

In combinatorial channel models to be distinguished are the various error
concepts:

failure of error detection or wrong detection – defects – insertions – deletions
– localized errors – unidirectional errors – etc.

The case of feedback just brings us to search (see chapter VI) with the recently
studied lies with cost constraints etc.

Also J. Körner’s models of a combinatorial universe with information aspects,
starting with ambiguous alphabets and going along trifferent paths, definitely
must be included (Sperner Capacity).

Recent work by G. Katona and K. Tichler in search deserves immediate at-
tention. There a test is a partition of the search space X into 3 sets (Y,N ,A).
If the object x searched for satisfies x ∈ Y the answer is Yes, if it satisfies x ∈ N
the answer is No, it is for x ∈ A arbitrary Yes or No.

Also to be classified are the performance criteria in the very important work
on codes introduced by Kautz/Singleton [C55] and studied by Lindström, Dy-
achkov, Erdös and many others (see survey [D3]).

The results found an application in the probabilistic model of K-identification
in [D1].

Finally, analogous performance criteria are to be defined in Statistics in partic-
ular in the interplay between Multi-user Source Coding Theory and Hypothesis
Testing or Estimation starting with work [A51], [A66] with I. Csiszar and M.
Burnashev and continued by many others (see survey [C44] by T.S. Han and S.I.
Amari).

For comments on [B38] see Chapter I.

VI

Enrichments for the project are gained from relations between coding for chan-
nels with feedback and search problems (c.f. [A32], [A55]).
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For example error-correcting codes with feedback, which were introduced by
Berlekamp [C5] are equivalent to the following search problem. A search space
M = {1, . . . ,M} is given and we want to find one (say defective) element. In
every step we perform a test by choosing a subset of M. When working correctly
the test produce a “Yes”, if the defective element is in the subset and otherwise
it produces a “No”. The main problem is that the tests not always give the
correct answer. In our model we assume that the number of incorrect answers is
restricted.

This search model is often described equivalently as “Renyi-Berlekamp-Ulam-
Game”. The models readily extends to q alternatives for answersQ = {0, 1, . . . , q−
1}. The new idea, which was developed during the ZiF-period, is to
consider error cost constraints. That means, there is a function Γ : Q×Q →
N. The function Γ is meant to weigh the answers. Whenever an answers t to a
question (a test), whose answer is s, is given the answer has weight Γ (t, s). It is
allowed to give false answers with total weight up to e.

In [B39] the authors assume some symmetry of Γ and weights 0 and 1. They
provide a lower bound on the number of questions needed to solve the problem
and prove that in infinitely many cases this bound is attained by (optimal)
search strategies. Moreover they prove that, in the remaining cases, at most one
question more than the lower bound is always sufficient to successfully find the
unknown element. All strategies also enjoy the property that among all possible
adaptive strategies they use the minimum amount of adaptiveness during the
search process. In [D10] the general weighted case is solved without any
assumption on Γ .

A coding scheme for delayed feedback, which shows that in this case the
capacities of all memoryless channels with non-delayed feedback can be achieved,
is given in [B40]. A characterization of the zero-error capacity of a DMC and the
average-error capacity of an AVC, when the delay time increases linearly with
the length of the codes, is also obtained.

In [B41] the Kraft inequality for d-DBS codes is sharpened, based on the work
of Ambains-Bloch-Schweizer, who introduced these codes.

A generalization of the well-studied group testing problem is introduced in
[B42] and an algorithm is given. Group testing is of interest in chemical and bio-
logical testing, DNA mapping and also in several computer science applications
with conflict resolutions for packages in random-multiple access transportations
with and without feedback (see survey by Gallager in [C38]).

A new suffix sorting algorithm to sort all suffixes of a string xn ∈ {0, . . . , k−
1}n lexicographically is developed in [B43]. It computes the suffix sorting in O(n)
space and O(n2) time in the worst case. It has also the property that it sorts the
suffixes lexicographically correctly according to the prefixes of length logk	n2 
 in
the worst case in linear time.
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In [B44] the comparison model and the linear model of monotonicity testing
is considered. There are some general bounds on the comparison model and an
analysis of the complexity, for example the monotonicity checking complexity
of Boolean functions, is determined. A geometric interpretation of monotonicity
checking is considered and a method to establish lower bounds in the linear
model using this interpretation is developed.

The paper [B45] surveys two recent classes of randomized motion planning
methods. The first are the so-called probabilistic roadmap methods which build
a graph mapping of the free configuration space and which are suitable for an-
swering multiple queries. The second class of methods explore the configuration
space by growing trees from some designated configuration.

VII

In [B46] readers find an interesting application of Information Theory in the
study of Language Evolution. The model was originally introduced by M.A.
Nowak and D.C. Krakauer [C71], where the fitness of a language is introduced.
For this model they showed if signals can be mistaken for each other, then the
performance of such systems is limited. The performance cannot be increased
over a fixed threshold by adding more and more signals. Nevertheless the con-
catenation of signals or phonemes to words increases significantly the fitness of
the language. The fitness of such a signalling-system depends on the number
of signals and on the probabilities to transmit individual signals correctly. R.
Ahlswede, E. Arikan, L. Bäumer and C. Deppe investigated optimal configura-
tions of signals in different metric spaces. In [B46] they prove for all metrics
with a positive semidefinite associated matrix a conjecture by Nowak
including all important metrics studied by different authors in this direction.
The conjecture holds for all ultra-metric spaces. Especially the authors analyze
the Hamming space. In this space the direct consequence of the theorem is that
the fitness of the whole space equals the maximal fitness and the fitness of Ham-
ming codes asymptotically achieves this maximum.These theoretical models of
fitness of a language enable the investigations of traditional information theoret-
ical problems in this context, in particular, for feedback problems, transmission
problems for multi-way channels etc. It is shown that feedback increases the
fitness of a language.

For a novel the frequency of its words can be ordered f1 ≥ f2 ≥ f3 ≥ . . . .
The most frequent has rank 1, the second most frequent has rank 2 and so on.
The stenographer J.B. Estoup [C33] observed that in a French text
r ·fr is approximately constant. This hyperbolic rank-frequency relationship
was confirmed by very careful studies by Zipf [C111] giving him the harvest:
Zipf’s Law. Zipf argued that this vocabulary balance might be the result of
two opposing forces, the tendency of the speaker to reduce the vocabulary (least
effort going towards unification) and the auditors wish to associate meaning to
speech (driving towards diversification).
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Zipf did not offer a mathematical model, but viewed the situation as a two-
person game, however without a definition of the pay-off function involved.

In idealization the fi are proportional to 1
i and going to infinitely many let-

ters (f1, f2, . . . ) becomes proportional to a harmonic sequence. Accepting this
idealization one comes to study the function f : N → R+ (Shannon used Zipf’s
Law to establish the entropy of English [C84]).

1961 B. Mandelbrot argued that a purely random mechanism will generate
a text obeying Zipf’s Law and Schroeder [C80] put this in the form “a monkey
hitting typewriter keys at random will also produce a “language” obeying Zipf’s
Law”.

But actually Mandelbrot, in the same paper, followed Zipf’s game theoretic
reflections by considering gametheoretic elements via coding of words. P. Har-
remoes and F. Topsoe in [B47] just accept the law no matter how it comes
about, and try to describe it using the class of probability distributions, which
are ordered P1 ≥ P2 . . . and which are characterized by Pi ≥ i−a for some a > 1
and infinitely many i and they call them hyperbolic.

Every distribution with infinite entropy is hyperbolic. Their interest is in the
set of hyperbolic distributions with finite entropy as candidates giving stability
to a language.

They considered a code-length-zero-sum 2 person game with a set P of prob-
ability distributions on N as set of strategies for Player I and the set κ(N) of
(idealized) codes K : N → [0;∞], for which

∑∞
1 exp(−K(i)) = 1, as set of strate-

gies for Player II, and < K,P > as a cost function for Player II. The game turns
out to be in equilibrium if and only if supP∈P H(P ) = supP∈co(P)H(P ) < ∞
and then supH(P ) is its value.

Furthermore, for any sequence (Pn)n≥1 from P with H(Pn) → supP∈P H(P )
there exists a P ∗, a supP∈P H(P ) attractor, such that Pn → P ∗ (in total vari-
ation). Cases with entropy loss, H(P ∗) < supP∈P H(P ) are possible. This is
where the hyperbolic distributions come in: they are exactly the attractors with
entropy loss. Turned positively, according to the authors, they are the guaran-
tors of stability of a language providing the language the potential to enrich itself
(increase entropy) to higher and higher expressive powers without changing its
basic structure.

In [B48] the notion of a motif, which is a string of solid and wild characters,
is investigated for data compression purposes. A major difficulty in using motifs
is explained by the fact that their number can grow exponentially in the length
of the sequence to be compressed. This is overcome by considering irredundant
motifs. The authors present data compression techniques based on the notion of
irredundant motifs and show that in several cases they provide an improvement in
the rate of compression as compared with previous popular compression methods.

A new family of codes, the similarity codes, is discussed in [B49]. Such a code
is specified by a similarity function depending on two vectors and fulfills the re-
quirement that the similarity between any two distinct codewords is not greater
than a threshold d. One can reformulate this condition in terms of semi-distances.
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The similarity codes turn then into codes with minimal distance d. Motivated
by biological applications, the authors consider the important subclass of LCS-
codes by taking the length of the longest common subsequence of two strings as a
measure for their similarity. These codes correspond to Levenshtein’s insertion–
deletion codes. Reverse-complement (RC-LCS) codes are those LCS-codes which
are closed with respect to the operation of taking reverse-complements of the
codewords. If, in addition, each codeword and its reverse-complement are dis-
tinct, the code is called a dRC-LCS-code. The authors give a lower bound for
the rates of the discussed three types (LCS, RC-LCS and dRC-LCS) of codes.

One of the main tasks of chemical graph theory is the description of the
chemical structure. As the topology of molecules determines a large number of
their properties, a simple approach to achieve this task would be to have some
measures (numbers) reflecting the main features of a topological structure. Such
measures are called topological indices. A lot of such indices have been suggest-
ed during the last 50 years. One major drawback of them is, however, that they
cannot discriminate well between isomers, often giving the same index value for
different isomers. Another, relatively new approach is to use information measures
(indices) for the characterization problem. In [B50] several information indices are
reviewed. Then the author presents some numerical results of discriminating tests
of indices on structural isomers and demonstrates the correlating ability of infor-
mation indices on several classes of organic and organometallic compounds.

In [B51] a special case of the following graph–theoretical problem is inves-
tigated. Given two natural numbers d and k, find the largest possible number
n(d, k) of vertices in a graph with diameter k and maximum vertex degree d. In
the case when k = 2 and d = 6, it is known that n ≥ 32. The author gives an
algorithm, which constructs all non-isomorphic largest graphs of diameter 2 and
maximum vertex degree 6, at the same time showing that n(6, 2) = 32.

VIII

Combinatorial
Extremal
Problems Information

Networks
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The founder of Information Theory Claude E. Shannon, who set the standards
for efficient transmission of channels with noise by introducing the idea of cod-
ing - at a time where another giant John von Neumann was still fighting un-
reliability of systems by repetitions -, also wrote together with Peter Elias and
Amiel Feinstein a basic paper on networks [C32] containing the - seemingly in-
dependently of L.R. Ford and D.R. Fulkerson [C35] discovered - Min Cut - Max
Flow Theorem, saying that for flows of physical commodities like electric cur-
rents or water, satisfying Kirchhoff’s laws, the maximal flow equals the minimal
cut.

With the stormy development of Computer Science there is an ever increasing
demand for designing and optimizing Information Flows over networks - for
instance in the Internet.

Data, that is strings of symbols, are to be send from sources s1, . . . , sn to their
destinations, sets of node sinks D1, . . . , Dn.

Computer scientist quickly realized that it is beneficial to copy incoming
strings at processors sitting at nodes of the network and to forward copies to
adjacent nodes. This task is called Multi-Casting.

However, quite surprisingly they did not consider coding, which means
here to produce not only copies, but, more generally, new output strings as
deterministic functions of incoming strings.

In [A155] a Min-Max-Theorem was discovered and proved for Infor-
mation Flows.

Its statement can be simply explained. For one source only, that is n = 1, in
the notation above, and D1 = {d11, d12, . . . , d1t} let F1j denote the Max-Flow
value, which can go for any commodity like water in case of Ford/Fulkerson from
si to d1i. The same water cannot go to several sinks. However, the amount of
min1≤j≤t F1j bits can go simultaneously to d11, d12, . . . and d1t. Obviously,
this is best possible. It has been referred to as ACLY-Min-Max-Theorem (It
also could be called Shannon’s Missed Theorem). To the individual F1j

Ford/Fulkerson’s Min-Cut-Max-Flow Theorem applies.

It is very important that in the starting model there is no noise and it is
amazing for how long Computer Scientists did the inferior Multicasting allowing
only copies.

Network Flows with more than one source are much harder to analyze and
lead to a wealth of old and new Combinatorial Extremal problems. This is one
of the most striking examples of an interplay between Information
Transfer and Combinatorics.

Two workshops in the ZiF-project GTIT-C were devoted to this.
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Even nicely characterized classes of error correcting codes come up as being
isomorphic to a complete set of solutions of flow problems without errors!

Also our characterization of optimal Anticodes obtained with the late Levon
Khachatrian [A132] arises in such a role!

On the classical side for instance orthogonal Latin Squares - on which Euler
went so wrong - arise.

The Min-Max-Theorem has been made practically more feasible by a polyno-
mial algorithm by Peter Sanders, Sebastian Egner and Ludo Tolhuizen [C78] as
well as by his competitors (or groups of competitors) in other parts of the world,
leading to the joint publications [C53].

With NetCod 2005 - the first workshop on Network Coding Theory and Ap-
plications, April 7, 2005, Riva, Italy the New Subject Network Coding was
put to start.

In preparation is a special issue of the Transaction on Information Theory
and the Transactions on Networking dedicated to Networking and Information
Theory.

Research into network coding is growing fast, and Microsoft, IBM and other
companies have research teams who are researching this new field.

A few American universities (Princeton, MIT, Caltec and Berkeley) have also
established research groups in network coding.

The holy grail in network coding is to plan and organize ( in an automated
fashion) network flow (that is to allowed to utilize network coding) in a feasible
manner. Most current research does not yet address this difficult problem.

There may be a great challenge not only coming to Combinatorics but also
to Algebraic Geometry and its present foundations (see [C58] and also [B52]).

An Introduction to the area of Network Coding is given in the book [C110].
For a discussion of some recent developments we refer to [B53].

In order to get outside opinions we have included under [B52] the Network
Coding Side of a leading expert, Ralf Koetter.

The case |Di ∩ Dj| = ∅ for i = j and |Di| = 1 for i = 1, . . . , n, that is,
each source sends its message to its sink has an obvious symmetry and
appeal. Soren Riis established the equivalence of this flow problem to a guessing
game, which is cooperative. We include - as the only exception in this book
- a draft, under [B53], serving two purposes: an essential widening of the scope
of the book by inclusion of Game Theory and the additional stimulation for
discussions Soren Riis asked for. An improved paper including the reactions will
be published elsewhere.

Concerning Game Theory we like to add that there is another role of non-
cooperative Game Theory in Computer Science recently emerged in the area of
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“selfish routing”, where starting with work of Koutsoupias and Papadimitriou
[C61] behaviour is modelled as being guided by Nash equilibria. This has entered
Network Theory for instance in classical traffic models and likely will enter
also information flows in networks!

IX

Basic covering problems are investigated in [B54]: the problem of thinnest cover-
ings of spheres and ellipsoids with balls and ellipsoids in Hamming and Euclid-
ean spaces. New bounds in terms of the epsilon-entropy of Hamming balls and
spheres are established. The derived upper and lower bounds are optimal up to
an additive logarithmic term on the dimension.

In [B55] the following covering problem for product spaces is investigated.
Given a finite set X and a covering set system E for X , let Xn and En be
the Cartesian products of X and E . The problem is to determine or estimate
the minimal number needed for covering Xn by elements of En. Upper and
lower bounds are obtained for the minimal covering number. The main result of
the paper was obtained by the author in 1971 independently of, but somewhat
later than, the work of McEliece and Posner [C69] motivated by ideas of data
compression and remained therefore unpublished.

However, the methods used in this paper turned out to be useful for investi-
gation of more general covering problems in hypergraphs (see [A35], [A36]). Also
the approach is purely combinatorial, no entropies and no games are involved
and can be understood by readers with no background in Information Theory.
Connections to other combinatorial problems like Shannon’s zero-error capacity
problem, which is exactly equivalent to the corresponding packing covering, are
discussed as well. This justifies the present inclusion.

A perfect code is an important partition in the theory of error-correcting
codes. The topics of [B56] are binary 1-perfect codes. In order to study them,
the authors introduce a θ-centered function and testing sets of subsets of binary
sequences for a given family of functions from the set of binary sequences to the
set of real numbers. With them the authors proved the interesting result that
for r ≤ n−1

2 and in a binary 1-perfect code, the codewords of Hamming weight
smaller than r are uniquely determined by the set of all codewords of Hamming
weight equal to r. It is expected that the result is helpful to better understand
the structure of binary 1-perfect codes.

The following extremal problem is considered in [B57]. Given a natural num-
ber n, partition a rectangle R into rectangles in such a way that any line parallel
to a side of R intersects at most n of the smaller rectangles. What is the maximal
number f(n) of rectangles in such a partition? A simple construction shows that
f(n) ≥ 3 · 2n−1 − 2 holds. By a stepwise refinement of the methods using finally
also harmonic analysis, the authors come close to this lower bound and prove
the upper bound f(n) ≤ 2n · 2n. It is conjectured that the lower bound is tight.
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Several new combinatorial extremal problems are raised and studied in [B58].
These problems are motivated by problems from other fields such as Information
Theory, Complexity Theory and Probability Theory. One of the open problems
stated here is a generalization of the isoperimetric problem for binary Hamming
spaces. For a set of points V of a given size the problem is to minimize the
number of points, not in V , that have at least k elements at distance one from
V . For k = 1, we have the isoperimetric problem solved by Harper. Also an
interesting observation is that guessing, which was introduced by Jim Massey
[C68], is a very special case of the model of (what has been called in [A32], [A55])
inspections.

The edge–isoperimetric problem EIP for graphs have been studied by many
authors. For a simple connected graph G = (V,E) and a vertex subset M of
a given size, the problem is to minimize the size of the edge boundary of M
over all M ⊂ V . A related problem is to maximize the number of edges in M .
Moreover, these two problems are equivalent for regular graphs. The problem
was solved for the Hamming graph by Harper (1967). However, the problem is
widely open for the Johnson graph J(n, k). The vertex set of J(n, k) is the set
of (0, 1)-sequences of length n and weight k, and two vertices are adjacent iff
the Hamming distance between them is two. Ahlswede and Katona [A31] solved
the EIP for the case k = 2. For k ≥ 3 the problem is still open. Unfortunately,
the strong isoperimetric inequalities obtained, for general graphs, via eigenvalue
techniques, do not give the desired result for the Johnson graph. In [B59] a
new approach based on Young diagrams is used, to give another short proof
of the result of Ahlswede and Katona, that quasi-star or quasi-ball are always
optimal. There is no improvement on the second result of these authors, which
specifies except for relatively few edge numbers who of the two configurations
wins. Concerning the cases k ≥ 3 there was a conjecture of Kleitman disproved
for k = 3 in [A144]. The SFB-preprint [B60] has more results, cited sometimes
in the literature, and is know better available.

In [B61] from 1981 as strengthening of the famous Erdős–Ko–Rado Theorem
is presented. Surprisingly, this result was obtained for the solution of a geomet-
ric problem raised by M. Burnashev, in connection with a coding problem for
Gaussian channels. Let B be a family of l-sets of an n-element set. Suppose that B
satisfies the following “Triangle Property”: A∩B = ∅, B∩C = ∅ ⇒ A∩C = ∅
for all A,B,C ∈ B. In particular, the intersection property required in the EKR
Theorem implies the Triangle Property. It is proved that for every family B sat-
isfying the Triangle Property, with n ≥ 2l and l ≥ 3, we have |B| ≤

(
n−1
l−1

)
and

this bound is best possible. Intended inclusion in a book by G. Katona did not
realize, because the book still does not exist.

The author of [B62] gives an excellent survey about algorithms for multileaf
collimators. A multileaf collimator is used to modulate a radiation field in the
treatment of cancer. The author considers several aspects of the construction of
optimal treatment plans. The algorithms are presented in a very understandable
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way. The various definitions of several papers are unified. In the last part of
the paper the author discusses advantages and disadvantages of the existing
algorithms.

A communication network is modelled as an acyclic directed graphG = (V,E)
with some distinguished vertices called inputs and other distinguished vertices
called outputs. The remaining vertices are called links. There are two parameters
of particular interest in comparing networks: the size and the depth. The size
(the number of edges) in some approximate sense corresponds to the cost of the
network. The depth (the length of the longest path from an input to an output of
the network) corresponds to the delay of the transmission in the network. There-
fore in designing communication networks it is desirable to achieve smaller size
and smaller depth. An (n,N, d)-connector or rearrangeable network is a network
with n inputs, N outputs and depth d, in which for any injective mapping of in-
put vertices into output vertices there exist n vertex–disjoint paths joining each
input to its corresponding output. The problem of designing optimal connectors
goes back to works of Shannon, Slepian et al. ([C87], [C88], [C15], [C3]) started
in the 50’s. In [B63] asymmetric connectors (connectors with n � N) of depth
two are considered. A simple combinatorial construction of sparse connectors is
given, which is based on the Kruskal/Katona Theorem for shadows of families of
k-element subsets. Fault–tolerance of the constructed connectors is also consid-
ered. The results are in general and also in most special cases the presently best.

This ends the commentary. The reader is advised to look at titles of lectures
and their abstracts in this book and the associated special issue of DAM, because
a “lot of information is coded there”.

Not visible are the oral communications with individual impacts. An example
here stands for many. The Statistician W. Müller drew in a talk, filled with
citations of original expositions by K.F. Gauss written in Latin and attempts of
accurate translations, in particular attention to the following passage in a letter
of Gauss to the Astronomer and Mathematician Bessel dated February 28, 1839
(see [C73]):

Dass ich übrigens die in der Theoria Motus Corporum Coelestium ange-
wandte Metaphysik für die Methode der kleinsten Quadrate späterhin
habe fallen lassen, ist vorzugsweise auch aus einem Grunde geschehen,
den ich selbst öffentlich nicht erwähnt habe. Ich muss es nämlich in
alle Wege für weniger wichtig halten, denjenigen Werth einer unbekan-
nten Grösse auszumitteln, dessen Wahrscheinlichkeit die grösste ist, die
ja doch immer nur unendlich klein bleibt, als vielmehr denjenigen, an
welchen sich haltend man das am wenigsten nachtheilige Spiel hat; . . .

The astute reader notices an anticipation of A. Wald’s Decision The-
ory, based on zero-sum games between the Statistician and Nature, essential-
ly a hundred years earlier. Well, this was even almost a hundred years before
J. von Neumann discovered his Min-Max Theorem and then developed Game
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Theory together with O. Morgenstern (see [C99]). Once it became clear that
old books also should be read, a more detailed study of the collection of letters
[C73] brought another very interesting news: between the position of accepting
Kant’s opinion concerning the role of the “äußere Anschauung” and the “innere
Anschauung” for making true statements a priori possible and the position
to reject them (which has been popular in modern science), Gauss rejects one
(geometry is subject to experience), but accepts the other (giving truth to arith-
metic statements).

On another occasion Gauss said that having read the Critique of Pure Reason
six times (!) he started understanding.
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Rudolf Ahlswede – From 60 to 66

On September 15th, 2004 Rudolf Ahlswede celebrated his 66th birthday and we
describe here developments in his work in the last six years. For an account on
the first 60 years we refer to the preface of the book “Numbers, Information and
Complexity”, special volume in honour of R. Ahlswede on occasion of his 60th
birthday, edited by Ingo Althöfer, Ning Cai, Gunter Dueck, Levon Khachatrian,
Mark S. Pinsker, Andras Sárközy, Ingo Wegener and Zhen Zhang, Kluwer Aca-
demic Publishers, Boston, Dordrecht, London, 2000. From there we just cite the
following paragraph describing Ahlswede’s approach to Information Theory:

”Ahlswede’s path to Information Theory, where he has been world-wide a
leader for several decades, is probably unique, because it went without any en-
gineering background through Philosophy: Between knowing and not knowing
there are several degrees of knowledge with probability, which can even quanti-
tatively be measured – unheard of in classical Philosophy.

This abstract approach paired with a drive and sense for basic principles
enabled him to see new land where the overwhelming majority of information
theorists tends to be caught by technical details. Perhaps the most striking
example is his creation of the Theory of Identification.”

During the period to be described here came on January 30, 2002 as a shock
the message of the sudden and unexpected passing of his collaborator and friend
Levon Khachatrian. His untimely death disrupted a very fruitful cooperation.
We refer the reader to the memorial text on Levon Khachatrian in this volume
for an appreciation of person and work.

From 1975 to 2003 Ahlswede was full professor in Bielefeld. At the Sonder-
forschungsbereich “Diskrete Strukturen in der Mathematik” he was heading two
research projects “Combinatorics on Sequence Spaces” and “Models with Infor-
mation Exchange” from 1989 to 2000. Since fall 2003 he is emeritus. Neither the
end of the Sonderforschungsbereich nor his new status of emeritus let him to
slow down the pace of his research activities. Outwardly this can be seen by the
6 research projects, which he is currently heading or participating in with his
group:

1. “General Theory of Information Transfer and Combinatorics”, German
Science Foundation (DFG), (2001-2005).

2. “Entanglement and Information”, German Science Foundation (DFG),
(2001-2005).

3. “Interactive Communication, Diagnosis and Prediction in Networks”,
German Science Foundation (DFG), (2001-2005).

4. “General Theory of Information Transfer and Combinatorics”, Center for
Interdisciplinary Research (ZiF), 2001-2004.

5. “Efficient Source Coding and Related Problems”, INTAS, 2001-2004.
6. “Combinatorial Structure of Intractable Problems”, RTN, EU, 2002-2006.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 45–48, 2006.
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Ahlswede’s generalization of Shannon’s theory of transmission and the theory
of identification in one broad unifying theory of “General Information Transfer”
led to the research project at the ZiF. In this interdisciplinary venture informa-
tion theorists and researchers from fields, where information plays an essential
role, have come together to exchange ideas, to develop the theory further and
find applications in other areas.

We mention here a sample of three results, which were outcomes of these
efforts, one could choose others. For the first time a functional of a probabil-
ity distribution could be determined, which deserves the name Identification
Entropy since it serves the same role in the identification for sources as does
the Boltzmann entropy in Shannon’s classical data compression (see the article
“Identification entropy” [B33]).

The second result is the proof of a conjecture of Nowak in the theory of
evolution of human languages with coauthors Erdal Arikan, Lars Bäumer and
Christian Deppe. The result shows the effects of word composition from single
phonemes on the fitness of the individuals and the used language, respectively
(see the article “Information theoretic models in language evolution” [B46]).

Finally we mention a third result, about which we quote from R. Kötter’s
homepage

Like many fundamental concepts, network coding is based on a simple
basic idea which was first stated in its beautiful simplicity in the the
seminal paper by R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung,
“Network Information Flow”, (IEEE Transactions on Information The-
ory, IT-46, pp. 1204-1216, 2000).

It was published in the year 2000 before the ZiF-project started.

For Ahlswede’s contributions to combinatorial extremal problems the reader
finds a rich resource in the article “Advances on Extremal Problems in Number
Theory and Combinatorics”, Proceedings of the European Congress of Mathe-
maticians, Barcelona, Birkhäuser 2000 and also his work found entrance in the
recent books “Global Methods for Combinatorial Isoperimetric Problems” by
Harper, “Sperner Theory” by Engel and “Extremal Combinatorics” by Jukna.

On Ahlswede’s agenda of research problems to be investigated was Quantum
Information Theory for a very long time clearly before the great activity in this
area. Since 1997 up to the present day this has been implemented with the
coauthors Vladimir Blinovsky, Ning Cai, Peter Löber and Andreas Winter.

Progress was made for multi-user channels and the theory of identification,
which is adaptable to the quantum theoretical setting.

In particular the concept of Common Randomness, which originated while
studying identification in the presence of feedback, is closely linked with en-
tanglement in quantum mechanics, the central property exploited in quantum
cryptography in world-wide efforts.

As a student Ahlswede asked one of his teachers Kurt Reidemeister (for some
time member of the Vienna School) for advice about how to combine in the
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Embodied Communication

Final Conference of the ZiF Research Group, April 2004
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studies interests in Philosophy and in Mathematics and received the answer:
“Do it like I did it. First make it to an Ordinarius in Mathematics and then you
have time for Philosophy.”

In the instructive biography on Gödel [C42] one finds mentioned the principle
salva veritate due to Leibniz: if two objects are identical and one has a property
then also the other has that property. Identification asks for a converse. Now
there is time to think about this.

Ahlswede has received many prizes and honors of which we mention here:

- 1988 IEEE Information Theory Society Best Paper Award (with Imre Csiszar)
- 1990 IEEE Information Theory Society Best Paper Award (with Gunter

Dueck)
- 1996 Paul Erdös Monetary Award (with Levon Khachatrian)
- 1998/99 Humboldt – Japan Society Senior Scientist Award
- 2001 Russian Academy of Sciences, Honorary Doctor
- 2004 Membership in the European Academy of Sciences
- 2005 Announcement in Adelaide on September 8th: Shannon award for 2006

However, more important for him than the recognition of contemporaries is his
belief that his work may survive some milder storms of history.
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I
Identification for Sources

R. Ahlswede, B. Balkenhol, and C. Kleinewächter

1 Introduction

1.1 Pioneering Model

The classical transmission problem deals with the question how many possible
messages can we transmit over a noisy channel? Transmission means there is
an answer to the question “What is the actual message?” In the identification
problem we deal with the question how many possible messages the receiver
of a noisy channel can identify? Identification means there is an answer to the
question “Is the actual message u?” Here u can be any member of the set of
possible messages.

Allowing randomized encoding the optimal code size grows double exponen-
tially in the blocklength and somewhat surprisingly the second order capacity
equals Shannon’s first order transmission capacity (see [3]).

Thus Shannon’s Channel Coding Theorem for Transmission is paralleled by
a Channel Coding Theorem for Identification. It seems natural to look for such
a parallel for sources, in particular for noiseless coding. This was suggested by
Ahlswede in [4].

Let (U , P ) be a source, where U = {1, 2, . . . , N}, P = (P1, . . . , PN ), and let
C = {c1, . . . , cN} be a binary prefix code (PC) for this source with ‖cu‖ as length
of cu. Introduce the RV U with Prob (U = u) = pu for u = 1, 2, . . . , N and the
RV C with C = cu = (cu1 , cu2 , . . . , cu‖cu‖) if U = u.

We use the PC for noiseless identification, that is user u wants to know
whether the source output equals u, that is, whether C equals cu or not. He
iteratively checks whether C = (C1, C2, . . . ) coincides with cu in the first, sec-
ond, etc. letter and stops when the first different letter occurs or when C = cu.

What is the expected number LC(P, u) of checkings?
In order to calculate this quantity we introduce for the binary tree TC , whose

leaves are the codewords c1, . . . , cN , the sets of leaves Cik(1 ≤ i ≤ N ; 1 ≤ k),
where Cik = {c ∈ C : c coincides with ci exactly until the k’th letter of ci}. If C
takes a value in Cuk, 0 ≤ k ≤ ‖cu‖− 1, the answers are k times “Yes” and 1 time
“No”. For C = cu the answers are ‖cu‖ times “Yes”. Thus

LC(P, u) =
∑‖cu‖−1
k=0 P (C ∈ Cuk)(k + 1) + ‖cu‖Pu. 1

1 Probability distributions and codes depend on N , but are mostly written without
an index N .

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 51–61, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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For code C LC(P ) = max
1≤u≤N

LC(P, u) is the expected number of checkings in the

worst case and L(P ) = min
C

LC(P ) is this number for a best code.

Analogously, if C̃ is a randomized coding, LC̃(P, u), LC̃(P ) and L̃(P ) were also
introduced in [4].

What are the properties of L(P ) and L̃(P )? In analogy to the role of entropy
H(P ) in Shannon’s Noiseless Source Coding Theorem they can be viewed as
approximations to a kind of “identification entropy” functional HI .

Their investigation is left to future research. We quickly report now two sim-
pler pioneering questions and partial answers from [4]. They shed some light on
the idea that in contrast to classical entropy H , which takes values between 0
and ∞, the right functional HI shall have 2 as maximal value.

Let us start with PN =
(

1
N , . . . ,

1
N

)
and set f(N) = L(PN ).

1. What is sup
N

f(N) or lim
N→∞

f(N)?

Starting with an identification code for N = 2k−1 a new one for 2k users
is constructed by adding for half of all users a 1 as prefix to the codewords
and a 0 for the other half. Obviously we are getting an identification code
with twice as many codewords in this way. Now user u has to read the first
bit. With probability 1

2 he then stops and with probability 1
2 he needs only

an expected number of f(2k−1) many further checkings. Now an optimal
identification code is at least as good as the constructed one and we get the
recursion

f(2k) ≤ 1 +
1
2
f(2k−1), f(2) = 1

and therefore
f(2k) ≤ 2 − 2−(k−1).

On the other hand it can be verified that f(9) = 1 + 10
9 > 2 and more

generally f(2k + 1) > 2.
2. Is L̃(P ) ≤ 2?

This is the case under the stronger assumption that encoder and decoder
have access to a random experiment with unlimited capacity of common
randomness (see [5]).

For P = (P1, . . . , PN ), N ≤ 2n write P (n) = (P1, . . . , PN , 0, . . . , 0) with
2n components. Use a binary regular tree of depth n with leaves 1, 2, . . . , 2n

represented in binary expansions.
The common random experiment with 2n outcomes can be used to use 2n

cyclic permutations of 1, 2, . . . , 2n for 2n deterministic codes. For each u we
get equally often 0 and 1 in its representation and an expected word length
≤ 2 − 1

2n−1 ≤ 2. The error probability is 0.

Remark 1. Note that the same tree TC can be used by all users in order to
answer their question (“Is it me or not?”).

1.2 Further Models and Definitions

The model of identification for sources described can be extended (as for channels
in the spirit of [4]) to generalized identification (GI) as follows.
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There is now a set of users V (not necessarily equal to U), where user v ∈ V
has a set Uv ⊂ U of source outputs of his interest, that is, he wants to know
whether the source output u is in Uv or not.

Furthermore we speak of generalized identification with decoding (GID), if user
v not only finds out whether the output is in Uv, but also identifies it if it is
in Uv.

Obviously the two models coincide if |Uv| = 1 for v ∈ V . Also, they specialize
to the original model in 1.1, if V = U and Uv = {v} for v ∈ U .

For our analysis we use the following definition. We denote by D(x) the set
of all proper prefixes of x ∈ {0, 1}∗, i.e.

D(x) � {y ∈ {0, 1}∗ : y is prefix of x and ‖y‖ < ‖x‖}. (1.1)

e stands for the empty word in {0, 1}∗. For a set A ⊂ {0, 1}∗ we extend this
notion to

D(A) �
⋃
x∈A

D(x). (1.2)

{0, 1}∗ can be viewed as a binary, regular infinite tree with root e. A code C
corresponds to the subtree TC with root e and leaves c1, . . . , cN .

In the sequel we use a specific example of a code for illustrations of concepts
and ideas.

Example 1. Let C be the set of all words of length 3. Notice that D(010) =
{e, 0, 01} and D({001, 010}) = {e, 0, 00, 01}.

The set Cv = {cu : u ∈ Uv} is a code for user v. For GID its codewords have
to be uniquely decodable by user v in order to identify the source output. For
this he uses the set of stop sequences

Sv =
{
y1 . . . yk : y1 . . . yk−1 ∈ D(Cv) and y1 . . . yk /∈ D(Cv)

}
. (1.3)

By definition of D Cv is contained in Sv. We can also write

Sv =
{
xy : x ∈ {0, 1}∗, y ∈ {0, 1} with x ∈ D(Cv) and xy /∈ D(Cv)

}
. (1.4)

(For k = 1 y1 . . . yk−1 describes the empty word e or the root of the code tree
which is element of each set D(Cv).)
Example 2. For the code of Example 1 we have for Cv = {010} Sv =
{1, 00, 011, 010} and we have for Cv = {001, 010} Sv = {1, 000, 001, 010, 011}.

With the families of sets of stop sequences Sv we derive first in Section 2
general lower bounds on the number of checkings for both models. In Section 3 we
consider a uniform source and show that lim

N→∞
f(N) = 2. Then, in Section 4, we

derive bounds on the maximal individual (average) identification length, which
is introduced in Section 2 C.

Finally, in Section 5, we introduce an average identification length for the case
V = U , Uv = {v} for v ∈ V and derive asymptotic results.
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2 A Probabilistic Tool for Generalized Identification

General supposition. We consider here prefix codes C, which satisfy the Kraft
inequality with equality, that is,∑

u∈U
2−‖cu‖ = 1. (2.1)

We call them saturated, because they cannot be enlarged.

A. GID

For all x ∈ {0, 1}∗ let qC(P, x) =


0, if x /∈ D(C) ∪ C
Pu, if x = cu

qC(P, x0) + qC(P, x1), if x ∈ D(C).

The general supposition implies that for any set of stopping sequences Sv
we have Sv ⊂ D(C) ∪ C and the probability for user v to stop in x ∈ Sv equals
qc(P, x). After stopping in x user v has read ‖x‖ many bits. Therefore the average
identification length of user v is

LC(P, v) =
∑
x∈Sv

qC(P, x)‖x‖. (2.2)

By definition of qC we get

LC(P, v) =
∑

x∈D(Cv)

qC(P, x). (2.3)

By construction Sv forms a prefix code. Each codeword has to be uniquely
decoded by user v. Furthermore the probabilities qC(P, x), x ∈ Sv, define a
probability distribution on Sv by

PC,v(x) � qC(P, x) for all x ∈ Sv. (2.4)

By the Noiseless Coding Theorem LC(P, v) can be lower bounded by the
entropy H(PC,v). More directly, using the grouping axiom we get

H(PC,v) =
∑

x∈D(Cv)

qC(P, x)h
(
qC(P, x1)
qC(P, x)

)
, (2.5)

where h is the binary entropy function, and thus

LC(P, v) −H(PC,v) =
∑

x∈D(Cv)

qC(P, x)
(

1 − h

(
qC(P, x1)
qC(P, x)

))
. (2.6)

Suppose Pu > 0 for all 1 ≤ u ≤ N , then

qC(P, x) > 0 and with
(
qC(P, x1)
qC(P, x)

)
≤ 1 for all x ∈ D(C)
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it follows under the general supposition (2.1) for every user v ∈ V the average
identification length satisfies

Theorem 1

LC(P, v) ≥ H(PC,v) with “=” iff
qC(P, x1)
qC(P, x)

=
1
2

for all x ∈ D(Cv). (2.7)

Since P is fixed we write now LC(v) for LC(P, v).

B. GI
Suppose we have a node x and a user v with the properties

(a) all codewords having x as prefix are all elements of Cv or (b) they are all
not in Cv.

In this case user v can stop in x and decide whether v occurred or not. By
construction of the stop sequences Sv in (1.3) only case (a) can occur. Therefore
we have to start the following algorithm to generate modified sets Sv.

1. If Cv contains two codewords different only in the last position, say
x1 . . . xk0 and x1 . . . xk1 then
(a) remove these two codewords from Cv and insert x1 . . . xk. This new code-

word has the probability qC(P, x1 . . . xk).
(b) repeat step 1. Else continue with 2.

2. With the modified sets Cv construct the sets Sv as defined in (1.3).

The definition of LC(P, v), PC,v and H(PC,v) are as in (2.2), (2.4) and (2.5). Also
the formulas (2.6) and (2.7) hold.

Example 3. Let Cv = {000, 001, 010}. After step 1 of the algorithm we get Cv=
{00, 010}. With step 2 we define D(Cv)={∅, 0, 01} and Sv={1, 00, 010, 011}.
C. Maximal individual (expected) identification length L(P )
For a given probability distribution P and a given code C user v has uniquely to
decode the codewords in Cv.

Using (2.7) we can lower bound L(P ) as follows:

(i) Take the set of pairs M = {(Cv, v) : L(P ) = LC(P, v)}.
(ii) Define

Hmax(P ) = max
(Cv ,v)∈M

H(PC,v).

Then
L(P ) ≥ Hmax(P ).

Remark 2. Note that

1. ∑
x∈D(C)

qC(P, x) =
N∑
u=1

Pu‖cu‖.
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2. Using the grouping axiom it holds∑
x∈D(C)

qC(P, x)h
(
qC(P, x1)
qC(P, x)

)
= H(P )

for all codes C.
3. If for each code C there exists a set Cv (in case B after modification) such that

D(Cv) = D(C), then L(P ) =
N∑
u=1

Pu‖cu‖ where the code C is the Huffman–

code for the probability distribution P .

Example 4. Suppose that |V| =
(
N
K

)
, K ≥ N

2 , and {Uv : v ∈ V} =
(
[N ]
K

)
.

1. In case A there exists for each code C a set Cv such that D(Cv) = D(C).
2. In case B with K = N

2 there exists for each code C a set Cv such that
D(Cv) = D(C).

3. In case B if K = N and thus V = {v1},Uv1 = [N ], then after modifying Cv1
the set D(Cv1) contains only the root of the tree which means the user v1
has to read nothing from the received codeword (because he knows already
the answer).

Remark 3. Example 4 is motivated by K–identification for channels!

3 The Uniform Distribution

Now we return to the original model of 1.1 with V = U and Cv = {cv} for each
v ∈ V . Let P = ( 1

N , . . . ,
1
N ). We construct a prefix code C in the following way.

In each node (starting at the root) we split the number of remaining codewords
in proportion as close as possible to (1

2 ,
1
2 ).

1. Suppose N = 2k. By construction our code C contains all binary sequences
of length k. It follows that

qC(P, x) =
1
N

N

2‖x‖
= 2−‖x‖ (3.1)

and by (2.3)

LC(P ) =
∑

x∈D(Cv)

qC(P, x) =
k−1∑
i=0

2−i = 2 − 2−k+1 = 2 − 2
N
. (3.2)

2. Suppose 2k−1 < N < 2k. By construction the remaining code contains only
the codeword lengths k − 1 and k.

By (2.3) we add the weights (qC(P, x)) of all nodes of a path from the root
to a codeword (leave). Therefore in the worst case, N is odd and we have to
add the larger weight.
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At the root we split (N−1
2 , N−1

2 + 1). Now we split again the larger one
and in the worst case this number is again odd. It follows in general that

qC(P, x) ≤ 1
N

(
N − 1
2‖x‖

+ 1
)
. (3.3)

Therefore

LC(P ) ≤
k−1∑
i=0

1
N

(
N − 1

2i
+ 1

)
=
k−1∑
i=0

2−i − 1
N

k−1∑
i=0

2−i +
1
N

k−1∑
i=0

1

= 2 − 1
N

− 2
N

+
2
N2

+
k

N
= 2 +

k − 3
N

+
2
N2

. (3.4)

With k = 	log2(N)
 it follows

Theorem 2. For P =
(

1
N , . . . ,

1
N

)
lim
N→∞

LC(P ) = 2. (3.5)

4 Bounds on L(P ) for General P = (P1, . . . , PN)

A. An upper bound
We will now give an inductive construction for identification codes to derive an
upper bound on L(P ). Let P = (P1, . . . , PN ) be the probability distribution.
W.l.o.g. we can assume that Pi ≥ Pj for all i < j. For N = 2 of course we assign
0 and 1 as codewords. Now let N > 2. We have to consider two cases:

1. P1 ≥ 1/2. In this case we assign 0 as codeword to message 1. We set P ′′i =
Pi∑

N
j=2 Pj

for i = 2, . . . , N . By induction we can construct a code for the

probability distribution P ′′ = (P ′′2 , . . . , P
′′
N ) and messages 2 to N get the

corresponding codewords for P ′′ but prefixed with a 1.
2. P1 < 1/2. Choose  such that δ� = | 12−

∑�
i=1 Pi| is minimal. Set P ′i = Pi∑ �

j=1 Pj

for i = 1, . . . ,  and P ′′i = Pi∑
N
j=�+1 Pj

for i =  + 1, . . . , N . Analogous to the

first case we construct codes for the distributions P ′ = (P ′1, . . . , P
′
�) (called

the left side) and P ′′ = (P ′′�+1, . . . , P
′′
N ) (called the right side). We get the

code for P by prefixing the codewords from the left side with 0 and the
codewords from the right side with 1.

Trivially this procedure yields a prefix code.

Theorem 3. Let N ∈ N and let P = (P1, . . . , PN ). The previous construction
yields a prefix code with L(P ) ≤ 3.

Proof. The case N = 2 is trivial. Now let N ≥ 3.

Case 1. P1 ≥ 1/2 : In this case we have L(P ) ≤ 1 + max
{
P1, L(P ′′)

∑N
i=2 Pi

}
,

where L(P ′′) denotes the corresponding maximal identification length for prob-
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ability distribution P ′′. If the maximum is assumed for P1 we have L(P ) ≤ 2,
otherwise we get by induction L(P ) < 1 + 3 · 1/2 < 3.

Case 2. P1 < 1/2 for i = 1, . . . , N : In this case we have

L(P ) ≤ 1 + max

{
L(P ′) ·

�∑
i=1

Pi, L(P ′′) ·
N∑

i=�+1

Pi

}
.

Choose ′ such that
∑�′

i=1 Pi ≤ 1/2 <
∑�′+1
i=1 Pi. Obviously either  = ′ or

 = ′ + 1.
Subcase:  = ′. Suppose the maximum is assumed on the left side. Then

without changing the maximal identification length we can construct a new
probability distribution P ′′′ = (P ′′′1 , . . . , P ′′′�+1) by P ′′′1 =

∑N
i=�+1 Pi and P ′′′i =

Pi−1 for 2 ≤ i ≤  + 1. Since P ′′′1 ≥ 1/2 we are back in case 1. If the maximum
is assumed on the right side then let P ′′′1 =

∑�
i=1 Pi and P ′′′i = Pi+�−1 for all

2 ≤ i ≤ n−+1. Notice that in this case P ′′′1 ≥ 1/3 (because P ′′′1 ≥ 1/2−P ′′′2 /2 ≥
1/2 − P ′′′1 /2). Thus by induction L(P ′′′) ≤ 1 + 3 · 2/3 ≤ 3.

Subcase:  = ′ + 1. If the maximum is on the right side we set P ′′′1 =∑�
i=1 Pi ≥ 1/2, P ′′′i = Pi+�−1 for 2 ≤ i ≤ n −  + 1 and we are again back in

case 1. Now suppose the maximum is taken on the left side. Since
∑�
i=1 Pi −

1/2 ≤ 1/2 −
∑�′

i=1 Pi it follows that δ� ≤ P�/2. Because P�′ ≤ (2′)−1 we have
δ� ≤ (4′)−1 = (4(−1))−1. Also note that  ≥ 2. The case  = 2 is again trivial.
Now let  > 2. Then L(P ) < 3 · (1/2 + 1

4(�−1)) ≤ 3 · (1/2 + 1/8) < 3.

5 An Average Identification Length

We consider here the case where not only the source outputs but also the users
occur at random. Thus in addition to the source (U , P ) and RV U , we are given
(V , Q), V ≡ U , with RV V independent of U and defined by Prob (V = v) = Qv
for v ∈ V . The source encoder knows the value u of U , but not that of V , which
chooses the user v with probability Qv. Again let C = {c1, . . . , cN} be a binary
prefix code and let LC(P, u) be the expected number of checkings on code C for
user u. Instead of LC(P ) = maxu∈U LC(P, u), the maximal number of expected
checkings for a user, we consider now the average number of expected checkings

LC(P,Q) =
∑
v∈V

QvLC(P, v) (5.1)

and the average number of expected checkings for a best code

L(P,Q) = min
C

LC(P,Q). (5.2)

(The models GI and GID can also be considered.)
We also call L(P,Q) the average identification length. LC(P,Q) can be calcu-

lated by the formula

LC(P,Q) =
∑

x∈D(C)
qC(Q, x)qC(P, x). (5.3)
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In the same way as (5.3) we get the conditional entropy

HC(P‖Q) =
∑

x∈D(C)
qC(Q, x)qC(P, x)h

(
qC(P, x1)
qC(P, x)

)
. (5.4)

5.1 Q Is the Uniform Distribution on V = U
We begin with |U| = N = 2k, choose C = {0, 1}k and note that∑

x∈D(C)
‖x‖=i

qC(P, x) = 1 for all 0 ≤ i ≤ k. (5.5)

By (3.1) for all x ∈ {0, 1}∗ with ‖x‖ ≤ k

qC(Q, x) = 2−‖x‖ (5.6)

and thus by (5.3) and then by (5.5)

LC(P,Q) =
k−1∑
i=0

∑
x∈D(C)
‖x‖=i

2−iqC(P, x) (5.7)

=
k−1∑
i=0

2−i = 2 − 2−k+1 = 2 − 2
N
. (5.8)

We continue with the case 2k−1 < N < 2k and construct the code C again as
in Section 3. By (3.3)

qC(Q, x) ≤ 1
N

(
N − 1
2‖x‖

+ 1
)
. (5.9)

Therefore

LC(P,Q) =
∑

x∈D(C)
qC(Q, x)qC(P, x) ≤ 1

N

∑
x∈D(C)

(
N − 1
2‖x‖

+ 1)qC(P, x)

=
1
N

k−1∑
i=0

(
N − 1

2i
+ 1)

∑
x∈D(C)
‖x‖=i

qC(P, x) ≤ 1
N

k−1∑
i=0

(
N − 1

2i
+ 1) · 1

= 2 +
k − 3
N

+
2
N2

(see (3.4)). (5.10)

With k = 	log2(N)
 it follows that

Theorem 4. Let N ∈ N and P = (P1, . . . , PN ), then for Q =
(

1
N , . . . ,

1
N

)
lim
N→∞

LC(P,Q) = 2. (5.11)
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Example 4 with average identification length for a uniform Q∗

We get now

LC(P,Q∗) =
∑

x∈D(C)

|{v : x ∈ D(Cv)}|
|V| qC(P, x) (5.12)

and for the entropy in (5.4)

HC(P‖Q∗) =
∑

x∈D(C)

|{v : x ∈ D(Cv)}|
|V| qC(P, x)h

(
qC(P, x1)
qC(P, x)

)
. (5.13)

Furthermore let C0 be the set of all codes C with LC(P,Q∗) = L(P,Q∗). We
define

H(P‖Q∗) = max
C∈C0

HC(P‖Q∗). (5.14)

Then

L(P,Q∗) ≥ H(P‖Q∗). (5.15)

Case N = 2n: We choose C = {0, 1}n and calculate |{v:x∈D(Cv)}|
|V| . Notice that

for any x ∈ D(C) we have 2n−‖x‖ many codewords with x as prefix.

Order this set. There are
(
N−1
K−1

)
(K − 1)–element subsets of C containing the

first codeword in this set. Now we take the second codeword and K − 1 others,
but not the first. In this case we get

(
N−2
K−1

)
further sets and so on.

Therefore |{v : x ∈ D(Cv)}| =
∑2n−‖x‖

j=1

(
2n−j
K−1

)
and (5.14) yields

LC(P,Q∗) =
1(
N
K

) ∑
x∈D(C)

2n−‖x‖∑
j=1

(
2n − j

K − 1

)
qC(P, x)

=
1(
2n

K

) n−1∑
i=0

2n−i∑
j=1

(
2n − j

K − 1

)
 ∑
x∈D(C)
‖x‖=i

qC(P, x)


=

1(
2n

K

) n−1∑
i=0

2n−i∑
j=1

(
2n − j

K − 1

) (by (5.5)). (5.17)

Lets abbreviate this quantity as g(n,K). Its asymptotic behavior remains to be
analyzed.

Exact values are

g(n, 1) = 2 − 2
2n , g(n, 2) = 2

3
5·2−n−9+4·2n

2n−1

g(n, 3) = − 2
7

49·2n−70+32·2−n−11·4n

(2n−1)(2n−2)
, g(n, 4) = 4

105
−2220+908·2−n−705·4n+1925·2n+92·8n

(2n−1)(2n−2)(2n−3)
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We calculated the limits (n → ∞)

K 1 2 3 4 5 6 7 8 9
lim
n→∞

g(n,K) 2 8
3

22
7

368
105

2470
651

7880
1953

150266
35433

13315424
3011805

2350261538
513010785

This indicates that sup
K

lim
n→∞

g(n,K) = ∞.
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On Identification

C. Kleinewächter

1 Introduction

In Shannon’s classical model of transmitting a message over a noisy channel we
have the following situation:

There are two persons called sender and receiver. Sender and receiver can
communicate via a channel. In the simplest case the sender just puts some input
letters into the channel and the receiver gets some output letters. Usually the
channel is noisy, i.e. the channel output is a random variable whose distribution
is governed by the input letters. This model can be extended in several ways:
Channels with passive feedback for example give the output letters back to the
sender. Multiuser channels like multiple access channels or broadcast channels
(which will not be considered in this paper) have several senders or receivers
which want to communicate simultaneously. Common to all these models of
transmission is the task that sender and receiver have to perform: Both have
a common message set M and the sender is given a message i ∈ M . He has
to encode the message (i.e. transform it into a sequence of input letters for the
channel) in such a way, that the receiver can decode the sequence of output
letters so that he can decide with a small probability of error what the message i
was. The procedures for encoding and decoding are called a code for the channel
and the number of times the channel is used to transmit one message is called
the blocklength of the code.

While this model of transmission is probably the most obvious model, there
are also other ones. Maybe the receiver does not need to know what the exact
message is, he is satisfied to get only partial information. Depending on the type
of questions the receiver has about the messages, transmission codes can be
rather inefficient. If one uses special codes suited to answer only these questions,
then there might be more efficient codes with respect to the number of possible
messages for given blocklength.

One of these models is identification. In the theory of identification, the receiv-
er has a message of special interest to him, and he only wants to know whether
the sender was given this special message or not. This special message is un-
known to the sender (otherwise this problem would be trivial, the sender just
has to encode one of two alternatives). As an application consider the following
situation: Sender and receiver both have a large amount of text (like a book).
The receiver now wants to know if both texts are equal (otherwise the receiv-
er may want to order a copy of the sender’s test). The trivial solution using a
transmission scheme would be that the sender simply encodes the whole text,
sends it over the channel, the receiver decodes the text and compares it to his
text, but of course this is very inefficient. Usually the number of messages that
one can transmit grows exponentially in the blocklength, so this method would

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 62–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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require codes with blocklengths proportional to the length of the text. The ratio
between the logarithm of the number of messages and the blocklength is called
the rate of the code and the maximal rate that is asymptotically achievable is
called the capacity of the channel.

In [1] and [2] Ahlswede and Dueck showed that the maximal sizes of an iden-
tification code (ID-code) for a stationary discrete memoryless channel without
and with noiseless feedback grow double exponentially fast in the blocklength
and they determined the second order rate for these channels, if we allow an
arbitrary small but positive probability of error that the answer we get is false.
(For channels without feedback this holds only for randomized codes.) The rate
of these codes is therefore defined as the ratio of the iterated logarithm of the
number of messages and the blocklength.

Applied to our previous example this means that we need only codes of block-
length proportional to the logarithm of the length of the text for identification.

If we deal with ID-codes, we have to consider two kinds of errors, namely if
message i is given to the sender the receiver, who is interested in message i, can
decide that his message was not sent (missed identification) and a receiver who is
interested in j = i can decide that j was sent (false identification). These two er-
rors will turn out to be of different nature. While missed identifications are caused
by errors in the transmission, false identifications are also inherent to the codes.

In the case of a channel W without feedback the second order identification
capacity is the classical Shannon capacity

C = max
P

I(P,W )

Here P is a distribution on the input letters and I(P,W ) is the mutual informa-
tion of two random variables with joint distribution PXY (x, y) = P (x)W (y|x),
that means these random variables behave like channel input respectively output.

The upper bound for channels without feedback was proved under the as-
sumption that the allowed error probability vanishes exponentially fast. In [4]
Han and Verdú proved the upper bound for constant error probability smaller
than 1/2. It is obvious, that if we allow error probabilities larger than 1/2, then
trivial codes, where the receiver simply guesses, achieve infinite rates. There are
also other conditions on the error probabilities to avoid these trivialities, and
mostly they lead to the same capacity, for example, if the sum of the maximal
probability of accepting a false message plus the maximal probability of falsely
rejecting a message should be less than 1. For the proof of Theorem 1 in Section
3 we show that an even slightly weaker condition suffices, namely that for each
message the sum of error probabilities should be less than 1.

For a channel W with noiseless feedback (i.e. the sender immediately gets
each letter that is received) the capacity is

max
x∈X

H(W (·|x))

for deterministic and
max
P

H(PW )
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for randomized codes, if there are two different rows in W , otherwise they are
0. Identification codes for channels with feedback will be called IDF-codes.

The proof of the direct parts in [2] works in two stages: In the first stage,
sender and receiver communicate over the channel with the goal to generate two
random variables which are equal with high probability and have large entropy.
These random variables are used to select a function which maps messages to
a rather small set. In the second step (which contributes only negligible to the
blocklength) the sender evaluates this function at the message and transmits it to
the receiver. The receiver evaluates the function at the message he is interested
in and compares the result with the value he got from the sender. He will vote
for a positive identification if and only if they are equal.

This leads to the following interpretation of these results: If the identification
capacity is positive, then it equals the common randomness capacity as defined in
[8], i.e. the maximal entropy of an almost uniform random experiment which can
be set up by communicating over the channel and is known with high probability
to both sender and receiver. In the absence of feedback, one possibility to achieve
the maximal possible rate of such a common random experiment is that the
sender performs a uniform random experiment and transmits the result to the
receiver using an ordinary transmission code. If noiseless feedback is available,
the sender sends letters in such a way, that the entropy of the channel output
(which he knows from the feedback channel) is maximized, where he can either
use a deterministic or randomized input strategy, depending on the kind of code
he may use. This interpretation proved to be the right one also for other kinds
of channels like the multiple access channel (see [3]).

Thus the question arises if this equality is valid in general.
The answer is negative. In [7] Ahlswede gives an example of a non station-

ary memoryless channel with double exponentially growing input alphabet with
identification capacity 1 and common randomness capacity 0. The structure of
this channel has some similarities to the structure of ID-codes used in most of the
achievability proofs for ID-coding theorems, thus it can be viewed as a channel
with “built–in” ID-encoder.

In Section 3 we give a counterexample for the other direction. For given real
numbers CID and CCR with 0 < CID < CCR, we will explicitly construct a
discrete channel with memory and noiseless passive feedback with identification
capacity CID and common randomness capacity CCR. This channel is construct-
ed in such a way that it can be used in two ways. In one respect, the channel
is good for the generation of common randomness, in the other it is suitable for
identification.

It is quite reasonable to consider channels with memory. One may think for
example of a system where data are transmitted by different voltage levels at
high frequency. Because of the electrical capacity of the system it can be difficult
to switch from a low voltage level to a high one and vice versa. There are also
certain types of magnetic recording devices have problems with long sequences
of the same letter. These examples for instance lead to the notion of run length
limited codes. A third example are systems requiring the use of binary codewords
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which have approximately the same number of zeroes and ones. This limitation
arises if the system can only transmit an unbiased alternating current, therefore
these codes are called DC-free.

In [6] Ahlswede and Zhang gave bounds on the maximal rate for ID-codes for
discrete memoryless channels with noisy feedback. Channels without feedback
can in this model be described by a feedback channel that maps all input letters
with probability 1 on one special feedback letter. The case with noiseless feedback
is described by a feedback channel that has positive probability for a pair (y, z)
of output respectively feedback letters only if y = z. In the cases of either no
feedback or noiseless feedback, the upper and lower bound coincide and therefore
this can be viewed as a generalization and unification of the results of [1], [2]
and [4], where the identification capacities for those channels were determined.
Unfortunately in general there is a gap between the upper and lower bound.

In Section 4 we improve the upper bound on the size of deterministic codes
given in [6] for the channels where the main channel is noiseless. The known
bound states that the second order rate of deterministic ID codes is independent-
ly bounded by the maximal mutual information that channel input and feedback
give about the channel output and the maximal entropy of the feedback. We im-
prove this bound by showing that these two quantities cannot be maximized
independently, instead one has to choose an input distribution that is good for
both, transmission and the generation of randomness. We will show for the chan-
nels considered the new upper bound equals the known lower bound, therefore
the deterministic identification capacity for these channels is now known.

2 Auxiliary Results

In this section we will introduce some basic definitions and well know facts. All
logarithms in this paper are assumed to be binary and we define 0 log 0 to be 0.

Definition 1. For a finite or countable infinite set S we will denote by P(S)
the set of all probability distributions on S.

Definition 2 (Entropy). Let P be a probability distribution on a finite set X .
The entropy of P is defined as

H(P ) � −
∑
x∈X

P (x) logP (x).

Also if X is a random variable with distribution P , we define the entropy of
X by

H(X) � H(P ).

Entropy is a concave function, because the function f(t) = −t log t is concave.
Furthermore, it is Schur-concave:

Lemma 1 (Schur-concavity of entropy). Let n ∈ IN . Let P,Q be two prob-
ability distributions on {1, . . . , n} which are non increasing. If P and Q satisfy
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k∑
i=1

P (i) ≤
k∑
i=1

Q(i), (1)

for all k ∈ 1, . . . , n then H(P ) ≥ H(Q).

Entropy can be viewed as a measure of uncertainty of a random variable. For
example, if one has to guess the value of a random variable X using yes-/no-
questions about its value, an optimal strategy takes on the average approximately
H(X) questions. (They differ by at most 1 question.) To catch the dependency
between random variables, we need the concept of conditional entropy:

Definition 3 (Conditional Entropy). Let X,Y be random variables on finite
sets X ,Y with distributions P resp. Q. Q(·|x) is the distribution of Y under the
condition X = x. The conditional entropy of Y given X is defined by

H(Y |X) � −
∑
x∈X

P (x)
∑
y∈Y

Q(y|x) logQ(y|x).

The conditional entropy H(Y |X) is the uncertainty about Y after having ob-
served X , so the difference between H(Y ) and H(Y |X) is the decrease in uncer-
tainty about Y by observing X or loosely speaking the amount of information
we “learn” about Y through observation of X . This quantity is called mutual
information.

Definition 4 (Mutual information). Let X and Y be random variables on
finite sets X and Y, respectively. Then we define the mutual information between
X and Y by

I(X ∧ Y ) � H(Y ) −H(Y |X).

The following lemma gives an upperbound on the difference of entropies of two
distributions as a function of the l1-distance (and the cardinality of X , which is
usually fixed):

Lemma 2. Let P and Q be two distributions on a set X with∑
x∈X

|P (x) −Q(x)| ≤ δ ≤ 1
2
. (2)

Then

|H(P ) −H(Q)| ≤ −δ log
δ

|X | . (3)

Proof. Set f(t) = −t log t. f is concave in [0, 1]. Thus for 0 ≤ τ ≤ 1
2 , 0 ≤ t ≤ 1−τ

we have
f(t) − f(t+ τ) ≤ f(0) − f(τ) (4)

and
f(t+ τ) − f(t) ≤ f(1 − τ) − f(1) (5)
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which gives

|f(t) − f(t+ τ)| ≤ max{f(τ), f(1 − τ)} = f(τ). (6)

Thus

|H(P ) −H(Q)| ≤
∑
x∈X

|f(P (x) − f(Q(x)))|

≤
∑
x∈X

f(|P (x) −Q(x)|)

≤ δ

(∑
x∈X

f

(
|P (x) −Q(x)|

δ

)
− log δ

)
≤ δ(log |X | − log δ)

where the last step follows from Jensen’s inequality. �

Another important application of entropy is counting sequences that have a given
empirical distribution:

Definition 5 (n-type). Let n ∈ IN . A probability distribution P on a finite set
X is called n-type, if

P (x) ∈
{

0
n
,
1
n
, . . . ,

n

n

}
for all x ∈ X .

The set of all sequences in Xn that have empirical distribution P will be de-
noted by TP . Vice versa if a sequence xn is given, we will denote its empirical
distribution by Px.

n-types can be viewed as empirical distribution of sequences of length n. For
fixed n-type P their number can be estimated as follows:

Lemma 3. Let n ∈ IN . For an n-type P

2nH(P )

(n+ 1)|X |
≤ |TP | ≤ 2nH(P ). (7)

A proof can be found for example in [10].
The following definition expands the notion of types to pairs of sequences:

Definition 6. Let X , Z be finite sets, let W : X → Z be a stochastic matrix,
i.e. a matrix W = (W (z|x))x∈X ,z∈Z. Let xn = (x1, . . . , xn) ∈ Xn. Then we say
that zn = (z1, . . . , zn) ∈ Zn has conditional type W given xn if for all pairs
(x, z) ∈ X × Z

<x, z|xn, zn>=<x|xn> W (z|x) (8)

where <x|xn>= |{i|xi = x}| is the number of occurences of letter x in xn and
< x, z|xn, zn >= |{i|xi = x ∧ zi = z}| is the number of occurences of the pair
(x, z) in the sequence

((x1, z1), . . . , (xn, zn)) .

The set of these sequences is denoted by TW (xn).
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As a corollary from Lemma (3) we get

Corollary 1. Let n ∈ IN , let X , Z be finite sets. For xn ∈ Xn and a stochastic
matrix W : X → Z (i.e. a matrix W = (W (z|x))x∈X ,z∈Z with

∑
z∈ZW (z|x) = 1

for all x ∈ X ) such that TV (Xn) = ∅ we have

2nH(Z|X)

(n + 1)|X ||Y|
≤ |TW (xn)| ≤ 2nH(Z|X), (9)

where X,Z are random variables with joint distribution
PXZ(x, z) = P (x)W (z|x).

3 Common Randomness Capacity Can Exceed
Identification Capacity

In this section we will construct a channel where the identification capacity is
positive but smaller than the common randomness capacity.

We will extend the definitions of [2] from memoryless channels with feedback
to channels with memory. These channels will not be considered in general, but
only a very specific subclass of them.

Definition 7 (Discrete channel with infinite memory). Let X and Y be
finite sets. Let

W = {W |W : X → Y}

be the set of all stochastic matrices with input alphabet X and output alphabet Y.
A discrete channel V with infinite memory (here abbreviated as DC) with respect
to the input letters is a series V = (Vi)i∈IN of maps, where Vi : X i−1 → W. V1

is understood to be an element of W. Given an input sequence xn = (x1, . . . , xn)
of length n the transmission probability for output sequence yn = (y1, . . . , yn) is
given by

V n(yn|xn) =
n∏
i=1

Vi(x1, . . . , xi−1)(yi|xi). (10)

In our example the input alphabet X will be the set {1, 2} and the channel will
in fact “remember” only the first input letter.

We consider DCs with immediate noiseless feedback, i.e. after each transmit-
ted letter the sender gets the output letter on the receivers side and his further
encodings may depend on all previous output letters.

Formally, if we have N messages 1, . . . , N , then the encoding of message j ∈
{1, . . .N} is a vector fj = [f1

j , . . . f
n
j ], where f ij : Yi−1 → X . f1

j is understood to
be an element of X . The set of all functions of this kind is denoted by Fn.

For a given DC V and an encoding f the probability V n(yn|f) of receiving
an output sequence yn = (y1, . . . , yn) is given by
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V n(yn|f) = V1(y1|f1) · V2(f1)(y1|f2(y1)) · . . . · (11)
Vn(f1, f2(y1), . . . , fn−1(y1, . . . , yn−2))(yn|f1(y1, . . . , yn−1)).

Definition 8 (Deterministic identification code for a DC). Let n,
N ∈ IN , 0 ≤ λ ≤ 1. A deterministic (n,N, λ) identification code for a DC
V with feedback is a family of pairs

{(fj,Dj)}j∈{1,...,N},Dj ⊂ Yn (12)

with the following properties

V n(Di|fi) > 1 − λ for all i ∈ {1, . . . ,M} (13)

V n(Dj |fi) < λ for all i, j ∈ {1, . . . ,M}, i = j (14)

Definition 9 (Randomized identification code for a DC). Let n,
N ∈ IN , 0 ≤ λ ≤ 1. A randomized (n,N, λ) identification code for a DC V
with feedback is a family of pairs

{(Q(·|j),Dj)}j∈{1,...,N}, Q(·|j) ∈ P(Fn), Dj ⊂ Yn (15)

with the following properties∑
f∈Fn

Q(f |i)Wn(Di|f) > 1 − λ for all i ∈ {1, . . . ,M} (16)

∑
f∈Fn

Q(f |i)Wn(Dj |f) < λ for all i, j ∈ {1, . . . ,M}, i = j (17)

The definition of the common randomness capacity for a specific model is af-
fected by the resources which are given to the sender and the receiver and this
dependency lies in the definition of a permissible pair of random variables. Gen-
erally speaking, a pair of random variables is permissible (for length n), if it can
be realized by a communication over the channel with blocklength n.

For our model it is the following (according to the notation and definitions of
[8]):

A pair (K,L) of random variables is permissible, if K and L are functions of
the channel output Y n. If we allow randomization in the encoding, K may also
depend on a random variable M which is generated in advance by the sender.

Definition 10 (Common randomness capacity). The common randomness
capacity CCR is the maximal number ν such, that for a constant c > 0 and for
all ε > 0, δ > 0 and for all n sufficiently large there exists a permissible pair
(K,L) of random variables for length n on a set K with |K| < ecn with

Pr{K = L} < ε

and
H(K)
n

> ν − δ.
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The upper bound on the cardinality |K| of the ground set guarantees that the
small amount of probability where K and L may differ can give only small
contribution to the entropy. It also ensures that H(L) ≈ H(K). Obviously, for a
channel with noiseless passive feedback the common randomness capacity equals
the maximal output entropy.

Theorem 1. Let α, β be real numbers with 0 < α < β. There exists a DC V
with common randomness capacity β and identification capacity α, that is if we
denote by Nf (n, λ) the maximal number N for which a deterministic (n,N, λ)-
code for the DC V exists, then

lim
n→∞

log logNf (n, λ)
n

= α. (18)

Analogously if we denote by NF (n, λ) the maximal number N for which a
randomized (n,N, λ)-code exists, then

lim
n→∞

log logNF (n, λ)
n

= α. (19)

For the proof of Theorem 1 we give a construction for the channel. We show that
from an (n,N, λ) identification code for the discrete memoryless channel with
feedback induced by a certain matrix WB we can construct an (n,N, λ) identifi-
cation code for our DC V . Conversely we will show that a deterministic (n,N, λ)
identification code for V induces a deterministic (n,N −1, λ) identification code
for the DMC induced by WB . For randomized codes, we will show that a code
for the DC V leads to a code for the DMC WB with a number of messages that
is smaller by at most a constant factor that depends on the error probability λ.

Set X = {1, 2}, Y =
{
1, . . . , 	2β


}
. Let P0 be the probability distribution on

Y with P0(1) = 1, fix any two probability distributions P1, P2 on Y with

H(P1) = α (20)
H(P2) = β (21)
P1(i) ≥ P1(i+ 1) for all i = 1, . . . |Y| − 1. (22)

Now define three stochastic matrices WA,WB,WC : X → P(Y) by

WA(·|x) = P0 for all x ∈ X (23)
WB(·|x) = Px−1 (24)
WC(·|x) = P2 for all x ∈ X . (25)

Finally we will define our DC V : Set V0�WA and

Wi(x1, . . . , xi−1) =
{
WB if x1 = 1
WC otherwise. (26)
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By this construction the sender decides with his first letter whether he wants
to use the channel for the maximal possible generation of common randomness
(and giving up the possibility to transmit messages), or whether he also wants
a channel with positive transmission capacity.

For this channel and an encoding fj = [f1
j , . . . , f

n
j ] Equation (11) yields

V n(yn|fj)=
{
P0(y1) ·WB(y2|f2

j (y1)) · . . . ·WB(yn|fnj (y1, . . . , yn−1)) if f1
j =1

P0(y1) · P2(y2) · . . . · P2(yn) otherwise.
(27)

It is obvious that this channel has a common randomness capacity of β, since
the maximal output entropy is achieved, if the sender sends a 2 as first letter and
arbitrary letters afterwards, which gives (n− 1) · β bits of common randomness
for blocks of length n.

The main tools in the calculation of the identification capacities of this chan-
nels will be Theorem 1 and Theorem 2 from [2] which give the capacities for
memoryless channels:

Theorem 2. Let Wi be a stochastic matrix. Let 0 < λ < 1/2 be given. If there
are two different rows in Wi, then for the maximal sizes Nf,Wi(n, λ) of deter-
ministic identification codes for Wi with error probability smaller than λ

lim inf
n→∞

n−1 log logNf,Wi(n, λ) = max
x∈X

H(Wi(·|x)). (28)

For the maximal sizes NF,Wi(n, λ) of randomized identification codes for Wi with
error probability smaller than λ we have

lim inf
n→∞

n−1 log logNF,Wi(n, λ) = max
P∈P(X )

H(PWi). (29)

Lemma 4. Let λ < 1/2, n ∈ IN , let {(fj ,Dj)}j∈{1,...,N} be an (n,N, λ)-code
for the DC defined before, then there exists at most one index j with f1

j = 2.

Proof
Suppose we have j = j′ with f1

j = 1 and f1
j′ = 1. Then by Equations (13), (14)

and (27)
1/2 < 1 − λ < Wn(Dj |fj) = Wn(Dj |fj′) < λ < 1/2. (30)

�
Lemma 5. Let λ < 1/2, n ∈ IN . Then

Nf(n, λ) ≤ Nf,WB (n− 1, λ) + 1.

Proof
Let {(fj,Dj)}j∈{1,...,N} be a deterministic (n,N, λ) ID-code for the DC V . By
Lemma (4) we can assume without loss of generality that f1

j = 1 for all j ∈
{1, . . . , N − 1}. Define a code {(f ′j,D′j)}j∈{1,...,N−1} of length n− 1 with N − 1
codewords by the following rules
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f ′ij (y1, . . . , yi−1) = f i+1
j (1, y1, . . . , yi−1) for all i (31)

D′j = {(y1, . . . , yn−1) ∈ Yn−1|(1, y1, . . . , yn−1) ∈ Dj} (32)

By Equation (27)

V n((1, y1, . . . , yn−1)|fj) = WB(y1|f2
j (1)) · . . . ·WB(yn−1|fnj (1, y1, . . . , yn−2))

= WB(y1|f ′1j ) · . . . ·WB(yn−1|f ′n−1
j (y1, . . . , yn−2))

= Wn
B(yn−1|f ′j)

and
V n((0, y1, . . . , yn−1)|fj) = 0. (33)

Thus
Wn
B(D′i|f ′j) = V n(Di|f j) for all i, j ∈ {1, . . . , N − 1} (34)

i.e. {(f ′j,D′j)}j∈{1,...,N−1} is an (n − 1, N − 1, λ) ID-code for the DMC defined
by matrix WB . �

Lemma 6. Let λ < 1/2, n ∈ IN . Then

Nf (n+ 1, λ) ≥ Nf,WB (n, λ).

Proof
Let {(fj,Dj)}j∈{1,...,N} be an (n,N, λ) ID-code for the DMC WB .

Define a code {(f ′j ,D′j)}j∈{1,...,N} of length n + 1 with N codewords by

f ′1j = 1 (35)

f ′ij (y1, . . . , yi−1) = f i−1
j (y1, . . . , yi−2) for all i ∈ {2, . . . , n+ 1} (36)

D′j = {(1, y1, . . . , yn) ∈ Yn+1|(y1, . . . , yn) ∈ Dj} (37)

Therefore

V n+1(D′i|f ′j) = V n(Di|f j) for all i, j ∈ {1, . . . , N} (38)

i.e. {(f ′j,D′j)}j∈{1,...,N} is an (n + 1, N, λ) ID-code for the DC W . �

Now we will return to the proof of Theorem 1. By Theorem (2), Lemma 5 and
Lemma 6

lim
n→∞

log logNf (n, λ)
n

≤ lim
n→∞

log logNf,WB (n− 1, λ) + 1
n

≤

max
x∈X

H(WB(·|x)) = α

and

lim inf
n→∞

log logNf(n, λ)
n

≥ lim inf
n→∞

log logNf,WB (n− 1, λ)
n

≥

max
x∈X

H(WB(·|x)) = α.
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Thus

lim
n→∞

log logNf (n, λ)
n

= α, (39)

proving Theorem 1 for deterministic codes.
Since a deterministic code can also be viewed as a randomized code, this also

gives the direct part of Theorem 1 for randomized codes. For the proof of the
converse we need some further observations.

The second statement in Theorem (2) needs the following modification. The
proof is rather lengthy, so instead of copying it we will only point out the modi-
fications needed to adapt it for our purposes. An investigation of the proof of [2,
Theorem 2 b] shows that the converse still holds if the bounds for the error prob-
abilities are slightly weakened, namely replace Inequalities (4) and (5) in [2] by∑

g∈Fn

QF (g|i)
(
Wn(DCi |g) +Wn(Dj |g)

)
≤ 2 · λ (40)

for all i, j ∈ {1, . . . , N}, i = j. The second order rate of a series IDF-code
satisfying (40) with λ < 1/2 is upperbounded by maxP∈P(X )H(P ·W ).

To verify this, choose ν > 0 with 2 · λ + ν < 1 and define E∗i as in [2, p. 35].
Equation (40) implies that the sets Di ∩ E∗i are pairwise different: Suppose we
have i = j with Di ∩ E∗i = Dj ∩ E∗j . This would lead to the contradiction

1 =
∑
g∈Fn

QF (g|i)
(
Wn((Di ∩ E∗i )C |g) +Wn((Di ∩ E∗i )|g)

)
=

∑
g∈Fn

QF (g|i)
(
Wn((Di ∩ E∗i )C |g) +Wn((Dj ∩ E∗j )|g)

)
≤

∑
g∈Fn

QF (g|i)
(
Wn((Di)C |g) +Wn((E∗i )C |g) +Wn((Dj)|g)

)
< 2λ+ ν < 1.

The rest of the proof can be applied as it is.

Lemma 7. Let λ < 1/2, n ∈ IN . Then

NF (n, λ) ≤ N ′F,WB
(n− 1, λ)

⌈
1

1 − 2 · λ

⌉
.

where N ′F,WB
(n − 1, λ) is the maximal size of a randomized identification code

with the modified error probability defined by Equation (40) being less than λ.

Proof
Let {(Q(·|j),Dj)}j∈{1,...,N} be a randomized (n,N, λ) IDF-code for the DC V .
Let for all i pi = Wn(Di|g′) and qi =

∑
g∈Fn|g1=2 Q(g|i), where g′ is any encod-

ing function with g′1 = 2. There exists a subset I ⊂ {1, . . . , N} of cardinality
|I| ≥ N


 1
1−2·λ �

with |pi− pj | ≤ 1− 2 ·λ for all i, j ∈ I. This leads to the inequality

1 − pi + pj ≥ 2 · λ (41)
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and thus ∑
G∈FN :g1=2

(
V n(DCi ) + V n(Dj)

)
≥ 2 · λ · qi (42)

and ∑
G∈FN :g1=1

(
V n(DCi ) + V n(Dj)

)
< 2 · λ · (1 − qi) for all i, j ∈ I. (43)

(Especially we have qi < 1 for all i ∈ I.) Analogue to Lemma 5, we define the
code {(Q′(·|j),D′j)}j∈I of blocklength n− 1 with |I| codewords by

Q′(g′|i) =
Q(g|i)
1 − qi

(44)

where g′ ∈ Fn−1 and g ∈ Fn are encoding function with g1 = 1 and

g′i(y1, . . . , yi−1) = gi+1(1, y1, . . . , yi−1) (45)

D′j = {(y1, . . . , yn−1) ∈ Yn−1|(1, y1, . . . , yn−1) ∈ Dj} (46)

Since ∑
G∈FN :g1=1

Q(·|i)
1 − qi

(
V n(DCi ) + V n(Dj)

)
< 2λ (47)

this code satisfies the modified error condition of Equation (40) for the DMC
WB.1 �

Lemma 8. Let WB , P1 and α be defined as before. Then the maximal output
entropy for the DMC WB is

max
P∈P(X)

H(PWB) = H(P1) = α.

1 Actually one may expect that also randomized identification codes for the DC V
could only have one more message than the corresponding codes for the DMC WB

(as we could show for deterministic codes), but at least the conversion of codes we
have used is not sufficient to show this. Here is an an informal recipe how to construct
counterexamples (a formal construction is left out because this is neither relevant
for the proof of our theorem nor very instructive): Suppose we have an IDF code
for the DMC WB with the property that all distributions of input letters are equal
and the decoding sets consist only of sequences that are “typical” (there will be a
formal definition in the next section). Then we can build a code for the DC V with
twice as many code words as follows: The first half will be the original encoding
functions and decoding sets both prefixed by “1” as in the previous lemma. For the
other half, choose a suitable distribution on the original encoding function and any
function that sends “2” as the first letter in such a way, that the errors of second
kind with respect to decoding sets of the first half are little smaller than λ. For the
decoding sets take the sets of the first half and remove some sequences to get the
error of second kind for encoding functions of the first half are small enough. Then
add some output sequences that are “typical” for encodings that start with a “2” to
get the probability for errors of first kind right.
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Proof. Consider a convex combination

Pρ = (1 − ρ)P0 + ρP1, ρ ∈ [0, 1].

Pρ is a non increasing probability distribution and

k∑
i=1

Pρ(i) = (1 − ρ) + ρ

k∑
i=1

P1(i) ≥
k∑
i=1

P1(i)

for all k ∈ Y, i.e. Pρ majorizes P1, thus by Schur-concavity of entropy H(Pρ) <
H(P1) . �

Using our modified Version [2, Theorem 2b] we get therefore the desired result
for randomized identification codes for our specific channel:

lim
n→∞

log logNF (n, λ)
n

≤ lim
n→∞

log logN ′F,WB
(n− 1, λ)

⌈
1

1−2·λ

⌉
n

≤

max
P∈P(X)

H(PWB) = α

and

lim inf
n→∞

log logNF (n, λ)
n

≥ lim inf
n→∞

log logNf (n, λ)
n

≥

max
x∈X

H(WB(·|x)) = α.

4 The Deterministic Identification Capacity for Noiseless
Channels with Noisy Feedback

In this section we improve the upper bound for deterministic ID-codes from [6]
for the case of noiseless channels with noisy feedback. We show that our improved
bound coincides with the lower bound of [6] for this type of channels.

Definition 11. A channel with noisy feedback is a quadruple

{X ,W,Y,Z}. (48)

Here X is the input alphabet, Y and Z are the output alphabets for the receiver
respectively the feedback and

W = (W (y, z|x))x∈X ,y∈Y,z∈Z (49)

is a stochastic matrix. To avoid trivialities, all alphabets are assumed to contain
at least two elements. We want to consider finite alphabets, so we can also as-
sume that all alphabets are the set of natural numbers less or equal to the given
cardinality.

The channel is assumed to be memoryless, thus the transmission probabilities
for sequences xn = (x1, . . . , xn), yn = (y1, . . . , yn) and zn = (z1, . . . , zn) of
length n are given by

Wn(yn, zn|xn) =
n∏
t=1

W (yt, zt|xt) (50)
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Now an encoding of message j ∈ {1, . . .N} is a vector-valued function fj =
[f1
j , . . . f

n
j ], where f ij : Zi−1 → X . f1

j is an element of X . If the message is j and
the sender has received z1, ..., zj−1 as feedback sequence, he sends f ij(z1, ..., zj−1)
as the ith letter. The set of all functions of this kind is again denoted by Fn.

An encoding function f determines the joint distribution of the output random
variables

(Y1, . . . , Yn)

and the feedback random variables (Z1, . . . , Zn) by the following formula:

P (Y n = yn, Zn = zn|f) = Wn(yn, zn|f) =
n∏
t=1

W
(
yt, zt|f t (z1, . . . , zt−1)

)
(51)

Definition 12. A deterministic (n,N, λ) IDF code for W is a family of pairs

{(fi,Di) : i ∈ {1, . . . , N}} (52)

with
fi ∈ Fn, Di ⊂ Yn (53)

and

Wn(Di|fi) ≥ 1 − λ, Wn(Dj |fi) < λ for all i, j ∈ {1, . . . , N} , i = j (54)

Let us denote by N∗f (n, λ) the maximal N such that an (n,N, λ) code for W
exists.

The following result of Ahlswede and Zhang in [6] gives bounds on the growth
of N∗f (n, λ).

Theorem AZ. If the transmission capacity C of W is positive, then we have
for all 0 < λ < 1/2

lim inf
n→∞

n−1 log logN∗f (n, λ) ≥ max I(Z ∧ U |X), (55)

where the maximum is taken over all random variables (X,Y, Z, U) with joint
distribution

PXY ZU (x, y, z, u) = p(x)W (y, z|x)q(u|x, z)
under the constraint

I(U ∧ Z|XY ) ≤ I(X ∧ Y ). (56)

Furthermore

lim
n→∞

n−1 log logN∗f (n, λ) ≤ min{max I(XZ ∧ Y ),maxH(Z|X)}, (57)

where the maximum is taken over all random variables (X,Y, Z) with joint dis-
tribution

PXY Z(x, y, z) = p(x)W (y, z|x).

We want to consider channels where the channel from the sender to the
receiver is noiseless, i.e. X = Y and W (y, z|x) = 0 for all y = x. We will in this
case identify W with the matrix with entries W (z|x) = W (x, z|x).
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Theorem 3. If W is a noiseless channel with noisy feedback, then for all λ ∈
(0, 1/2)

lim
n→∞

n−1 log logN∗f (n, λ) = max {min {H(X), H(Z|X)}} (58)

where the maximum is taken over all random variables X,Z with joint distribu-
tion of the form

PXZ(x, z) = p(x)W (z|x) (59)

For zn ∈ Zn and f ∈ Fn let us denote

f(zn) =
(
f1, f2(z1), . . . , fn(z1, . . . , zn−1)

)
Since for a noiseless channel input and output random variables are equal

with probability 1, for given zn ∈ Zn yn = f(zn) is by Equation (51) the unique
sequence with PY nZn(yn, zn) > 0 and thus the output random variable Y n has
distribution

PY n(yn) =
∑

zn∈f−1(yn)

PZn(zn) =
∑

zn∈f−1(yn)

n∏
t=1

W (zt|f(z1, . . . , zt−1)) (60)

Here f−1(yn) is the inverse image of yn under the encoding function f , i.e.

f−1(yn) = {zn ∈ Zn|f(zn) = yn}. (61)

Nevertheless, we want to distinguish between the input and output random
variables to stress whether we are considering feedback sequences produced by
certain input sequences or output sequences as a function of feedback sequences.

The following lemma states that the output distributions generated by the
encoding functions of an IDF-code must differ significantly on the decoding sets.
Thus we can get an upper bound on the size of the code by upperbounding the
number of significantly different output distributions that can be generated.

Lemma 9. Let {(fi,Di) : i ∈ {1, . . . , N}} be an (n,N, λ) IDF-code for W with
λ ∈ (0, 1/2). Set δ = 1/4 − λ/2. Then

|W (Di|fi) −W (Di|fj)| > δ for all i, j ∈ {1, . . . , N} , i = j. (62)

Proof. Assume Equation (62) is false for i, j. Then

1
2
< 1 − λ ≤W (Di|fi) ≤W (Di|fj) + δ < λ+ δ <

1
2

. (63)

�

Now for each given Xn = xn we have to split Zn into one set of negligible proba-
bility and one set which contains only sequences of almost the same probability.
The second set will be the W − δ-typical sequences under the condition xn.
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Definition 13 (W − δ-typical sequences). Let W : X → Z be a stochastic
matrix, let xn ∈ Xn. zn ∈ Zn is called W − δ-typical under the condition xn if
for all x ∈ X , z ∈ Z

1
n
|<x, z|xn, zn> − <x|xn> ·W (z|x)| ≤ δ (64)

and additionally < x, z|xn, zn >= 0 if W (z|x) = 0. The set of all W − δ-typical
sequences under the condition xn is denoted by TW,δ(xn). If zn is not typical, we
call it atypical.
In the sequel we will for sequences of length n choose δn = n−1/3 and refer
to W − δn-typical sequences simply as W -typical sequences and denote them
by TW (xn). The following lemma is the so–called joint asymptotic equipartition
property (joint AEP) for our model. It is an analogue to the law of large numbers
in probability theory.
Lemma 10. For fixed X and Z, for every stochastic matrix W : X → Z there
exists a nullsequence (εn)n∈IN , such that for every distribution p on X and for
all xn ∈ Tp

Wn(TW (xn)|xn) ≥ 1 − εn (65)
and

|TW (xn)| ≤ 2n(H(Z|X)+εn) (66)
Furthermore if zn ∈ TW (xn), then∣∣∣∣ 1n logW (zn|xn) +H(Z|X)

∣∣∣∣ ≤ εn (67)

where X,Z are random variables with joint distribution

PXZ(x, z) = p(x)W (z|x). (68)

Proof. These results are folklore in information theory, we supply some justifica-
tion and references for the benefit of the non-expert reader. The first inequality
is the second assertion in [10, Lemma 2.12], the second is a rewriting of the upper
bound given by the second inequality in [10, Lemma 2.13]:

For xn = (x1, . . . , xn) let Z1, . . . , Zn be independent random variables where
Zi has distribution PZi = W (·|xi). Then for all pairs (x, z) ∈ X ×Z the random
variable <x, z|xn, Zn> has binomial distribution with expected value < x|xn >
W (z|x). The variance is

<x|xn> W (z|x) (1 −W (z|x)) ≤ <x|xn>
4

≤ n

4
. (69)

We apply Chebyshev’s inequality and get

P
(
n−1 |<x, z|xn, zn> − <x|xn> ·W (z|x)| > δ

)
≤ 1

4kδ2
. (70)

Thus we get from the union bound that

Wn(TW (xn)|xn) ≥ 1 − |X ||Z|
4nδ2

. (71)
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The second inequality is a rather straightforward consequence of Lemma (2)
and Corollary (1). For the third inequality notice that

W (zn|xn) =
∏

(x,z)∈X×Z:W (z|x)>0

W (z|x)<x,z|x
n,zn> (72)

Thus

− logW (zn|xn) = −
∑

(x,z)∈X×Z:W (z|x)>0

< x, z|xn, zn > logW (z|x)

≥ −
∑

(x,z)∈X×Z:W (z|x)>0

(np(x)W (z|x) + δn) logW (z|x)

= nH(Z|X) − nδn
∑

(x,z)∈X×Z:W (z|x)>0

logW (z|x). (73)

Analogously we have

− logW (zn|xn) ≤ nH(Z|X) + nδn
∑

(x,z)∈X×Z:W (z|x)>0

logW (z|x). (74)

Since
∑

(x,z)∈X×Z:W (z|x)>0 logW (z|x) is fixed, this proves the third inequality
for suitable εn. �

To approximate the output probability for a given sequence yn by Equation (65)
we can restrict ourselves to sequences zn which are jointly typical under the
condition xn = yn.

Since the probability of a decoding set is determined by the sizes of intersec-
tions of the inverse images of the decoding set with the different types of feedback
sequences, we can then estimate the number of different encoding functions by
the combination of sizes of intersections.

Lemma 11. For every 0 < λ < λ′ < 1/2, n sufficiently large depending on λ
and λ′ and every (n,N, λ)-IDF-code {(fi,Di) : i ∈ {1, . . . , N}} there exists an
(n+ 1, N, λ′)-IDF-code
{(f ′i ,D′i) : i ∈ {1, . . . , N}} with

f ′(zn+1) ∈
N⋃
i=1

D′i ⇒ zn ∈ TW (f(zn)) (75)

where zn+1 = (zn, 1).

Proof. For i ∈ {1, . . . , n} and fi = (f1
i , . . . , f

n
i ) let f ′i = (f1

i , . . . , f
n+1
i )

where

fn+1
i (zn) =

{
1 if zn ∈ TW (f(zn))
2 otherwise (76)

and D′i = {(y1, . . . , yn, 1) : (y1, . . . , yn) ∈ Di} . Obviously this code satisfies
Implication (75) and Inequality (65) guarantees that the error probabilities are
smaller than λ+ εn < λ′ for n sufficiently large. �
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From now, we want to consider only IDF-codes respectively encoding functions
that satisfy (75). We will denote the maximal size of such a code by N ′f (n, λ).
We introduce a new possibility for errors of first kind by declaring an error, if
the feedback sequence is not jointly typical with the first n letters of the input
sequence, but by the previous lemma, there is no loss in rate and the decrease
in error performance is not significant. By considering only typical sequences,
the sets also boil down to the required sizes. The next lemma shows that the
number of feedback types that “typically” occur is at most polynomial in n.

Lemma 12. Let PX be a distribution on X . The number of types of feedback
sequences zn for which there is an input sequence xn of type p such that zn is
W − δ-typical under the condition xn is upperbounded by (2nδ + 1)|Z|.

Proof. The number of occurrences of each letter can take one of at most (2nδ+1)
values. �

We will now consider output sequences of fixed n-type p on X and upperbound
the number of different probabilities of decoding sets we can generate on this
set under the assumption that we produce an output sequence that is outside
any decoding set, if the feedback sequence is not jointly typical with the input
sequence:

Lemma 13. Let p be an n-type on X . Let B(p, n) denote the number of different
values that can occur as the output probability of a decoding set D with D ⊂ Tp
under an encoding function that maps atypical feedback sequences outside D.
Then

B(p, n) ≤
(

2nH(X) + 2n(H(Z|X)+εn)

2nH(X)

)(2nδ+1)|Z|

(77)

where (X,Z) is a pair of random variables with joint distribution PXZ(x, z) =
p(x)W (z|x).

Proof. There are at most 2nH(X) output sequences of type p and for each of this
sequences there are at most 2n(H(Z|X)+εn) feedback sequences that are jointly
typical with that given sequence and have the same joint type. So if we condition
on the event that the feedback sequence is of that joint type, the probability of
that output sequence is l-typical, l < 2n(H(Z|X)+εn), because it depends only on
the number of feedback sequences that are mapped on xn. Since the number of
joint types that are W − δ-jointly typical is less than (2nδ + 1) this proves the
lemma, because the number of l-types on a set U is nondecreasing in both l and
the cardinality of U . �

To get a bound on the number of different decoding functions, we have to consider
all possible input types, but this number is only polynomial in n, so we have to
upperbound

n−1 log logB(p, n)(n+1)|X|
:

To simplify notation, a non-integer argument for factorials or bounds of sums
and products is understood to be rounded down.
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Lemma 14.

lim
n→∞

n−1 log logB(p, n)(n+1)|X| ≤ H(X) (78)

lim
n→∞

n−1 log logB(p, n)(n+1)|X| ≤ H(Z|X) (79)

Proof

B(p, n) ≤
((

2nH(X) + 2n(H(Z|X)+εn)
)
!(

2nH(X))!(2n(H(Z|X)+εn)
)
!

)(2nδ+1)|Z|

≤

∏2n(H(Z|X)+εn)

i=1

(
2nH(X) + i

)
(2n(H(Z|X)+εn))!

(2nδ+1)|Z|

=

2n(H(Z|X)+εn)∏
i=1

2nH(X) + i

i

(2nδ+1)|Z|

=

2n(H(Z|X)+εn)∏
i=1

(
1 +

2nH(X)

i

)(2nδ+1)|Z|

Now let us use an input distribution p that maximizes min(H(X), H(Z|X)).

lim
n→∞

1

n
log log B(p, n) ≤ lim

n→∞

1

n
log log

2n(H(Z|X)+εn)∏
i=1

(
1 +

2nH(X)

i

)(2nδ+1)|Z|

= lim
n→∞

1

n
log

2n(H(Z|X)+εn)∑
i=1

log

(
1 +

2nH(X)

i

)
≤ lim

n→∞

1

n
log

(
2n(H(Z|X)+εn)nH(X)

)
= H(Z|X)

The other inequality can be proven analogously, since the expression on the
right hand side of Equation 77 is symmetrical in H(X) and H(Z|X) + εn.

So for each type p the second order rate of a code that uses only input words
of this type is bounded from above by the minimum of H(X) and H(Z|X).
Because there are only polynomial in n many input types, this gives the desired
result, namely let B(n) = max{B(p, n) : p is n-type} and let 0 < λ < λ′ < 1/2.
Then

lim
n→∞

1
n

log logN∗f (n, λ) = lim
n→∞

1
n

log logN ′f (n, λ
′)

≤ lim
n→∞

1
n

log logB(n)(n+1)|Z|

≤ max
X

min {H(X), H(Z|X)}
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To complete the proof of Theorem 3, we show that this coincides with the lower
bound of Theorem AZ. We consider noiseless main channels, thus Inequality (56)
reduces to

I(U ∧ Z|X) ≤ H(X) (80)

Let U be a random variable on Z. Let

q′(u|x, z) =
{

1; if u = z
0; otherwise (81)

and

q′′(u|x, z) =
{

1; if u = 1
0; otherwise (82)

If for the input distribution which maximizes min{H(X), H(Z|X)} (if there
are several, then take any of them) it holds that H(X) ≥ H(Z|X), then we set
q = q′ and get Z = U with probability 1. Therefore I(U ∧ Z|X) = H(Z|X).
Otherwise choose a convex combination q = αq′ + (1 − α)q′′ such that

I(U ∧ Z|X) = H(X). (83)

On the boundary point for parameter 1 of the convex combination we have
again U = Z, which gives I(U ∧ Z|X) = H(Z|X) > H(X) by assumption,
parameter 0 gives I(U ∧ Z|X) = 0. Thus by continuity of mutual information
and mean value theorem such an α exists.

In both cases we get from Theorem AZ that

lim inf
n→∞

n−1 log logN∗f (n, λ) ≥ maxmin{H(X), H(Z|X)} (84)

which concludes the proof of Theorem 3.

Remarks
1. The upper bound of Theorem AZ applied to our case states that

lim
n→∞

log logN∗f (n, λ) ≤ min{maxH(X),maxH(Z|X)} (85)

To see that Theorem 3 really improves this bound, consider the following
channel: Let X = Y = Z = {1, 2}. Let

W (z|x) =


1/2; if x = 1
1; if x = 2 and z = 1
0; if x = 2 and z = 2

(86)

If one uses p = (β, 1 − β) as input distribution, then H(X) = h(β) and
H(Z|X) = β where h(β) = −β log β − (1 − β) log(1 − β) is the binary
entropy. So Inequality (85) gives

lim
n→∞

n−1 log logN∗f (n, λ) ≤ 1, (87)

while Theorem 3 gives

lim
n→∞

n−1 log logN∗f (n, λ) = max
β∈[0,1]

min{β, h(β)} ≈ 0.7729. (88)
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2. Our theorem can be viewed as a result about identification codes with a
restriction on the input distributions that are allowed. Since the sender is
not allowed to randomize in the encoding, the only possibility to generate
randomness are the feedback letters. The sender now has to use input distri-
butions that are simultaneously good for transmission and for the generation
of randomness via the feedback channel. We conjecture that this is also true
for feedback channels with noise:

Conjecture 1. Let W be a channel with noisy feedback. Then for all 0 <
λ < 1/2

lim
n→∞

n−1 log logN∗f (n, λ) ≤ max min{I(XZ ∧ Y ), H(Z|X)} (89)

where the maximum is taken over all random variables (X,Y, Z) with joint
distribution PXY Z(x, y, z) = p(x)W (y, z|x).

However, note that this conjecture in general does not coincide with the
lower bound of Theorem AZ (although it does in more cases than the old
bound did), so even if it was settled, determination of the capacity would
still be an open problem .
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Identification and Prediction

L. Bäumer

1 Introduction

In this work the concept of identification is applied in the theory of prediction.
This approach was suggested to us by our advisor Professor R. Ahlswede. This
and other directions of research can be found also in [2]. Well known is Shan-
non’s theory of transmission of messages over a noisy channel ([15]). Using the
framework of Shannon’s channel model a new concept of information transfer -
called identification - was introduced by Ahlswede and Dueck in [1].

In the classical transmission model a sender wants to inform a receiver about
a message by sending codewords over a channel. The channel may induce some
errors and the goal is to have a large number of possible messages such that with
sufficiently high probability the receiver should be able to decide which message
had been sent. In identification via channels the receiver is no longer interested in
what the actual message is, rather he is concerned about one particular message
and only wants to know whether this message has occurred or not. However the
sender does not know which message the receiver is interested in. Alternatively
one can also think of several receivers, one for each message. Each receiver is
interested whether his message has occurred or not. This modification of the
problem actually leads to a general solution concept in mathematics. Whenever
there is a problem in which the question has to be answered “What is the
solution?” one can also formulate the corresponding identification problem by
asking the questions “Is the solution equal to ...? ”. We are going to apply this
solution concept of identification to prediction problems.

In a typical prediction problem a person who has made observations x1, . . . , xt
at time t has to answer the question “What is xt+1 ?”. The starting point of
the analysis here is to modify this problem by considering for every possible x a
person that asks “Is xt+1 = x ?”.

In the formulation of the prediction problem it has to be specified how the
data x1, x2, . . . is generated. Basically there are two different cases. In the proba-
bilistic setting the sequence is generated by a random process. We will be mainly
concerned with the deterministic setting where the sequence is thought to be ar-
bitrary. This is the framework of the award winning paper by Feder, Merhav
and Gutman ([8]). In this setting one wishes to deal with all sequences simul-
taneously. At first glance it may be surprising that if the sequence is arbitrary
that the past can be helpful in predicting the future as they are not necessarily
related and some care in defining the desired goals is necessary. The prediction
scheme one is looking for shall use the past whenever it is helpful.

Information theorists have been concerned about prediction from the very be-
ginning. Two ideas of Shannon shall be noted. In [16] he estimated the entropy
of a language by giving persons who speak this language some text with gaps

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 84–106, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and asking them to make predictions about how to fill the gaps. In this way the
persons use their enormous (unconscious) knowledge of the language and it is
possible to get good estimates. In [17], inspired by Hagelbarger, he designed a
mind reading machine. This machine is developed to play the game of match-
ing pennies against human opponents. So it tries to predict human decisions
between two alternatives at every time instant. The success of this machine is
explained by the fact that “untrained” human opponents are not able to draw
completely random bits. In our terminology the mind reading machine is a finite-
state machine with eight states. The predictor presented in Chapter 2.1 is in this
way a better mind reading machine as it outperforms for any sequence the best
finite-state predictor, for that particular sequence. The price for this, apart from
the complexity of the scheme, is the amount of information memorized from the
past. In fact this predictor has infinite memory.

The thesis is organized as follows. In Chapter 2 we introduce the finite-state
predictability of an individual sequence. This is the minimal asymptotic relative
frequency of prediction errors made by the best finite-state predictor for that
sequence. A predictor that achieves this performance simultaneously for all se-
quences in the long run (this will be called a universal predictor) is developed in
Section 2.1. Section 2.2 deals with the generalization of the problem to general
loss functions. In Chapter 3 we begin to work out the new approach of iden-
tification in prediction problems. We define the finite-state identifiability of a
sequence. Actually we distinguish here two quantities the strong identifiability
and the identifiability which differ in the way how restrictive the definitions are
done. Then we show that the universal predictor that attains the finite-state pre-
dictability can also be used to derive a universal identification scheme (Section
3.1). Furthermore we compare the new notion of identifiability of a sequence with
the predictability and derive relations between these quantities (Section 3.2). The
analysis of a special class of finite-state machines, the Markov machines, enables
us to show that asymptotically strong identifiability and identifiability coincide
(Section 3.3). Motivated by the identification theory for channels where the con-
sideration of randomized codes brought a big advantage we analyze the effects of
randomized finite-state machines for identification. In Section 3.4 we show that
asymptotically randomization does not increase the performance here.

2 Finite-State Predictability

We assume that there is a finite number of possibilities for the observations
made at each time instant. Therefore we work throughout the thesis with a
finite alphabet

X = {0, . . . ,M − 1}

of size M ≥ 2. The set of all words of length n is denoted by Xn. Words of
length n are denoted as

xn = (x1, . . . , xn) ∈ Xn.
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The set of all infinite sequences of letters from X is denoted by X∞ and a typical
element of X∞ will be denoted by x∞ ∈ X∞.

A deterministic predictor with infinite memory is a family (bt)t≥1 of functions
bt : X t−1 → X . If xt−1 has been observed at time t so far then bt(xt−1) is the
predicted letter. The performance criterion for a predictor of this form is the
asymptotic relative frequency of prediction errors:

1
n

n∑
t=1

d(xt, bt(xt−1)),

where d(x, y) = 0 if x = y and d(x, y) = 1 if x = y (d is the Hamming distance).
If the sequence is thought to be an arbitrary individual sequence some care in

defining the universal prediction problem has to be employed. Let B � {(bt)t≥1 :
bt : X t−1 → X} be the class of all deterministic predictors. Observe the following
two facts.

1. For every individual sequence x1, x2, . . . there is one predictor (bt)t≥1 ∈ B
which makes no errors at all for that sequence, bt(xt−1) = xt for all t ∈ N.

2. For every predictor (bt)t≥1 ∈ B there is a sequence x̄1, x̄2, . . . for which
this predictor makes errors at all time instants. Such a sequence is defined
inductively by x̄t � x̄ with x̄ = bt(x̄t−1) for all t ∈ N.

Therefore the search for a universal predictor that for all sequences is nearly
as good as the best predictor from B for that particular sequence cannot be
successful. To avoid these trivialities we will restrict the class B to some class
B′ ⊂ B in a reasonable way and then try to achieve the performance of the
best predictor from B′. This class B′ will be denoted as comparison class. But
notice that, because of 2., every predictor from B is very bad for some sequences.
Therefore we cannot hope to find a universal predictor in B. This difficulty is
avoided by allowing the predictors to be randomized.

Let us now describe how we restrict the class B. The comparison class B′ that
we use will be the class of all finite-state predictors.

Definition 1. A finite-state predictor is a triple (S, g, f) consisting of

S = {1, . . . , S} a finite set of states,

g : S × X → S a next-state function,

f : S → X a prediction rule.

An finite-state predictor works as follows. At time t it predicts the value of xt+1

depending on its current state st by

x̂t+1 = f(st).

Then xt+1 is revealed and the machine changes its state to

st+1 = g(st, xt+1)

according to the next-state function.
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The specific labels of the states do not matter, therefore we assume without
loss of generality that at the beginning the machine is always in state 1, i.e.,
s0 = 1.

In this way, if g and xn are given, a sequence s0, s1, . . . , sn−1 of states is
generated. For this we use the following abbreviations.

Definition 2. If xn and a next-state function g are given and s0, s1, . . . , sn−1

is the generated state sequence then let
〈xn|s, x〉 � |{t : st = s, xt+1 = x}|,
〈xn|x〉 � |{t : xt = x}|,
〈xn|s〉 � |{t : st = s}|.

The symbols for these counts do not indicate the dependence on the specific
next-state function g but it should always be clear from the context which g is
meant.

We can also allow probabilistic prediction rules f , i.e., we select x̂t+1 randomly
with respect to a conditional probability distribution, given st. There are always
optimal deterministic prediction rules meaning that if the next-state function
g and the initial state s0 are fixed then for given xn a prediction rule that
minimizes the relative frequency of prediction errors of the finite-state predictor
is deterministic and given by

f(s) = x̂, where x̂ maximizes 〈xn|s, x〉 over all x ∈ X . (1)

This optimal rule for fixed g depends on the whole sequence xn and in general
cannot be determined while the data are observed or, as we shall call it, in a
sequential way. The best prediction rule may depend on the whole sequence
but anyway for each sequence there is a best finite-state predictor and although
it cannot be determined sequentially it will serve us as a comparison for our
sequential predictors.

Applying the optimal rule, as described in (1), to the sequence xn yields a
fraction of prediction errors equal to

πS(xn, g) � 1
n

S∑
s=1

[
〈xn|s〉 − max

x∈X
{〈xn|s, x〉}

]
.

Definition 3. The S-state-predictability of xn is given by

πS(xn) � min
g∈GS

πS(xn, g),

where GS is the set of all S|X |·S next-state functions.

Definition 4. The asymptotic S-state predictability of x∞ is given by

πS(x∞) � lim
n→∞

πS(xn).
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Example 1. Consider the sequence x∞ = 01010101 . . . .
Then clearly π1(x∞) = 1

2 and π2(x∞) = 0.

Definition 5. The finite-state predictability of x∞ is given by

π(x∞) � lim
S→∞

πS(x∞).

The limit in Definition 5 always exists because πS(x∞) is monotonically non-
increasing in S.

2.1 A Universal Predictor

In this section, based on the results of Feder, Merhav and Gutman ([8]), we
present a slightly generalized predictor that attains the finite-state predictability
for all binary sequences. The first main step is to develop a predictor that attains
the 1-state predictability universally, i.e., the predictor has to compete for each
sequence with the best constant predictor. Our predictor works as follows: At
time t it predicts

x̂t+1 �

0,
1,

with probabilityφt(
〈xt|0〉+γ
t+2γ )

with probabilityφt(
〈xt|1〉+γ
t+2γ )

where γ > 0 is a constant and

φt(α) �


0, 0 ≤ α < 1

2 − εt
1

2εt
(α− 1

2 ) + 1
2 ,

1
2 − εt ≤ α ≤ 1

2 + εt
1, 1

2 + εt < α ≤ 1

and (εt)t≥0 is a sequence of parameters with εt > 0 that will be specified later.
Let π̂(xn) be the expected fraction of errors made by this predictor on the

sequence xn.
The following theorem shows that π̂(xn) approaches π1(xn) universally for all

sequences.

Theorem 1. Let γ > 0. For any sequence xn ∈ {0, 1}n and for εt = 1
2
√
t+2γ

it
holds

π̂(xn) ≤ π1(xn) + δ1(n, γ),

where δ1(n, γ) = O( 1√
n
).

(2)

Furthermore, for any sequence xn ∈ {0, 1}n and for constant εt = ε, 0 < ε < 1
2 ,

it holds
π̂(xn) ≤ π1(xn) + ε

1−2ε + ν(n, ε),

where ν(n, ε) = O( log n
n ).

(3)
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�

�

φt

1
2
− εt

1
2

+ εt 1

1

1
2

Fig. 1. The function φt

Remark 1.

1. A natural choice of φ = φt could have been

φ(α) =


0, α < 1

2
1
2 , α = 1

2
1, α > 1

2 .

This means we do majority voting and only if the number of ones and zeros
is equal we flip a fair coin. But this is problematic for some sequences, e.g.,
xn = 0101 . . .0101. π1(xn) = 1

2 but the predictor would make 75% errors.

The reason for this gap lies in the fact that 〈x
t|0〉+γ
t+2γ converges from above to

1
2 which is a discontinuity point of φ. Thus it is crucial to make φ continuous.

2. It was shown in [7] that the convergence rate of O( 1√
n
) is best possible.

3. As mentioned before it is essential that the universal predictor is randomized.
There is no deterministic universal predictor.

Proof of Theorem 1: Observe that π1(xn) = 1
n min{〈xn|0〉, 〈xn|1〉} depends

only on the type of the sequence xn, that is on the total number of 0’s and 1’s
in the sequence. Let us show first that among all sequences of the same type the
one for which our predictor performs worst is

x̃n �
2〈xn|1〉︷ ︸︸ ︷

0101 . . .01

〈xn|0〉−〈xn|1〉︷ ︸︸ ︷
00 . . .00 (4)

where we assume without loss of generality that 〈xn|0〉 ≥ 〈xn|1〉.
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For a sequence of some given type consider the sequence of absolute differences
Ct � |〈xt|0〉 − 〈xt|1〉|. Then C0 = 0 and Cn = 〈xn|0〉 − 〈xn|1〉. We can think
of these Ct as states in a state diagram. Let us call a pattern (Ct = k, Ct+1 =
k + 1, Ct+2 = k) (for some integer k) an upward loop and similarly a downward
loop as (Ct = k, Ct+1 = k − 1, Ct+2 = k). If we change an upward loop into a
downward loop this corresponds to changing at some point of the sequence a
01 into a 10 or vice versa. So this operation does not change the type of the
sequence but as we shall show next the expected number of errors made by our
predictor is increased.

Assume first that 〈xt|0〉 > 〈xt|1〉. Denote the expected number of errors in-
curred along an upward loop by

α � 1 − φt

(
〈xt|0〉 + γ

t+ 2γ

)
+ φt+1

(
〈xt|0〉 + γ + 1
t+ 2γ + 1

)
and the expected number of errors incurred along a downward loop by

β � φt

(
〈xt|0〉 + γ

t+ 2γ

)
+ 1 − φt+1

(
〈xt|0〉 + γ

t+ 2γ + 1

)
.

Now we consider the difference

α− β = φt+1

(
〈xt|0〉 + γ + 1
t+ 2γ + 1

)
+ φt+1

(
〈xt|0〉 + γ

t+ 2γ + 1

)
− 2φt

(
〈xt|0〉 + γ

t+ 2γ

)
.

For the arguments in the equation above the following relations hold

〈xt|0〉 + γ + 1
t+ 2γ + 1

>
〈xt|0〉 + γ

t+ 2γ
>

〈xt|0〉 + γ

t+ 2γ + 1
≥ 1

2
.

Now we distinguish two cases.

Case 1: 〈x
t|0〉+γ
t+2γ ≥ 1

2 + εt

Then φt

(
〈xt|0〉+γ
t+2γ

)
= 1 and therefore α− β ≤ 0.

Case 2: 1
2 ≤ 〈xt|0〉+γ

t+2γ < 1
2 + εt

Then using for the first two terms of the difference α − β a continuation of
the sloping part of φt as an upper bound we get

α− β ≤ 1
2εt+1

(
〈xt|0〉 + γ + 1
t+ 2γ + 1

− 1
2

+
〈xt|0〉 + γ

t+ 2γ + 1
− 1

2

)
− 2

2εt

(
〈xt|0〉 + γ

t+ 2γ
− 1

2

)

=
1

2εt+1

(
2〈xt|0〉 − t

t+ 2γ + 1

)
− 1

2εt

(
2〈xt|0〉 − t

t+ 2γ

)
.

Therefore α− β ≤ 0 if

εt(t+ 2γ) ≤ εt+1(t+ 2γ + 1).
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So the function w given by w(t) = εt(t + 2γ) should be monotonically nonde-
creasing in t. This means that εt chosen to be constant or εt = 1

2
√
t+2γ

as in the
theorem is possible. The case when 〈xt|0〉 < 〈xt|1〉 is completely analogous and
if 〈xt|0〉 = 〈xt|1〉, then α− β = 0.

So we have shown that if we are given a sequence of some type and we replace
an upward loop by a downward loop we get a sequence of the same type for
which the predictor makes a bigger expected number of errors. If we now iterate
this process we will finally end up with the sequence of (4).

The expected number of errors the predictor makes on the sequence x̃n of (4)
is therefore a uniform upper bound on π̂1(xn). Let lt � 1 − φt then

nπ̂(x̃n) =
〈xn|1〉∑
k=1

l2k−2

(
k

2k

)
+
〈xn|1〉∑
k=1

l2k−1

(
k − 1 + γ

2k − 1 + 2γ

)
︸ ︷︷ ︸

�A

+
〈xn|0〉−〈xn|1〉∑

k=1

lk+2〈xn|1〉−1

(
〈xn|1〉 + k − 1 + γ

2〈xn|1〉 − 1 + k + 2γ

)
︸ ︷︷ ︸

�B

=
〈xn|1〉

2
+A+B.

Let us consider first the case when ε is fixed (lt = l for all t). In order to
upperbound A observe that from the definition of l follows that

l

(
k − 1 + γ

2k − 1 + 2γ

)
≤ 1

2
+

1
2ε

(
1
2
− k − 1 + γ

2k − 1 + 2γ

)

=
1
2

+
1
4ε

· 1
2k − 1 + 2γ

.

Therefore

A ≤ 〈xn|1〉
2

+
1
4ε

〈xn|1〉∑
k=1

1
2k − 1 + 2γ

≤ 〈xn|1〉
2

+
1
4ε

∫ 〈xn|1〉

1

du

2u− 1 + 2γ
+

1
4ε

· 1
2γ + 1

=
〈xn|1〉

2
+

1
8ε

ln (2〈xn|1〉 − 1 + 2γ) − 1
8ε

ln (2γ + 1) +
1
4ε

1
2γ + 1

≤ 〈xn|1〉
2

+
1
8ε

ln (2n− 1 + 2γ) +
1
4ε

1
2γ + 1

,

where we used the fact that 2〈xn|1〉 ≤ n in the last inequality.
Now we consider the sum B. For the argument of l it is true that it is always

larger than 1
2 and that 〈xn|1〉+k−1+γ

2〈xn|1〉−1+k+2γ ≥ 1
2 + ε if

k ≥ 1 + 4ε〈xn|1〉 − 2ε+ 4εγ
1 − 2ε

� K.
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For these k’s l is zero and otherwise we can upperbound it by 1
2 . Therefore

B ≤
�K�∑
k=1

1
2
≤ 2ε〈xn|1〉

1 − 2ε
+

1
2
· 1 − 2ε+ 4εγ

1 − 2ε
≤ nε

1 − 2ε
+

1
2
· 1 − 2ε+ 4εγ

1 − 2ε
.

If we combine the estimates for A and B we get

π̂(xn) ≤ 〈xn|1〉
n︸ ︷︷ ︸

π1(xn)

+
ε

1 − 2ε
+

ln (2n− 1 + 2γ)
8εn

+
1
n

(
1

4ε(2γ + 1)
+

1 − 2ε+ 4εγ
2 − 2ε

)
,

which is the result claimed in (3). Now let us consider the case when ε is variable.
We start by estimating the sum A. Since

l2k−1

(
k − 1 + γ

2k − 1 + 2γ

)
≤ 1

2
+

1
2ε2k−1

(
1
2
− k − 1 + γ

2k − 1 + 2γ

)
=

1
2

+
1
2

1√
2k − 1 + 2γ

,

we get

A ≤ 〈xn|1〉
2

+
1
2

〈xn|1〉∑
k=1

1√
2k − 1 + 2γ

≤ 〈xn|1〉
2

+
1
2

∫ 〈xn|1〉

1

du√
2u− 1 + 2γ

+
1

2
√

2γ + 1

=
〈xn|1〉

2
+

1
2

√
2〈xn|1〉 − 1 + 2γ +

1
2

(
1√

2γ + 1
−
√

2γ + 1
)

≤ 〈xn|1〉
2

+
1
2

√
n− 1 + 2γ +

1
2

(
1√

2γ + 1
−
√

2γ + 1
)
.

In order to estimate B observe that the nonzero components must satisfy

〈xn|1〉 + k − 1 + γ

2〈xn|1〉 − 1 + k + 2γ
≤ 1

2
+

1
2
√

2〈xn|1〉 − 1 + k + 2γ
.

The largest k satisfying this condition denoted as K can be upperbounded by

K ≤ 3
2

+

√
1
4

+ 2〈xn|1〉 + 2γ.

Since all non-zero terms of B are less than 1
2 we get

B ≤ K

2
≤ 3

4
+

1
2

√
1
4

+ 2〈xn|1〉 + 2γ ≤ 3
4

+
1
2

√
1
4

+ n+ 2γ.
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Combining the estimates for A and B we derive that

π̂(xn) ≤ 〈xn|1〉
n︸ ︷︷ ︸

π1(xn)

+
1
2n

(√
n− 1 + 2γ +

√
1
4

+ n+ 2γ

)
+
Cγ
n
,

where Cγ � 1
2

(
1√

2γ+1
−
√

2γ + 1
)

+ 3
4 .

This is the desired result of (2) and thus the proof of the theorem is complete.

�
Next we deal with the problem how to achieve universally the performance
πS(xn, g) for a given next-state function g with a sequential predictor.

For each state s ∈ S the optimal prediction rule x̂t+1 = f(s) is fixed and
thus we can extend Theorem 1 by considering S sequential predictors of the
previously described form. For simplicity we choose γ = 1. Specifically let

p̂t(x|s) � 〈xt|s, x〉 + 1
〈xt|s〉 + 2

x ∈ {0, 1}, s ∈ S

and consider the predictor

x̂t+1 =
{

0, with probability φt(p̂t(0|st))
1, with probability φt(p̂t(1|st)),

where φ is as before with ε = ε〈xt|st〉.
Now we can apply Theorem 1 to each subsequence of xn which corresponds

to a state s ∈ S and get

π̂(xn, g) ≤ 1
n

S∑
s=1

min{〈xn|s, 0〉, 〈xn|s, 1〉} + 〈xn|s〉 δ1(〈xn|s〉)

= πS(xn, g) +
S∑
s=1

〈xn|s〉
n

δ1(〈xn|s〉)

≤ πS(xn, g) +
S

n

√
n

S
+ 1 +

S

2n︸ ︷︷ ︸
δS(n)

. (5)

Observe that, as there are less samples in each state, the convergence rate slows

down ( from O( 1√
n
) to O(

√
S
n )).

The next problem we deal with is how to achieve sequentially the S-state
predictability for fixed S.

Definition 6. A refinement of a finite-state machine with next-state function g
and S states is a finite-state machine with S̃ ≥ S states and next-state function
g̃ such that there exists a function h : S̃ → S with the property that at each time
instant st = h(s̃t) where st and s̃t are the states at time t generated by g, g̃ and
any xn ∈ Xn.
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The next lemma shows that a refinement of a finite-state machine can only
increase the performance of the finite-state predictor.

Lemma 1. If the finite-state machine corresponding to g̃ is a refinement of the
finite-state machine corresponding to g then for all xn ∈ {0, 1}n it holds

πS(xn, g) ≥ πS̃(xn, g̃).

Proof

πS(xn, g) =
1
n

S∑
s=1

min{〈xn|s, 0〉, 〈xn|s, 1〉}

=
1
n

S∑
s=1

min{
∑

s̃:h(s̃)=s

〈xn|s̃, 0〉,
∑

s̃:h(s̃)=s

〈xn|s̃, 1〉}

≥ 1
n

S∑
s=1

∑
s̃:h(s̃)=s

min{〈xn|s̃, 0〉, 〈xn|s̃, 1〉}

=
1
n

S̃∑
s̃=1

min{〈xn|s̃, 0〉, 〈xn|s̃, 1〉} = πS̃(xn, g̃).

�

Consider now a refinement g̃ of all S2S possible S-state machines. The state s̃t
of g̃ is the vector (s1t , . . . , sMt ), where sit, i = 1, . . . , S2S , is the state at time t of
the i-th S-state machine gi. From Lemma 1 it follows that for all g

πS̃(xn, g̃) ≤ πS(xn, g)

and therefore also
πS̃(xn, g̃) ≤ πS(xn).

Thus the sequential scheme based on g̃ asymptotically universally attains πS(xn).
The disadvantages of this scheme are obviously that it is very complex, fur-

thermore it attains the predictability only for a fixed given value of S. The rate
of convergence also is not best possible.

In order to develop a predictor that universally attains the finite-state pre-
dictability and overcomes the disadvantages mentioned above we introduce Markov
predictors and the Markov predictability of a sequence and show that it is equal
to the finite-state predictability of the sequence. This enables us to design the
desired prediction scheme.

Definition 7. A Markov-Predictor of order k ≥ 1 is a finite-state predictor with
2k possible states where

st = (xt−k+1, . . . , xt).

The initial state (x−k+1, . . . , x0) does not affect the asymptotic performance of
the Markov predictor. Therefore the choice of s0 is irrelevant for our purposes.
For instance it can be chosen to give the smallest possible value in (6) below (in
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[8] for technical reasons the cyclic convention x−i = xn−i for i ∈ {0, . . . , k − 1}
was used).

Then the k-th order Markov predictability of the finite sequence xn is given by

µk(xn) � 1
n

∑
xk∈{0,1}k

min{〈xn|xk, 0〉, 〈xn|xk, 1〉}. (6)

The asymptotic k-th order Markov predictability of the infinite sequence x∞ is
given by

µk(x∞) � lim
n→∞

µk(xn).

Finally the Markov predictability of x∞ is given by

µ(x∞) � lim
k→∞

µk(x∞).

As the class of finite-state machines contains as a subclass the class of Markov
machines it follows

µ(x∞) ≥ π(x∞).

The following theorem from [8, Theorem 2] establishes a converse inequality
from which follows that Markov predictability and finite-state predictability are
equivalent.

Theorem 2. For all integers k, S ≥ 1 and any finite sequence xn ∈ {0, 1}n it
holds

µk(xn) ≤ πS(xn) +

√
lnS

2(k + 1)
. (7)

Remark 2. The inequality of the theorem is meaningful only if the second term
on the right hand side is small, i.e., if k is big compared to lnS. Thus the
theorem shows that no matter how clever a finite-state machine is chosen for
a given sequence, if k is big enough the Markov predictor of the corresponding
order will be almost as good.

Now if in (7) we take the limit supremum as n → ∞, then the limit k → ∞ and
finally the limit S → ∞ we end up with µ(x∞) ≤ π(x∞) which implies

µ(x∞) = π(x∞).

Now it is clear how we can derive a sequential universal prediction scheme
that attains µ(x∞) and thus π(x∞).

We know that for fixed k we can achieve the k-th order Markov predictability
by the predictor

x̂t+1 =
{

0, with probability φt(p̂t(0|xt−k+1, . . . , xt))
1 with probability φt(p̂t(1|xt−k+1, . . . , xt)),

(8)

where for x ∈ {0, 1}

p̂t(x|xt−k+1, . . . , xt) =
〈xn|(xt−k+1, . . . , xt), x〉 + 1
〈xn|(xt−k+1, . . . , xt)〉 + 2

.



96 L. Bäumer

To attain µ(x∞) the order k must grow the more data are available. There are
two conflicting goals.

– Increasing the order fast in order to attain the Markov predictability as soon
as possible.

– Increasing the order slowly in order to ensure that there are enough counts
for each state.

It turns out that the order k is not allowed to grow faster than O(log t) in
order to satisfy both requirements.

Let us denote by µ̂k(xn) the expected fraction of errors made by the predictor
(8) on the sequence xn.

Then we know that

µ̂k(xn) ≤ µk(xn) + δ2k(n),

with δ2k as defined in (5) and δ2k(n) = O(
√

2k

n ).
Divide the observed data into non-overlapping segments

x∞ = x(1), x(2), . . .

and apply the k-th order sequential predictor (8) to the k-th segment x(k). Let the
length nk of the k-th segment be at least αk 2k, where (αk)k is a monotonically
increasing sequence such that limk→∞ αk = ∞. Then

µ̂k(x(k)) ≤ µk(x(k)) + δ2k(nk)

≤ µk(x(k)) +
√
αk + 1
αk

+
1

2αk

= µk(x(k)) + ξ(k),

where ξ(k) = O( 1√
αk

).

On an arbitrary long finite sequence xn, where n =
∑kn

k=1 nk and kn denotes
the number of segments in xn, the above predictor achieves an average fraction
of errors denoted by µ̂(xn) which satisfies

µ̂(xn) =
kn∑
k=1

nk
n
µ̂k(x(k)) ≤

kn∑
k=1

nk
n
µk(x(k)) +

kn∑
k=1

nk
n
ξ(k).

Now for any fixed k′ < kn we obtain

µ̂(xn) ≤
k′−1∑
k=1

nk
n
µk(x(k)) +

kn∑
k=k′

nk
n
µk(x(k)) +

kn∑
k=1

nk
n
ξ(k)

≤ 1
2

k′−1∑
k=1

nk
n

+
kn∑
k=1

nk
n
µk′(x(k)) +

kn∑
k=1

nk
n
ξ(k).
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From Lemma 1 it follows that
kn∑
k=1

nk
n
µk′ (x(k)) ≤ µk′(xn).

Since ξ(k) is monotonically decreasing and the lengths of the segments are
monotonically increasing it follows that

kn∑
k=1

nk
n
ξ(k) ≤ 1

kn

kn∑
k=1

ξ(k) � ξ̄(kn),

where by the Cesaro theorem limn→∞ ξ̄(kn) = 0.

Theorem 3. For all sequences x∞ ∈ X∞

µ̂(x∞) = lim
n→∞

µ̂(xn) = µ(x∞) = π(x∞).

In summary we have shown that a sequential Markov predictor whose order
is increased from k to k + 1 after observing at least nk = αk2k data samples
asymptotically achieves the performance of any finite-state predictor.

2.2 General Loss Functions

In this section we present a more general formulation of the prediction problem
treated so far and give some references to related work.

It is possible to generalize our problem in the following way. Given is a finite
set B of so called strategies and a loss function l : B × X → R. At time t after
having observed x1, . . . , xt one has to decide for a strategy, that is, select an
element bt+1 ∈ B. Then xt+1 is revealed and a loss of l(bt+1, xt+1) is incurred.
Again the time average 1

n

∑n
t=1 l(bt, xt) is tried to be kept small and again it can

be defined how good this can be done for a sequence by a finite-state machine.

Examples

1. If we set B = X and l to be the Hamming distance then we are back to our
original prediction problem.

2. If B = (0, 1], X = {0, 1} and l(b, 0) = − log b and l(b, 1) = − log(1 − b)
then we have the lossless coding problem. Here bt+1 has the interpretation
of the estimated probability of the next letter to be a zero. The time av-
erage 1

n

∑n
t=1 l(bt, xt) then is the normalized length of a codeword of the

sequential Shannon encoder based on the current letter probabilities from
the data observed so far. This length can be attained using arithmetic coding
techniques.

3. B = (0, 1], X = {0, 1}. A sequential gambling problem can be formulated
in this framework in the following way. At round t the player has to divide
his capital. The share wagered on the next outcome is then doubled, i.e., if
St is the player’s capital after round t then St+1 = 2bt+1St if xt+1 = 0 and
St+1 = 2(1− bt+1)St if xt+1 = 1. If l is as in 2., then the exponential growth
rate of the player’s capital log Sn

n is the time average of 1 − l(bt, xt).
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4. There are also continuous alphabet applications. For instance prediction un-
der the mean squared error criterion, i.e., l(b, x) = (x− b)2.

General loss functions in the probabilistic setting were studied in [3]. There
it was shown that if the data x1, x2, . . . are generated by a stationary ergod-
ic source which is known and B consists of any measurable functions of the
past (x1, x2, . . . , xt) then the best strategy in order to minimize the expected
time average loss is the one that attains the minimal conditional expectation of
l(bt+1, xt+1) given the past. Furthermore, it was shown that this minimal loss is
achievable almost surely under certain regularity conditions on the loss function
even if the source is unknown a priori.

In the deterministic setting general loss functions were studied in [10]. Older
work was devoted to another, in a way slightly more general problem, the so
called sequential compound decision problem which was initiated by Robbins
([14]) and this was further studied by various authors ([4],[5],[13],[12]). In our
language the problem is restricted to the case S = 1, i.e., the comparison class
is only that of all constant predictors or strategies. It is more general because
the observer has access only to noisy versions of the data x1, x2, . . . , xt.

3 Finite-State Identifiability

Now consider for every x ∈ X a person x who at time t has to answer the
question “Is xt+1 = x ?” .

We start by defining how good a sequence can be identified using a finite-state
machine.

Definition 8. A finite-state identification scheme is a triple (S, g, f) consisting
of

S a set of S states,

g : S × X → S a next-state function,

f = (f0, . . . , f|X |−1) : S → {0, 1}|X | a decision rule.

As before we can assume without loss of generality that the initial state is always
1, i.e., s0 = 1.

The interpretation is that fx(st) = 1 means that person x predicts that xt+1 =
x and fx(st) = 0 means that person x predicts that xt+1 = x. Applied to some
sequence xn the fraction of errors person x makes is then given by

ηS(f, g, xn, x) � 1
n

n∑
t=1

(1 − fx(st−1))δxt,x + fx(st−1)(1 − δxt,x),

where δ is the Kronecker symbol.
For a fixed next-state function g an optimal decision rule f is given by

fx(s) =
{

1, 〈xn|s, x〉 > 〈xn|s〉 − 〈xn|s, x〉
0, 〈xn|s, x〉 ≤ 〈xn|s〉 − 〈xn|s, x〉

for all x ∈ X and s ∈ S.



Identification and Prediction 99

If we apply this optimal f to the sequence xn the fraction of errors person x
makes is given by

ηS(g, xn, x) � 1
n

S∑
s=1

min{〈xn|s, x〉, 〈xn|s〉 − 〈xn|s, x〉}.

We can now define an average error criterion and a maximal error criterion.
Furthermore we can distinguish the case where each person can use its own
finite-state machine on the sequence (1. and 2. of Definition 9) and the more
restrictive case where the persons have to use one finite-state machine (3. and
4. of Definition 9).

Definition 9. 1. The maximal S-state identifiability of the sequence xn is given
by

ηS(xn) � max
x∈X

min
g

ηS(g, xn, x).

2. The average S-state identifiability of the sequence xn is given by

η̄S(xn) � 1
|X |

∑
x∈X

min
g

ηS(g, xn, x).

3. The strong maximal S-state identifiability of the sequence xn is given by

η′S(xn) � min
g

max
x∈X

ηS(g, xn, x).

4. The strong average S-state identifiability of the sequence xn is given by

η̄′S(xn) � min
g

1
|X |

∑
x∈X

ηS(g, xn, x).

Definition 10. The asymptotic maximal S-state identifiability of the sequence
x∞ is given by

ηS(x∞) � lim
n→∞

ηS(xn).

The corresponding values of the asymptotic S-state identifiability are defined
analogously in the other cases of Definition 9.

Definition 11. The maximal finite-state identifiability of the sequence x∞ is
given by

η(x∞) � lim
S→∞

ηS(x∞).

The corresponding values of the finite-state identifiability are defined analogously
in the other cases of Definition 9.

The following relations follow easily from the definitions.

Lemma 2. For all sequences xn ∈ Xn

η′S(xn) ≥ ηS(xn) ≥ η̄S(xn), (9)

η′S(xn) ≥ η̄′S(xn) ≥ η̄S(xn). (10)
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Remark 3. In the binary case, X = {0, 1}, we have

ηS(g, xn, x) =
1
n

S∑
s=1

min{〈xn|s, x〉, 〈xn|s, 1 − x〉} (11)

= ηS(g, xn, 1 − x) = πS(g, xn) (12)

and this implies

ηS(xn) = η̄S(xn) = η′S(xn) = η̄′S(xn) = πS(xn). (13)

Thus, in the binary case identification of sequences gives no advantage over
prediction.

3.1 A Universal Identification Scheme

Definition 12. For a sequence xn ∈ Xn and a letter x ∈ X let 1xxn ∈ {0, 1}n
be the sequence with

(1xxn)t =
{

1, if xt = x
0, if xt = x.

Then it holds

η1(g, xn, x) =
1
n

min{〈xn|x〉, n− 〈xn|x〉} = π1(1xxn), (14)

where the argument g of η1 is the only possible constant next-state function as
S = 1.

This suggests the following sequential identification scheme. At time t person
x applies the predictor analyzed in Theorem 1 to the sequence 1xxt. If we denote
by η̂1(xn, x) the expected fraction of identification errors person x makes using
this scheme for the sequence xn then Theorem 1 implies that

|η1(g, xn, x) − η̂1(xn, x)| = O(
1√
n

) for all x ∈ X . (15)

This means we know how to achieve sequentially the 1-state identifiability uni-
versally for all sequences. When S = 1 we can actually derive a formula for η1

in terms of π1.

Theorem 4. For all sequences xn ∈ Xn it holds

η1(xn) = min {π1(xn), 1 − π1(xn)} .

Proof. Note that η1(xn) = 1
n maxxmin{〈xn|x〉, n − 〈xn|x〉} and π1(xn) = 1 −

maxx
〈xn|x〉
n .



Identification and Prediction 101

Case 1: There exists x̄ ∈ X with 〈xn|x̄〉 ≥ n
2 .

Then π1(xn) = 1 − 〈xn|x̄〉
n ≤ 1

2 and

η1(xn) =
1
n

max{n− 〈xn|x̄〉,max
x �=x̄

〈xn|x〉}

=
1
n

(n− 〈xn|x̄〉) = π1(xn) ≤ 1 − π1(xn),

where we used that n− 〈xn|x̄〉 =
∑
x �=x̄〈xn|x〉.

Case 2: For all x ∈ X 〈xn|x〉 < n
2 .

In this case π1(xn) > 1
2 and

η1(xn) =
1
n

max
x

〈xn|x〉 = 1 − π1(xn) < π1(xn).
�

If S > 1 then ηS is not a function of πS any longer. Nevertheless it is possible to
determine some relations between these quantities and this will be done in the
next section.

3.2 Relations Between Predictability and Identifiability

Theorem 5. For all S ≥ 1, for all sequences xn ∈ Xn and all next-state func-
tions g

πS(xn, g) ≥ max
x∈X

ηS(g, xn, x)

and
πS(xn) ≥ η′S(xn).

Proof. Let f be the optimal prediction rule for g and xn. Consider the following
decision rule f̃ : S → {0, 1}|X | with

f̃x(s) =
{

1, if f(s) = x
0, if f(s) = x

for all x ∈ X and s ∈ S.
Now observe that if there is no prediction error at some time instant then also

no identification error occurs for all persons. As f̃ is not necessarily optimal the
first inequality is proved. Let g̃ be a next-state function such that πS(xn, g̃) =
ming πS(g, xn). Then it holds

πS(xn) = πS(g̃, xn) ≥ max
x∈X

ηS(g̃, xn, x) ≥ min
g

max
x∈X

ηS(g, xn, x) = η′S(xn),

which is the second inequality.
�

Note that η′ is the biggest of all η-quantities.
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A converse inequality is obtained by the following theorem.

Theorem 6. For all S ≥ 1 and for all sequences xn ∈ Xn

1
|X |πS|X|(xn) ≤ η̄S(xn).

Proof. Let g0, . . . , g|X |−1 be the optimal next state functions for person 0, . . . , |X |−
1, respectively. Let f0, . . . , f|X |−1 be the corresponding optimal decision rules.
Let S̃ = S|X | and choose

g̃ : S̃ × X → S̃
such that

g̃(s0, . . . , s|X |−1, x) = (g0(s0, x), . . . , g|X |−1(s|X |−1, x))

and consider the following prediction rule f̃ : S̃ → X

f̃(s0, . . . , s|X |−1) =


x, if fx(sx) = 1, if x is not unique,

choose arbitrarily any of these,

arbitrary, if fx(sx) = 0 for all x ∈ X .
Then

πS|X|(xn) ≤ πS|X|(g̃, f̃ , xn) ≤
∑
x∈X

min
g

ηS(g, xn, x) = |X | η̄S(xn).

�
Note that η̄ is the smallest of all η-quantities.

Theorem 7. For all S ≥ 1 and for all sequences xn ∈ Xn

η̄′S(xn) ≤ 2
|X |πS(xn).

Proof: For given S ≥ 1 and xn ∈ Xn let g and f be the optimal next-
state function and prediction rule, respectively. Then we can define the following
identification rule f̃ : S → {0, 1}|X | with

f̃x(s) =
{

1, if f(s) = x
0, if f(s) = x

for all x ∈ X and s ∈ S.
Now observe that if at some time instant there is no prediction error induced

by the finite-state predictor given by g and f then there will be also no identifi-
cation error induced by g and f̃ . But if g and f produce a prediction error then
there will be exactly two persons making an identification error if we use g and
f̃ . Therefore

2πS(xn) = 2πS(g, f, xn) =
∑
x∈X

ηS(g, f̃ , xn, x)

≥ min
g

∑
x∈X

ηS(g, xn, x) = |X | η̄′S(xn).
�
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Corollary 1. For all sequences x∞ ∈ X∞

1
|X |π(x∞) ≤ η̄(x∞) ≤ 2

|X |π(x∞).

Proof. Combining Theorem 6 and 7 and taking the limn→∞ and the limS→∞
gives the desired result.

�

Corollary 1 characterizes the average identifiability of any sequence in terms of
the predictability of that sequence where upper and lower bound differ by a
factor of 2.

3.3 Markov Machines for Identification

Similar to Definition 7 in Section 2.1 we now examine a special class of finite-
state machines the class of Markov machines.

Definition 13. For any k ≥ 1, xn ∈ Xn, x ∈ X denote by

µIk(x
n, x) � 1

n

∑
xk∈Xk

min{〈xn|xk, x〉, 〈xn|xk〉 − 〈xn|xk, x〉}

the Markov identifiability of order k of the sequence xn with respect to x.
Furthermore let

µIk(x
∞, x) � lim

n→∞
µIk(x

n, x),

µI(x∞, x) � lim
k→∞

µIk(x
∞, x),

µI(x∞) � max
x∈X

µI(x∞, x),

µ̄I(x∞) � 1
|X |

∑
x∈X

µI(x∞, x).

The result of [10, Theorem 2] which was derived for general loss functions and
which is similar to Theorem 2 leads in our case to the following proposition.

Proposition 1. For all k ≥ 1, S ≥ 1 and all sequences xn ∈ Xn

µIk(x
n, x) ≤ min

g
ηS(g, xn, x) +

√
2 lnS
k + 1

.

Theorem 8. For all sequences x∞ ∈ X∞ it holds that

η(x∞) = η′(x∞),

η̄(x∞) = η̄′(x∞).
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Proof. Taking in Proposition 1 the limit supremum n → ∞, the limit k → ∞
and the limit S → ∞ it follows that µI(x∞) ≤ η(x∞). Therefore

η′(x∞) ≥ η(x∞) ≥ µI(x∞) = lim
k→∞

lim
n→∞

max
x∈X

µIk(x
n, x)︸ ︷︷ ︸

≥η′|X|k (xn)

≥ lim
k→∞

lim
n→∞

η′|X |k(xn) = η′(x∞).
�

Remark 4. Only the asymptotic values for S → ∞ of η, η′ and η̄, η̄′ coincide.
The values of ηS and η′S do differ in general.

If we compare the definitions of η and η′ we see that the difference is the order
of min and max. Therefore Theorem 8 can be interpreted that asymptotically we
have here a Minimax-Theorem.

3.4 Effects of Randomization

In the theory of identification via channels one discovery was that randomized
codes are tremendously superior compared with non-randomized codes whereas
in the classical transmission model it doesn’t affect the capacity (of the discrete
memoryless channel).

In this section we consider randomized finite-state machines, i.e., we replace
the next-state function g : S × X → S by a family

G = {G(·|s, x) : s ∈ S, x ∈ X} ∪G0

of conditional probability distributions G(·|s, x) on S and an initial probability
distribution G0 on S. The interpretation is that the initial state is chosen accord-
ing to G0 and then at each following time instant, if the machine is in state s and
letter x occurs, the machine changes its state to s′ with probabilityG(s′|s, x). We
consider randomized decision rules f where f = (f0, . . . , f|X |−1) : S → [0, 1]|X |

with the interpretation that fx(s) is the probability that person x decides that
the next symbol will be equal to x if the machine is in state s. Without loss
of generality we can again restrict ourselves to deterministic decision rules, i.e.,
fx(s) = 0 or 1 for all x and s. In order to see this, suppose we are given G and
xn. Then let for t = 0, . . . , n− 1 St be the random variable for the state at time
t. The joint distribution of S0, . . . , Sn−1 is uniquely determined by G and xn.
Then the expected fraction of errors person x will make is given by

ηRS (G, f, xn, x) � 1
n

n∑
t=1

∑
s∈S

PSt−1(s)(fx(s)(1 − δx,xt) + (1 − fx(s))δx,xt)

=
1
n

∑
s∈S

(fx(s)
n∑
t=1

PSt−1(s)(1 − δx,xt) + (1 − fx(s))
n∑
t=1

PSt−1(s)δx,xt)
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from which we see that fx(s) = 0 or 1 is always an optimal choice resulting in
an expected fraction of errors equal to

ηRS (G, xn, x) � 1
n

∑
s∈S

min{
n∑
t=1

PSt−1(s)(1 − δx,xt),
n∑
t=1

PSt−1(s)δx,xt}.

Definition 14. 1. ηRS (xn, x) � infG ηRS (G, xn, x),
2. ηRS (xn) � maxx∈X ηRS (xn, x),
3. η′RS (xn) � infG maxx∈X ηRS (G, xn, x),
4. η̄RS (xn) � 1

|X |
∑
x∈X η

R
S (xn, x),

5. η̄′RS (xn) � infG 1
|X |

∑
x∈X η

R
S (G, xn, x).

The asymptotic quantities, ηRS (x∞), ηR(x∞) etc., are defined analogously to
Definitions 10 and 11.

Theorem 9. For all sequences x∞ ∈ X∞

η(x∞) = ηR(x∞) = η′R(x∞).

Proof. From [10, Theorem 4] we can derive that

µIk(x
n, x) ≤ ηRS (xn, x) +

√
2 lnS
k + 1

.

Taking the limit supremum as n → ∞ and the limit as k → ∞ and finally the
limit S → ∞ we obtain that µI(x∞, x) ≤ ηR(x∞, x) and therefore

µI(x∞) ≤ ηR(x∞).

Together with Theorem 8 it follows

η′(x∞) = η(x∞) = µI(x∞) ≤ ηR(x∞) ≤ η′R(x∞) ≤ η′(x∞).
�

Theorem 9 shows that asymptotically randomization does not help here. The
reason for this observation lies in the fact that deterministic Markov machines
outperform asymptotically, as the number of states increases, any randomized
finite-state machine.
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3. P.H. Algoet, The strong law of large numbers for sequential decisions under uncer-
tainty, IEEE Trans. Inform. Theory, Vol. 40, No. 3, 609-633, 1994.

4. D. Blackwell, An analog to the minimax theorem for vector payoffs, Pac. J. Math.,
Vol. 6, 1-8, 1956.

5. D. Blackwell, Controlled random walks, Proc. Int. Congr. Mathematicians, 1954,
Vol. III, Amsterdam, North Holland, 336-338, 1956.

6. T.M. Cover and A. Shenhar, Compound Bayes predictors for sequences with ap-
parent Markov structure, IEEE Trans. Syst. Man Cybern., Vol. SMC-7, 421-424,
1977.

7. T.M. Cover, Behavior of sequential predictors of binary sequences, Proc. 4th
Prague Conf. Inform. Theory, Statistical Decision Functions, Random Processes,
1965, Prague: Publishing House of the Czechoslovak Academy of Sciences, Prague,
263-272, 1967.

8. M. Feder, N. Merhav, and M. Gutman, Universal prediction of individual se-
quences, IEEE Trans. Inform. Theory, Vol. 38, No. 4, 1258-1270, 1992.

9. M. Feder, N. Merhav, and M. Gutman, Some properties of sequential predictors
for binary Markov sources, IEEE Trans. Inform. Theory, Vol. 39, No. 3, 887-892,
1993.

10. M. Feder and N. Merhav, Universal schemes for sequential decision from individual
data sequences, IEEE Trans. Inform. Theory, Vol. 39, No. 4, 1280-1292, 1993.

11. M. Feder and N. Merhav, Relations between entropy and error probability, IEEE
Trans. Inform. Theory, Vol. 40, No. 1, 259-266, 1994.

12. J.F. Hannan and H. Robbins, Asymptotic solutions of the compound decision prob-
lem for two completely specified distributions, Ann. Math. Statist., Vol. 26, 37-51,
1957.

13. J.F. Hannan, Approximation to Bayes risk in repeated plays, Contributions to the
Theory of Games, Vol. III, Annals of Mathematics Studies, Princeton, NJ, No. 39,
97-139, 1957.

14. H. Robbins, Asymptotically subminimax solutions of compound statistical decision
problems, in Proc. 2nd Berkeley Symp. Math. Stat. Probab., 131-148, 1951.

15. C.E. Shannon, A mathematical theory of communication, Bell System Tech. J.,
Vol. 27, 379-423, 623-656, 1948.

16. C.E. Shannon, Prediction and entropy of printed English, Bell Sys. Tech. J., Vol.
30, 5-64, 1951.

17. C.E. Shannon, The mind reading machine, Bell Laboratories Memorandum, 1953,
in Shannon’s Collected Papers, A.D. Wyner and N.J.A. Sloane Eds., IEEE Press,
688-689, 1993.



Watermarking Identification Codes with Related

Topics on Common Randomness

R. Ahlswede and N. Cai�

Abstract. Watermarking identification codes were introduced by Y.
Steinberg and N. Merhav. In their model they assumed that

(1) the attacker uses a single channel to attack the watermark and both,
the information hider and the decoder, know the attack channel;

(2) the decoder either completely he knows the covertext or knows noth-
ing about it.

Then instead of the first assumption they suggested to study more
robust models and instead of the second assumption they suggested to
consider the case where the information hider is allowed to send a secret
key to the decoder according to the covertext.

In response to the first suggestion in this paper we assume that the
attacker chooses an unknown (for both information hider and decoder)
channel from a set of channels or a compound channel, to attack the
watermark. In response to the second suggestion we present two models.
In the first model according to the output sequence of covertext the
information hider generates side information componentwise as the secret
key. In the second model the only constraint to the key space is an upper
bound for its rate.

We present lower bounds for the identification capacities in the above
models, which include the Steinberg and Merhav results on lower bounds.
To obtain our lower bounds we introduce the corresponding models of
common randomness. For the models with a single channel, we obtain
the capacities of common randomness. For the models with a compound
channel, we have lower and upper bounds and the differences of lower
and upper bounds are due to the exchange and different orders of the
max–min operations.

Keywords: Watermarking, identification, compound channel, common
randomness.

1 Introduction

Watermarking technique is a way to embed secret information into a given mes-
sage, say image, that cannot be removed nor deciphered without access to a
secret key.
It can be used to protect copy right. Watermarking is now a major activity in
audio, image, and video processing and standardization efforts for JPEG–2000,
MPEG–4 and Digital Video Disks are underway.
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One way to analyze watermarking problems is to regard them as communi-
cation systems e.g., [16], [20], [27], [28], [29], [30], and [32]. In these systems the
messages, which are called covertext, are generated by an information source.
An information hider, whom we often call encoder because of his role in the
system, has full access to the information source of covertexts and the set of
secret messages. These secret messages are independent of the covertext, they
are uniformly generated from the set, and will be called watermark. The role of
the information hider, or encoder, is to embed the watermark in the covertext.
When the embedding changes the covertext, it disturbs the message. To guar-
antee the quality of the watermarked message, we certainly would like not too
much distortion. That is, for a given distortion measure, the distortion between
the original covertext and the watermarked message in average may not exceed
a given constant. An attacker wants to remove the watermark from the wa-
termarked message without distorting the message too much i.e., the distortion
between the covertext and the message corrupted by the attacker is not too large
with respect to a certain distortion measure. Finally a decoder tries to recover
the watermark from the corrupted message correctly with high probability. As
the attacker is allowed to use a random strategy, we assume that the attacker
uses a noisy channel to attack the watermark. Depending on the models the at-
tacker may choose various channels and the encoder and decoder share different
resources (e.g., secret key, side information, etc.).

Among huge contributions on watermarking we here briefly review two of
them. In [28] P. Moulin and J.A. O’Sullivan obtained the capacity for the wa-
termarking codes under the assumptions that the covertexts are generated from
a memoryless source, the distortions are sum–type and the attack channels are
compound channels whose states are known to the decoder but unknown to the
encoder. The strategies of encoder–decoder and attacker are discussed as well.

Identification codes for noisy channels were introduced by R. Ahlswede and
G. Dueck for the situation in which the receiver needs to identify whether the
coming message equals a specified one. If not, then they don’t care what it is
[11]. It turned out that this weaker requirement dramatically increased the sizes
of messages sets which could be handled: double exponential grown in the block
lengths of codes. Identification is much faster than transmission!

Y. Steinberg and N. Merhav notice that in most cases people check watermarks
in order to identify them (e.g. copyright) rather than recognize them and so they
introduced identification codes to watermarking models [32]. In their models
the attack channels are single memoryless channels. That means the attacker’s
random strategy is known by information hider (encoder) and decoder. They
notice that the assumption is not robust and so suggested to study more robust
models. As to the resources shared by encoders and decoders they consider two
cases, the decoder either completely know the covertext or he knows nothing
about it. (In all cases the attacker must not know the covertext because otherwise
there would be no safe watermarking.)

By considering common randomness between encoder and decoder, they ob-
tained lower bounds to the capacities of watermarking identification in both
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cases and the upper bounds easily followed from a theorem in [31]. The lower
and upper bounds are tight in the former case but not in the latter case. As
Y. Steinberg and N. Merhav only studied two extremal cases, they suggested to
consider the more general case, that the decoder may obtain partial information,
about the covertext, say key, from the encoder via a secure noiseless channel.
The exponent of error probability was discussed as well.

In the present paper we deal with these two problems. But before turning to
our result, we draw readers’ attention to common randomness, which – as noticed
in [12] – plays a central role in identification problems. It does so also in [32]
and here R. Ahlswede and G. Dueck discovered in [12] that common randomness
shared by encoder and decoder can be used to construct identification codes and
therefore the rate of common randomness (in the sense of first order of logarithm)
is not larger than the rate of identification codes (in the sense of the second order
of logarithm). In general the capacities of common randomness shared by the
encoder and the decoder may be smaller than the capacities of identification.
Examples for discrete channels and Gaussian channels were presented in [5]
and [17] respectively. Notice that the sizes of the input alphabets of the former
channel is growing super exponentially as the length of codes and the sizes of
the input alphabets of the latter is infinity. In fact it is seen from [31] that for
any channel, whose input alphabet is exponentially increasing in the case that
strong converse holds, the rates of common randomness and identification codes
are the same.

The topic of common randomness has been become more and more popular
e.g., [6], [9], [10], [23], [26], [33], [34], etc. Common randomness may be ap-
plied to cryptography, (e.g., [9], [18], [23], [26]), identification (e.g., [5], [11], [12],
[10], [15], [18]), and arbitrarily varying channels (e.g., [1], [2], [8], [10]). For the
first two applications the rates are important and the distributions of common
randomnesses are required nearly uniformly. For cryptography certain secure
conditions additionally needed. For the last application one has to face in the
difficulty made by the jammer and find a smart way to generate the common
randomness.

Now let us return to the two suggestions by Steinberg and Merhav. For the first
suggestion we assume in our models, attackers are allowed to choose a channel
arbitrarily from a set of memoryless channels to attack watermarks and neither
encoders nor decoders know the attack channels. This is known as compound
channel in Information Theory.

The assumption makes our models slightly more robust than that in [28] since
in [28] the decoders are supposed to know the attack channels.

For the second suggestion we set up two models. In out first model we assume
the encoder generates a random variable at time t according to component at
time t of the output sequence of covertext source and certain probability and
sends it to decoder via a secure channel. In this case the “key” actually is a
side information of covertext shared by encoder and decoder. We obtain the
first and the second models in [32] if we choose the side information equal to
covertext almost surely and independent of covertext respectively. So our first
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model contain both models in [32]. In our second model the encoder is allowed
to generate a key according to the covertext (but independently on watermark)
in arbitrary way and sends the key to decoder through a secure channel with
rate RK . Obviously in our second model the key can be generated in a more
general way than in our first model. For all combinations of above assumptions,
we obtain lower bounds to the identification capacity, which contains both lower
bounds in [32] as special cases.

To obtain our lower bounds to identification capacities, for each combination,
we introduce a corresponding model of common randomness and obtain lower
and upper bound to its capacity. For the single channel the two bound is closed
for compound channel the gap between two bounds is up to the order of max–
min. In addition, we show a lower bound to common randomness in [32] in fact
is tight, which supports a conjecture in [32].

We must point out that our assumption of compound attack channels is still
far from the most robust and practical assumption although according to our
knowledge, it is most robust and practical existing assumption in this area.
Actually the attacker has much more choices.

– He does not necessarily use a memoryless channel and stead he can chooses
a channel with finite memory.

– The attacker may change the states time by time i.e., he may use an arbi-
trarily varying channel.

– The attacker knows output of the channel; even at time t, he know the output
at time t′ > t, since all outputs in fact are chosen by himself/herself. So the
attacker may use this information to choose attack channel. This clearly
makes the attack much more efficient.

So there is still a long way for us to achieve the most practical results and it
provide a wide space for future research.

The rest part of the paper is organized as follows. In the next section we
present the notation used in the paper. Our models and results are stated in
Section 3 and Section 4 respectively. The direct parts of coding theorems of
common randomness are proven in Section 5 and their converse parts are proven
in Section 6. In Section 7 we briefly review the observation in [12] on the relation
of identification and common randomness and therefore the lower bounds to
the identification capacities from capacities of common randomness. Finally the
converse theorem for a model in [32] is proven in Section 8.

2 The Notation

Our notation in this paper is fairly standard. log and ln stand for the logarithms
with bases 2 and e respectively and az is often written as expa[z]. The random
variables will be denoted by capital letters L,U, V,X, Y, Z etc. and their domains
are often denoted by the correspondent script letters L,U ,V ,X ,Y,Z etc. But
in some special cases it may be exceptional. When we denote a set by a script
letter (for example, X ), its element is often denoted by the corresponding lower
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letter (for example x). Xn is the nth Cartesian power of the set X and xn =
(x1, x2, . . . xn) is the sequence of length n. Pr{E} is the probability of that the
event E occurs and E[·] is the operator of expectation. PX , PXY , PZ|X etc.
will stand for the distribution of random variable X , the joint distribution of
the random variables (X,Y ), the conditional distribution of random variable Z
under the condition that X is given respectively. When we write a probability
distribution as Pn, we mean that it is a product distribution of P and similarly
a discrete memoryless channel of length n with stochastic matrix W is written
as Wn.

Throughout this paper T nU , T nUV , T nU|V L(vnln) etc. will denote the sets of
typical, joint typical, and conditional typical sequences and the corresponding
sets of δ- typical, joint typical, and conditional typical sequences are written
as T nU (δ), T nUV (δ), T nU|V L(vnln, δ) etc.. We always understand these sets are
not empty when we use the notation. When we introduce a set of typical se-
quences (for example, say T nZ ), it is understood that the correspondent ran-
dom variable(s) (i.e., Z in the example) with the (joint) type as distribution
(PZ) is introduced at the same time. For a subset A of sequences of length n
we write AU = A ∩ T nU and analogously AUV , AU|V L(vnln), AU (δ), AUV (δ),
AU|V L(vnln, δ) etc.

|T nU | and the common values of |T nU|L(ln)|, ln ∈ T nL some times are written as
tU , tU|L etc. respectively (the length n of the sequences are understood by the
context). Analogously tU (δ), tY |X(δ) etc, also are used.

3 The Models

Watermarking Identification Codes
In this subsection, we state our models for the simpler case that the attacker
choose a single channel to attack the watermark and both the encoder (informa-
tion hider) and the decoder know the attack channel. In the next subsection, we
introduce the corresponding models of common randomness. In the last subsec-
tion of the section, we assume the attack chooses a channel unknown by both
encoder and decoder from a set of channels and replace the single channel by a
compound channel.

Let V be a finite set, and V be a random variable taking values in V . Then
the covertext is assumed to be generated by an memoryless information source
{V n}∞n=1 with generic V . The watermark is uniformly chosen from a finite set
{1, 2, . . . ,M} independently on the context. The encoder is fully accessed the
covertext and source of watermark and encodes the outputs of covertext vn and
of watermark m jointly to a sequence xn

(
= xn(vn,m)

)
with the same length of

sequence of covertext. The attack use a single discrete memoryless channel W
to attack the watermarked sequence xn i.e., to change xn to yn with probability

Wn(yn|xn) =
n∏
t=1

W (yt|xt). Usually for practical reason people assume that

vn, xn, and yn are chosen from the same finite alphabet, but for convenience of
notation we assume they are from finite alphabets V , X , and Y respectively. The
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encoding mapping in general disturbs the covertext. To measure the distortion,
we introduce a sum type distortion measure, watermarking distortion measure
(WD–measure) ρ, such that for all vn=(v1, . . . , vn)∈Vn, xn=(x1, . . . , xn)∈Xn,

ρ(vn, xn) =
n∑
t=1

ρ(vt, xt), (1)

where for all v ∈ V , x ∈ X 0 ≤ ρ(v, x) ≤ ∆, for a positive constant ∆.
By definition, there should be certain distortion constraint to the output of

attack channel. But now we are given a memoryless attack channel and we may
omit the constraint simply by assume that the attack channel satisfies the con-
straint automatically. This clearly does not loss generality. Next we have to set
up the key–resources shared by encoder and decoder, according to which we dis-
tinguish our watermarking identification codes into watermarking identification
codes with side information (WIDCSI) and watermarking identification codes
with secure key (WIDCK) as follows.

Watermarking identification codes with side information (WIDCSI)
In the first case, we assume that the encoder can generate “a component of a
key”, Lt = lt at the time t according to the current output of covertext Vt = vt
and a given conditional distribution PL|V (·|v). That is, the sender generates a se-
quence Ln = (L1, L2, . . . , Ln) = ln = (l1, l2, . . . , ln) with probability PnL|V (ln|vn)
if the source outputs a sequence vn of covertext and then sends it to the de-
coder. The latter try to recover the watermark from the invalidated message
by the attacker with the help of the side information Ln = ln. In this case the
key-resource is actually governed by the conditional distribution PL|V or equiv-
alently the joint probability distribution PV L. So it can be understood as a pure
side information at both sides of encoder and decoder instead of a “ secure key”.
That is, if {V n}∞n=1 is a memoryless covertext with generic V , and {Ln}∞n=1 is
a side information observed by both encoder and decoder, then {(V n, Ln)} is
a correlated memoryless source with generic (V, L). Thus the decoder can learn
some thing about the covertext from the side information whereas the attacker
knows nothing about it. A WIDCSI code becomes a “watermarking identifica-
tion code with side information at transmitter and receiver” in [32] when V and
L have the same alphabet and equal to each other almost surely and it becomes
a “watermarking identification code with side information at the transmitter on-
ly” in [32] if V and L are independent.So the two codes defined in [32] is really
the extreme cases of WIDCI codes.

Watermarking identification codes with secure key (WIDCK)
In this case we assume the encoder may generate a key Kn = Kn(vn) according
to the whole output sequence V n = vn of the random covertext V n in an arbi-
trary way and send it to the decoder through a secure (noiseless) channel so that
the attacker has absolutely has no knowledge about the covertext (except its dis-
tribution) nor the key. Since for given output vn of the covertext the encoder
may generate the Kn randomly, a WIDCSI code is a special WIDCK code. We
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shall see that in general the latter is more powerful. Notice that a deterministic
key function of output of covertext is a special random key. Finally of course the
size of the key must be constraint. We require it exponentially increasing with
the length of the code and its rate upper bounded by the key rate RK . When the
key rate is larger than the covertext entropy H(V ) the encoder certainly may
inform the receiver the output of covertext. However “the rest part” of the key
may serve as a common randomness between the communicators which increases
the identification capacity (see [12], [10], and [32]).

Thus an (n,R, λ1, λ2, D1) WIDCSI code is a system {Qm,Dm(ln) : ln ∈ Ln,
m ∈ M} for M = {1, 2, . . . ,M} satisfying the following conditions.

– Qm,m = 1, 2, . . . ,M are stochastic matrices Qm : Vn × Ln −→ Xn such
that for m = 1, 2, . . . ,M ,∑

vn∈Vn,ln∈Ln

PnV L(vn, ln)
∑
xn∈Xn

Qm(xn|vn, ln)ρ(vn, xn) ≤ D1, (2)

where PV L is the joint distribution of the generic (V, L).
– For all ln ∈ Ln,m ∈ M, Dm(ln) ⊂ Yn and for all m ∈ M,∑

vn∈Vn,ln∈Ln

PnV L(vn, ln)
∑
xn∈Xn

Qm(xn|vn, ln)Wn(Dm(ln)|xn) > 1 − λ1, (3)

and for all m,m′ ∈ M,m = m′,∑
vn∈Vn,ln∈Ln

PnV L(vn, ln)
∑
xn∈Xn

Qm(xn|vn, ln)Wn(Dm′(ln)|xn) < λ2. (4)

λ1 and λ2 is called the errors of the first and the second kinds of the code
– The rate of the code is

R = log logM. (5)

Watermarking identification codes with secure key (WIDCK)
Next we define WIDCK code. Let {V n}∞n=1 be a memoryless covertext with
generic V and alphabet V , the attack channel W be memoryless, and WD-
measure ρ be as (1). Then an (n,R,RK , λ1, λ2, D1) WIDCK code is a system
{Q∗m,D∗m(kn),WKn : m ∈ M, kn ∈ Kn} for M = {1, 2, . . . ,M} satisfying the
following conditions.

– Kn is a finite set, which will be called the key book, with

1
n

log |Kn| ≤ RK . (6)

RK will be called key rate.
– WKn is a stochastic matrix, WKn : Vn −→ Kn. The output random variable

will be denoted by Kn when the random covertext V n is input to the chan-
nel WKn i.e., the pair of random variables (V n,Kn) have joint distribution
PV nKn(vn, kn) = PnV (vn)WKn(kn|vn), vn ∈ V kn ∈ Kn. In particular Kn
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may be a deterministic function of output of covertext and in this case we
write K(·) as a function defined on Vn. Note that the choice of Kn does
NOT depend on the message m ∈ M since the key should independent of
the protected message.

– Q∗m,m = 1, 2, . . . ,M are stochastic matrices from Vn × Kn to Xn, (the
alphabet of the input of the attack channel), such that∑
vn∈Vn

PnV (vn)
∑
kn∈Kn

WKn(kn|vn)
∑
xn∈Xn

Q∗m(xn|vn, kn)ρ(vn, xn) ≤ D1. (7)

– For all kn ∈ Kn,m ∈ M, Dm(kn) ⊂ Yn and for all m ∈ M, the error of first
kind∑
vn∈Vn

P n
V (vn)

∑
kn∈Kn

WKn(kn|vn)
∑

xn∈Xn

Q∗
m(xn|vn, kn)W n(Dm(kn)|xn) > 1 − λ1,

(8)

and for all m,m′ ∈ M m = m′,∑
vn∈Vn

P n
V (vn)

∑
kn∈Kn

WKn(kn|vn)
∑

xn∈Xn

Q∗
m(xn|vn, kn)W n(Dm′ (kn)|xn) < λ2.

(9)

– Finally the rate of the code is defined in (5).

The capacities of the codes of the two types are defined in the standard way
and denoted by CWIDSI((V, L),W,D1) and CWIDK(V,W,RK , D1) respectively,
where (V, L) and V are the generic of memoryless correlated source and source
respectively, W is an attack memoryless channel, RK is the key rate, and D1 is
the distortion criterion.

The Common Randomness
We speak of the common randomness between two (or among more than two)
persons who share certain common resources, which may be correlated sources
and/or (noisy or noiseless) channels. The common randomness between these
two persons is just two random variables with common domain, which converges
each other respect to probability. According to the resources different models
are established.

For the purpose to build watermarking identification codes we need the follow-
ing two kinds of common randomness. In the following two models of common
randomness, the correlated source {(V n, Ln)}∞n=1 corresponds to the source of
covertext and side information and the memoryless channel W corresponds the
attack channel in the models of watermarking identification. The Kn in the Mod-
el II corresponds the key in the model of WIDCK.

Model I: Two-source with a constraint noisy channel
Let {(V n, Ln)}∞n=1 be a correlated memoryless source with two components,
alphabets V and L, and generic (V, L). Assume that there are two persons, say
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sender (or encoder) and receiver (or decoder). The sender may observe the whole
output of the source (V n, Ln) whereas only the output of the component Ln is
observable for the receiver. To establish common randomness the sender may
send message through memoryless channels W with input and output alphabets
X and Y under certain constraint condition (specified below). The receiver is not
allowed to send any message to the sender. The sender first chooses a channel
code with set of codewords U ⊂ Xn with the same length n as output sequence
of the source and generates a random variable M , his/her “private randomness”
taking values uniformly in a finite set M (, which is exponentially increasing as
the length n of the source sequences increases) and independent of (V n, Ln) of
the output of the source. Assume a (sum type) distortion measure ρ in (1) and a
criterion of distortion D1 are given. According to the output (V n, Ln) = (vn, ln)
of the source and the output of his/her private randomness M = m the sender
chooses a codeword xm(vn, ln) ∈ U(⊂ Xn) such that the average of the distortion
between the codeword and the component V n = vn of the correlated source may
not exceed D1. Namely,

1
n

∑
m∈M

PM (m)
∑
vn∈Vn

∑
ln∈Ln

PV L(vn, ln)ρ(xm(vn, ln), vn) ≤ D1. (10)

The receiver receives an output sequence yn ∈ Yn with the probability

Wn(yn|xm(vn, ln))

if the sender input the codeword xm(vn, ln) to the channel. We also allow to
choose xm(v, ln) as a random input sequence instead of deterministic one (it is
more convenient in the proof). Finally for a finite set A which typically increases
exponentially when the length n of the source increases, i. e., for a constant κ

1
n

log |A| ≤ κ, (11)

the sender creates a random variable F with range A, according to the outputs
of (V n, Ln) and M , through a function

F : Vn × Ln ×M −→ A (12)

and the receiver creates a random variable G according to the output of the
channel Wn and the output of the component Ln of the source, through a
function

G : Ln × Yn −→ A. (13)

After the terminology in [10] we called the pair of random variables (F,G)
generated in the above way permissible and say that a permissible pair (F,G)
represents λ-common randomness if

Pr{F = G} < λ. (14)

Typically λ should be an arbitrarily small but positive real number when
length n of source sequences is arbitrarily large. It is not hard to see that under
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the conditions (11) and (14) by Fano inequality, the entropy rates 1
nH(F ) and

1
nH(G) are arbitrarily close if λ in (14) is arbitrarily small. This was observed
in [10]. Thus we can choose any one from the pair of entropy rates, say 1

nH(F )
as the rate of common randomness.

A pair of real numbers (r,D1) is called achievable for common randomness
if for arbitrary positive real numbers ε, λ, µ and sufficiently large n (depending
on ε, λ and µ) there exists a λ-common randomness satisfying (10) – (14), such
that

1
n
H(F ) > r − ε (15)

and ∑
a∈A

| Pr{F = a} − 1
|A| |< µ. (16)

The last condition says that the common randomness is required to be nearly
uniform and we call it nearly uniform condition. We set it for reducing the
errors of second kind of identification codes. The set of achievable pairs is called
common randomness capacity region. For fixed D1 the common randomness
capacity (CR-capacity) is CCRI((V, L),W,D1) = max{r : (r,D1) is achievable}.

Notice that there is no limit to the amount of sender’s private randomness in
the present model and the next model, Model II. However because of the limit
of the capacity of the channel the “ extra” private randomness is useless.

We remark here that this model is different from the model (i) in [10] in
three points. First, the channel connect the sender and receiver is noiseless with
constraint that rate ≤ R in the model (i) of [10] whereas in general it is noisy
in current model. More importantly, because of the requirement of distortion
the source not only plays a role of “ side information” but also a role of “con-
strainer”. That is, to fight for reducing the distortion the sender has to choose
codewords properly. This makes the transformation more difficult. To see that
let us consider an extremal case that the component Ln of the source is a con-
stant. In this case the source makes no difference at all in the model (i) of [10]
and therefore the common randomness capacity is trivially equal to capacity of
the channel. But in this case for the present model the source makes difference
i.e., because of it the sender may not choose the codewords freely and therefore
the common randomness is reduced. To obtain the CR-capacity region for this
model is also absolutely non-trivial. Finally in this model the sender and receiver
observe the output (V n, Ln) = (vn, ln) and Ln = ln respectively. The common
randomness before the transmission, is equal to H(Ln) = I(V n, Ln;Ln) the mu-
tual information between the two observations. So it seems to be not surprising
our characterization in Theorem 4.1 is quite different from that in Theorem 4.1
of [10] and it cannot obtain simply by substituting rate of noiseless channel by
the capacity of the noisy channel.

Model II: Two-source with a constraint noisy channel and a noiseless
channel
It is clear that our goal to study the common randomness of the model I is for
the construction of WIDCSI-codes. Next to study WIDCK codes we introduced
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the Model II of common randomness. Actually our model is a little more general
than that we really need. That is, we add “the side information”. But for this
we need to do almost no more work. Thus to define the Model II we only add a
noiseless channel between the sender and receiver based on th Model I.

Namely we assume that the correlated source {(V n, Ln)}∞n=1, the noisy chan-
nel W , the distortion constraint (10), and the sender’s private randomness M
are still available. Additionally the sender may send a message kn from a set
of message Kn with rate 1

n log |K| ≤ RK to the receiver via noiseless channel.
Again RK is called key rate. Of course kn is necessarily to be a function of the
outputs of the source and sender’s private randomness i.e., kn = kn(vn,m) for
vn ∈ Vn, m ∈ M. More generally the sender may use random strategies i.e.,
treats kn is output of a channel WK with input (vn,m). To define the common
randomness for this model we change (13) to

G : Kn × Ln × Yn −→ A. (17)

and keep the conditions (10), (11), (12), (14), (15), and (16) unchanged (but
now the definition of function G has been changed due to the changing).

Analogously, one can define CR-capacity CCRII((V, L),W,RK , D1) for mem-
oryless correlated source with generic (V, L), memoryless channel W , key rate
RK and the distortion criterion D1 of this model.

The Models for Compound Channels
In this subsection we assume that the attacker employ a (stationary) memoryless
channel from a family of channels satisfying attack distortion criterion to attack
the watermark. Neither the sender nor receiver knows the which channel the
attacker uses. These channels are known as compound channels in Information
Theory. This assumption is slightly more robust and practical than that in [28]
where the decoder has to know the attack channel in order to decode. In fact,
according to our knowledge it is most robust assumption in this direction.

A compound channel is just a family of memoryless channels W = {W (·|·, s) :
s ∈ S} with common input and output alphabet X and Y respectively. S is a
index set which is called state set and its members are called states. An output
sequence yn ∈ Yn is output with the probability

Wn(yn|xn, s) =
n∏
t=1

W (yt|xt, s)

when the channel is governed by the state s and xn ∈ Xn is input.
Underlie assumption for the attacker to use a compound channel to attack

a watermarking transmission or identification code is that the attacker knows
the input distribution Pn generated by the code. He then may employ such a
compound channel that for all s ∈ S

1
n

∑
xn∈Xn

Pn(xn)
∑
yn∈Yn

Wn(yn|xn, s)ρ′(xn, yn) ≤ D2,
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where ρ′ is a sum type distortion measure, attack distortion measure (AD-
measure), may or may not be identify to WD-measure ρ and D2 is the attack
distortion criterion. In particular when the codewords are generated by an i. i.
d. input distributions so that the input distribution generated by the code is an
i. i. d. distribution

Pn(xn) =
n∏
i=1

P (xt)

a compound channel such that for all s ∈ S∑
x∈X

P (x)
∑
y∈Yn

W (y|x, s)ρ′(x, y) ≤ D2

may be used. We always assume that all compound channels under the consid-
eration satisfy the condition of distortion and do not worry it at all.

To adjust the models in the last two subsections to the compound channels
the following modifications are necessary.

For WIDCSI code for compound channels: replace (3) and (4) by for all ln ∈
Ln,m ∈ M, Dm(ln) ⊂ Yn such that for all m ∈ M, and s ∈ S,∑
vn∈Vn,ln∈Ln

PnV L(vn, ln)
∑
xn∈Xn

Qm(xn|vn, ln)Wn(Dm(ln)|xn, s) > 1 − λ1, (18)

and for all m,m′ ∈ M m = m′, and s ∈ S∑
vn∈Vn,�n∈Ln

PnV L(vn, n)
∑
xn∈Xn

Qm(xn|vn, n)Wn(Dm′(ln)|xn, s) < λ2 (19)

respectively.
For WIDCK for compound channels: replace (8) and (9) by for all kn ∈

Ln,m ∈ M, Dm(kn) ⊂ Yn such that for all m ∈ M, and s ∈ S,∑
vn∈Vn

P n
V (vn)

∑
kn∈Kn

WKn(kn|vn)
∑

xn∈Xn

Q∗
m(xn|vn, kn)W n(Dm(kn)|xn, s) > 1 − λ1,

(20)

and for all m,m′ ∈ M m = m′, and s ∈ S,∑
vn∈Vn

PnV (vn)
∑
kn∈Kn

WKn(kn|vn)
∑
xn∈Xn

Q∗m(xn|vn, kn)Wn(Dm′(kn)|xn, s) < λ2.

(21)
Here the fact that Qm, Q∗m, Dm(ln) and Dm(kn) are independent of the states
governing the channels reflects the requirement that neither encoder nor decoder
knows the states and that (18) – (21) hold for all s ∈ S is because the worst
case to the encoder and decoder is considered.

For the Common randomness in the models I and II: for compound channels,
replace (14) by, whenever any state s governs the channel,

Pr{F = G|s} < λ. (22)
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Again the functions F , G, codewords are independent of the states because
the states are unknown for both encoder and the decoder.

Analogously, for compound channel W the corresponding capacities of
watermarking identification codes and common randomness are denoted by
CWIDSI((V, L),W , D1), CWIDK(V,W , RK , D1), CCRI((V, L),W , D1) and
CCRII((V, L), W , RK , D1).

4 The Results

The Results on Common randomness
For given a correlated memoryless source {(V n, Ln)}∞n=1 whose generic has
joint distribution PV L, a memoryless channel W and distortion criterion D1,
let Q((V, L),W,D1) be the set of random variable (V, L, U,X, Y ) with domain
V × L × U × X × Y and the following properties, where U is a finite set with
cardinality |U| ≤ |V||L||X | and X and Y are input and output alphabets of the
channel W respectively.

For all v ∈ V , l ∈ L, u ∈ U , x ∈ X , and y ∈ Y

Pr{(V, L, U,X, Y ) = (v, l, u, x, y)}
= PV LUXY (v, l, u, x, y)
= PV L(v, l)PUX|V L(u, x|v, l)W (y|x). (23)

For the given distortion measure ρ

Eρ(V,X) ≤ D1. (24)

I(U ;V, L) ≤ I(U ;L, Y ). (25)

Then we have the coding theorem of common randomness in the model I for
single channel W .

Theorem 4.1

CCRI((V, L),W,D1) = max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ;L, Y ) +H(L|U)]. (26)

For a given correlated source with generic (V, L) a channel W and positive
real numbers RK and D1, we denote by Q∗((V, L),W,RK , D1) the set of random
variables (V, L, U,X, Y ) with domain as above and such that (23), (24) and

I(U ;V, L) ≤ I(U ;L, Y ) +RK (27)

hold. Then

Theorem 4.2

CCRII((V, L),W,RK , D1) = max
(V,L,U,X,Y )∈Q∗((V,L),W,RK ,D1)

[I(U ;L, Y )+H(L|U)]+RK .

(28)
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To state the coding theorem for compound channels we need new notation.
For random variables (V, L, U,X) with alphabet V ×L×U×X as above and the
channel with input and output alphabets X and Y respectively, denote by Y (W )
the random variable such that the joint distribution PLV UXY (W ) = PLV UXW
(consequently, LV U ↔ X ↔ Y form a Markov chain). For a compound channel
W with set of stares S and a state s ∈ S we also write Y (W (·|·, s)) = Y (s).
With the notation we write

I(U ;L, Y (W)) = inf
s∈S

I(U ;L, Y (s))

and
I(U ;Y (W)|L) = inf

s∈S
I(U ;Y (s)|L).

Sometimes just for the convenience, we also write Y (s) as Ỹ (s) when we
substitute PLV UX by PL̃Ṽ ŨX̃ and similarly Ỹ (W). Then

I(U ;L, Y (W)) = I(U ;L) + I(U ;Y (W)|L). (29)

Now for a compound channel we define Q1((V, L),W , D1) as the set of ran-
dom variables (V, L, U,X) such that its marginal distribution for the first two
components is equal to the distribution PV L and (24) and

I(U ;V, L) ≤ I(U ;L, Y (W)) (30)

hold. Analogously to set Q∗((V, L),W,RK , D1) we define Q∗1((V, L),W , RK , D1)
the set of random variables (V, L, U,X) such that its marginal distribution for
the first two components is equal to the distribution PV L and (24) and

I(U ;V, L) ≤ I(U ;L, Y (W)) +RK . (31)

hold. Then

Theorem 4.3

sup
(V,L,U,X)∈Q1((V,L),W,D1)

[I(U ;L, Y (W)) +H(L|U)] ≤ CCRI((V, L),W , D1)

≤ inf
W∈W

max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ;L, Y ) +H(L|U)]. (32)

Theorem 4.4

sup
(V,L,U,X)∈Q∗

1((V,L),W,RK,D1)

[I(U ;L, Y (W)) +H(L|U)] +RK

≤ CCRII((V, L),W , RK , D1)
≤ inf
W∈W

max
(V,L,U,X,Y )∈Q∗((V,L),W,RK,D1)

[I(U ;L, Y ) +H(L|U)] +RK . (33)

Notice the gaps of lower and upper bounds in both Theorems 4.3 and 4.4 are
due to the orders of inf–sup.
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The Results on Watermarking Identification Codes
We shall use the same notation as in the above part. Moreover for above sets
V ,X and Y and a finite set U with cardinality bounded by |V||X |, a memoryless
source with generic V , a memoryless cannel W , and compound channel W , we
define the following sets. Let Q∗∗(V,W,RK , D1) be the set of random variables
(V, U,X, Y ) with domain V ×U ×X ×Y such that for all v ∈ V , u ∈ U , x ∈ X ,
and y ∈ Y

PV UXY (v, u, x, y) = PV (v)PUX|V (u, x|v)W (y|x), (34)

I(U ;V ) ≤ I(U ;Y ) +RK , (35)

and (24) hold. Let Q∗∗1 (V,W , RK , D1) be set of random variables (V, U,X) with
domain V × U × X such that for all v ∈ V , u ∈ U and x ∈ X ,

PV UX(v, u, x) = PV (v)PUX|V (u.x|v), (36)

I(U ;V ) ≤ I(U ;Y (W)) +RK , (37)

and (24) hold, where I(U ;Y (W)) = infW∈W I(U ;Y (W )). In particular, when
the second component Ln of the correlated source {(V n, Ln)}∞n=1 is a constant,
Q∗((V, L),W,RK , D1) and Q∗1((V, L),W , RK , D1) become Q∗∗(V,W,RK , D1)
and Q∗∗1 (V,W , RK , D1) respectively.

Theorem 4.5

CWIDSI((V, L),W,D1) ≥ max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ;L, Y ) +H(L|U)]. (38)

Theorem 4.6

CWIDK(V,W,RK , D1) ≥ max
(V,U,X,Y )∈Q∗∗(V,W,RK ,D1)

I(U ;Y ) +RK . (39)

Theorem 4.7

CWIDSI((V, L),W , D1) ≥ sup
(V,L,U,X)∈Q1((V,L),W,D1)

[I(U ;L, Y (W)) +H(L|U)].

(40)

Theorem 4.8

CWIDK(V,W,RK) ≥ sup
(V,U,X)∈Q∗∗

1 (V,W,RK ,D1)

I(U ;Y (W)) +RK . (41)

Note that in Theorems 4.6 and 4.8 one may add side information Ln, the
second component of the correlated source and then one can obtain the corre-
sponding lower bound almost does not change the proofs.
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A result on Watermarking Transmission Code with a common Exper-
iment Introduced by Steinberg-Merhav
To construct watermarking identification code Y. Steinberg and N. Merhav in
[32] introduced a code, which they call watermarking transmission code with
common experiment, distortion measure ρ, and covertext PV . They obtained
there an inner bound to the its capacity region, which is sufficient for achieving
their goal. We shall show their bound is tight and therefore actually the capacity
region. Their definition and result on it and our proof will be presented it the
last section.

5 The Direct Theorems for Common Randomness

In this section we prove the direct parts of Theorems 4.1 – 4.4. Since a DMC can
be regarded as a special compound channel with a single member (i.e., |S| = 1),
we only have to show the direct parts of Theorems 4.3 and 4.4. To this end we
need the following three lemmas for n–type PṼ L̃Ũ over the product set V×L×U
of finite sets V ,L and U .

Lemma 5.1 (Uniformly covering). For n ∈ T n
L̃

, let Ui(n) i = 1, 2, . . . , �2nα�
be a sequence of independent random variables with uniform distribution over
T n
Ũ |L̃(n) and for any vn ∈ T n

Ṽ |L̃(n) let ÛŨ|Ṽ L̃(vnn) be the random set {Ui(n) :
i = 1, 2, . . . , �2nα�} ∩ T n

Ũ |Ṽ L̃(vnn). Then for all ε ∈ (0, 1]

Pr

{∣∣∣∣∣|ÛŨ|Ṽ L̃(vn�n)| − �2nα�
|T n

Ũ|Ṽ L̃
(vn�n)|

|T n
Ũ|L̃(�n)|

∣∣∣∣∣ ≥ �2nα�
|T n

Ũ |Ṽ L̃
(vn�n)|

|T n
Ũ |L̃(�n)| ε

}
< 4 · 2− ε2

4 2nη

(42)

for sufficiently large n if

�2nα� > 2nη
|T n
Ũ |L̃(n)|

|T n
Ũ |Ṽ L̃(vnn)|

Proof: Let

Zi(vn, n) =

{
1 if Ui(n) ∈ T n

Ũ |Ṽ L̃(vnn),

0 else,
(43)

and q =
|T n

Ũ|Ṽ L̃
(vn�n)|

|T n
Ũ|L̃(�n)| . Then |ÛŨ|Ṽ L̃(vnn)| =

�2nα�∑
i=1

Zi(vnn) and for

i = 1, 2, . . . , �2nα�

Pr{Zi(vnn) = z} =

{
q if z = 1
1 − q if z = 0

(44)

by the definitions of Ui(n) and Zi(vn, n).
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Then by Chernov’s bound, we have that

Pr


�2nα�∑
i=1

Zi(vnn) ≥ �2nα�q(1 + ε)


≤ e−

ε
2 �2

nα�q(1+ε) E e
ε
2

�2nα�∑
i=1

Zi(v
n,�n)

= e−
ε
2 �2

nα�q(1+ε)
�2nα�∏
i=1

E e
ε
2Zi(v

n,�n)

= e−
ε
2 �2

nα�q(1+ε)[1 + (e
ε
2 − 1)q]�2

nα�

≤ e−
ε
2 �2

nα�q(1+ε)
[
1 +

(
ε

2
+
(ε

2

)2
)
q

]�2nα�

≤ expe
{
−ε

2
�2nα�q(1 + ε) +

ε

2
�2nα�q

(
1 +

ε

2

)}
= e−

ε2
4 �2

nα�q < 2e−
ε2
4 2nη

(45)

if �2nα� > 2nηq−1.
Here the first inequality follows from Chernov’s bound; the second equality

holds by (44); the second inequality holds because e
ε
2 < 1 + ε

2 +
(
ε
2

)2 a by the
assumption that ε < 1, e

ε
2 < e

1
2 < 2; and the third inequality follows from the

well known inequality 1 + x < ex. Similarly one can obtain

Pr


�2nα�∑
i=1

Zi(vnn) ≤ �2nα�q(1 − ε)

 < 2e−
ε2
4 2nη

(46)

if �2nα� > 2nηq−1.
Finally we obtain the lemma by combining (45) and (46).

Lemma 5.2 (Packing). Let PL̃Ũ be an n–type, let Ui(n), i = 1, 2, . . . , �2nα� be
a sequence of independent random variables uniformly distributed on T n

Ũ|L̃(n) for
an n ∈ T n

L̃
, and let Y be a finite set. Then for all n–types PL̃ŨỸ and PL̃ŨY with

common marginal distributions PL̃Ũ and PY = PỸ , all i, γ > 0 and sufficiently
large n,

Pr

 1

�2nα�

�2nα�∑
i=1

∣∣∣∣∣∣T n
Ỹ |L̃Ũ

(
�nUi(�

n)
)
∩

⋃
j �=i

T n
Y |L̃Ũ

(
�nUj(�

n)
)∣∣∣∣∣∣ ≥ tỸ |L̃Ũ2− n

2 γ

 < 2− n
2 γ

(47)

if �2nα� ≤ tŨ|L̃
tŨ|L̃Y

2−nγ.

Here tỸ |L̃Ũ , tŨ |L̃, and tŨ |L̃Y are the common values of |T n
Ỹ |L̃Ũ (nun)| for

(n, un) ∈ T n
L̃Ũ

, |T n
Ũ |L̃(n)| for n ∈ T n

L̃
, and |T n

Ũ |L̃Y (nyn)| for (n, yn) ∈ T n
L̃Y

,
respectively.
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Proof: For i = 1, 2, . . . , �2nα�, yn ∈ T n
Y

= T n
Ỹ

, let

Ẑi(yn) =

{
1 if yn ∈

⋃
j �=i TY |L̃Ũ

(
nUj(n)

)
0 else

(48)

and for all un ∈ T n
Ũ |L̃(n)

Si(un) =

∣∣∣∣∣∣T nỸ |L̃Ũ (nun) ∩

⋃
j �=i

T n
Y |L̃Ũ

(
nUj(n)

)∣∣∣∣∣∣ . (49)

Then
Si(un) =

∑
yn∈TỸ |L̃Ũ(�nun)

Ẑj(yn) (50)

and

E Ẑi(y
n) = Pr

yn ∈
⋃
j �=i

T n
Y |L̃Ũ

(
�nUj(�

n)
) ≤

∑
j �=i

Pr
{
yn ∈ T n

Y |L̃Ũ

(
�nUj(�

n)
)}

=
∑
j �=i

Pr
{
Uj(�

n) ∈ T n
Ũ|L̃Y (�nyn)

}
= (2�nα� − 1)

tŨ|L̃Y

tŨ|L̃
< 2−nγ (51)

if �2nα� ≤ tŨ|L̃
tŨ|L̃Y

2−nγ .

Hence by (50) and (51) we have that E Si(un) ≤ tỸ |L̃Ũ2−nγ and i.e.,
E
[
Si(Ui(n))|Ui(n)

]
< tỸ |L̃Ũ2−nγ (a.s.), so

E Si
(
Ui(n)

)
= E

{
E
[
Si(Ui(n))|Ui(n)

]}
< tỸ |L̃Ũ2−nγ . (52)

Thus by Markov’s inequality we have that

Pr

 1
�2nα�

�2nα�∑
i=1

Si
(
Ui(n)

)
≥ tỸ |L̃Ũ2−

n
2 γ

 < 2−
n
2 γ ,

i.e., (47).

Lemma 5.3 (Multi–Packing). Under the conditions of the previous lemma, let
Ui,k(n), i = 1, 2, . . . , �2nβ1�, k = 1, 2, . . . , �2nβ2�, be a sequence of independent
random variables uniformly distributed on T n

Ũ|L̃(n) for a given n ∈ T n
L̃

. Then
for all n–types PL̃Ũ Ỹ and PL̃ŨY in the previous lemma

Pr

 1
�2nβ2�

�2nβ2�∑
k=1

1
�2nβ1�

�2nβ1�∑
i=1

∣∣∣∣∣∣T nỸ |L̃Ũ(nUi,k(n)) ∩
⋃
j �=i

T n
Y |L̃Ũ

(
nUj,k(n)

)∣∣∣∣∣∣ ≥ tỸ |L̃Ũ2−nη


< 2−

n
2 γ

(53)

if �2nα� ≤ tŨ|L̃
tŨ|L̃Y

2−nγ.
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Proof: For un ∈ T n
Ũ |L̃(n), let

Si,k(un) =

∣∣∣∣∣∣T nỸ |L̃Ũ (nun) ∩

⋃
j �=i

T n
Y |L̃Ũ

(
nUj,k(n)

)∣∣∣∣∣∣ .
Then we have shown in the proof to the previous lemma (c.f. (52))

E Si,k
(
Ui(n)

)
< tỸ |L̃Ũ2−nγ .

Thus (53) follows from Markov’s inequality.
Now let us turn to the direct part of Theorem 4.3.

Lemma 5.4 (The Direct Part of Theorem 4.3). For a compound channel W,

CCRI
(
(V, L),W , D1

)
≥ sup

(V,L,U,X)∈Q1

(
(V,L),W,D1

)[I(U ;L, Y (W)
)

+H(L|U)
]
.

(54)
Proof: We have to show for a given correlated memoryless source with generic
(V, L), a compound channel W , (V, L, U,X) ∈ Q1

(
(V, L),W , D1

)
and sufficiently

large n, the existence of the functions, F , G and xm(vn, n) satisfying (10) – (13),
(22), (15) and (16) with the rate arbitrarily close to I

(
U ;L, Y (W)

)
+ H(L|U).

Obviously the set of achievable rates of the common randomness is bounded and
closed (i.e., compact). So without loss of generality, by uniform continuity of
information quantities, we can assume that Eρ(V,X) < D1, and I(U ;V, L) <
I
(
U ;L, Y (W)

)
. Because I(U ;V, L) = I(U ;L)+ I(U ;V |L) and I

(
U ;L, Y (W)

)
=

I(U ;L) + I
(
U ;Y (W)|L

)
, there exists a sufficiently small but positive constant

ξ, such that
I
(
U ;Y (W)|L

)
− I(U ;V |L) > ξ. (55)

Without loss of generality, we also assume PU is an n–type to simplify the
notation. Then for arbitrary ε1 > 0, by uniform continuity of information quan-
tities, we can find δ1, δ2 > 0 with the following properties.

(a) For all n ∈ T nL (δ1) with type P�n = PL̃, there exists a δ′ > 0, such that
(vn, n) ∈ T nV L(δ′2) yields that T n

Ṽ |L̃(n) ⊂ T n
V̂ |L̃(n, δ2), where PṼ L̃ is the

joint type of (vn, n) and PV̂ L̃ = PL̃PV |L.
We call a pair (vn, n) of sequences with n ∈ T nL (δ1), (vn, n) ∈ T nV L(δ2),

(δ1, δ2)–typical and denote the set of (δ1, δ2)–typical sequences by T n(δ1, δ2).
Then we may require δ2 → 0 as δ1 → 0. Moreover (e.g., see [35]), there

exist positive ζ1 = ζ1(δ1), ζ2 = ζ2(δ1, δ2), and ζ = ζ(δ1, δ2) such that

PnL
(
T nL (δ1)

)
> 1 − 2−nζ1 (56)

PnV |L
{
vn : (vn, n) ∈ T n(δ1, δ2)|n

)
> 1 − 2−nζ2 (57)

for all n ∈ T nL (δ1) and

PnV L
(
T n(δ1, δ2)

)
> 1 − 2nζ . (58)
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(b) For all n ∈ T nL (δ1) with type P�n = PL̃ (say), one can find a joint type
of sequences in Ln × Un, say PL̃Ũ , with marginal distributions PL̃ and PU ,
sufficiently close to PLU , (which will be specified below). We say that PL̃Ũ
is generated by the type PL̃ of n.

(c) For all (vn, n) ∈ T n(δ1, δ2) with joint type Pvn�n = PṼ L̃ (say), one can find
a joint type PṼ L̃Ũ of sequences in Vn×Ln×Un with marginal distributions
PṼ L̃ and PL̃Ũ and sufficiently close to PV LU (which will be specified below),
where PL̃Ũ is the type generated by PL̃. We say PṼ L̃Ũ is generated by the
joint type PṼ L̃ of (vn, n).

(d) For all (δ1, δ2)–typical sequences (vn, n) with joint type PṼ L̃ (say) and the
joint type PṼ L̃Ũ generated by PṼ L̃, we let (Ṽ , L̃, Ũ , X̃) be random variables
with joint distribution PṼ L̃ŨX̃ such that for all v ∈ V ,  ∈ L, u ∈ U and
x ∈ X

PṼ L̃ŨX̃(v, , u, x) = PṼ L̃Ũ (v, , u)PX|V LU (x|v, , u), (59)

and let
(
Ṽ , L̃, Ũ , X̃, Ỹ (W )

)
be random variables with joint distribution

PṼ L̃ŨX̃Ỹ (W) such that for all v ∈ V ,  ∈ L, u ∈ U , x ∈ X , and y ∈ Y

PṼ L̃ŨX̃Ỹ (W )(v, , u, x, y) = PṼ L̃ŨX̃(v, , u, x)W (x|y), (60)

for any W ∈ W and PṼ L̃ŨX̃ in (59). Then the following inequalities hold

Eρ(Ṽ , X̃) < D1, (61)

|H(L̃) −H(L)| < ε1, (62)

|I(Ũ ; Ṽ |L̃) − I(U ;V |L)| < ε1, (63)

and
|I(Ũ ; Ỹ (W)|L̃) − I(U ;Y (W)|L)| < ε1, (64)

where I(Ũ ; Ỹ (W)|L̃) = infW∈W I(Ũ ; Ỹ (W )|L̃).

For arbitrarily small fixed ε2 with 0 < ε2 < 1
2ξ, for ξ in (55), we choose ε1

(and consequently, δ1, δ2) so small that ε1 < 1
2ε2 and an α such that

I(U ;Y (W)|L) − ξ

2
< α < I(U ;Y (W)|L) − ε2 (65)

and M = 2nα (say) is an integer. Notice that by (65) we may choose α arbitrarily
close to I(U ;Y (W)|L) − ε2 and therefore arbitrarily close to I(U ;Y (W)|L) by
choosing ε2 arbitrarily small. Then by (55), (63) and (65) we have that

α > I(U ;V |L) +
ξ

2
> I(Ũ ; Ṽ |L̃) +

ξ

2
− ε1 > I(Ũ ; Ṽ |L̃) +

ξ

4
, (66)

where the last inequality holds by our choice ε1 < 1
2ε2 <

1
4ξ, and by (64) and

(65) we have

α < I(Ũ ; Ỹ (W)|L̃) + ε1 − ε2 < I(Ũ ; Ỹ (W)|L̃) − ε2
2
. (67)



Watermarking Identification Codes with Related Topics 127

Denote by tŨ |L̃ and tŨ |Ṽ L̃ the common values of |T n
Ũ |L̃(n)|, n ∈ T n

L̃
and

|T n
Ũ |Ṽ L̃(vn, n)|, (vn, n) ∈ T n

Ṽ L̃
, respectively.

Then it is well known that 1
n log

tŨ|L̃
tŨ|Ṽ L̃

arbitrarily close to I(Ũ ; Ṽ |L̃).

This means under our assumption that 1
2ε2 < 1

4ξ, (66) implies that for all
types PṼ L̃Ũ generated by the joint types PṼ L̃ of (δ1, δ2)–typical sequences

2
n
3 ε2

tŨ|L̃
tŨ|Ṽ L̃

< 2nα = M. (68)

Next we let QW(nun, τ) be the set of conditional type PY |L̃Ũ , for a pair
(n, un) of sequences such that there exists a W ∈ W with T n

Y |L̃Ũ (nun) ⊂
T n
Ỹ (W )|L̃Ũ (nun, τ), where PL̃Ũ is the type of (n, un) and PL̃ŨỸ (W) is the

marginal distribution of the distribution in (60). Then⋃
PY |L̃Ũ∈QW (�nun,τ)

T n
Y |L̃Ũ (nun, τ) =

⋃
W∈W

T n
Ỹ (W)|L̃Ũ (nun, τ), (69)

and
|QW(nun, τ)| < (n+ 1)|L||U||Y|. (70)

Again for the commonvalues tŨ|L̃ of |T n
Ũ |L̃(n)|, n ∈ T n

L̃
, tŨ|L̃Y of |T n

Ũ |L̃Y (nyn)|,

(n, yn) ∈ T n
L̃Y

, lim
n→∞

1
n log

tŨ|L̃
tŨ|L̃Y

= I(Ũ ;Y |L̃).

Thus, (67) yields that for all PṼ L̃Ũ generated by the joint type of (δ1, δ2)–
typical sequences, (n, un) ∈ T n

L̃Ũ
, and PY |L̃Ũ ∈ QW(nun, τ),

M = 2nα < 2−
n
4 ε2

tŨ |L̃
tŨ|L̃Y

, (71)

if we choose τ so small (depending on ε2) that for all PY |L̃Ũ ∈ QW(nun, τ)

I(Ũ ;Y |L̃) > I(Ũ ;Y (W)|L̃) − 1
8
ε2

(recalling that by its definition I(Ũ ; Ỹ (W)|L̃) = inf
W∈W

I(Ũ ; Ỹ (W )|L̃)).

Now we are ready to present our coding scheme at rate α, which may arbi-
trarily close to I(U ;Y (W)|L).

Coding Scheme

1) Choosing Codebooks:
For all n ∈ T nL (δ1) with type PL̃, PL̃Ũ generated by PL̃ (cf. condition (b)
above), we apply Lemma 5.1 with η = ε2

3 and Lemma 5.2 with γ = ε2
4 to

random choice. Then since the numbers of sequences vn, n and the number
of n–joint types are increasing exponentially and polynomially respectively,
for all n ∈ T nL (δ1) with type PL̃Ũ generated by PL̃, by (68), (71) we can
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find a subset U(n) ⊂ T n
Ũ|L̃(n) with the following property if n is sufficiently

large.
If (vn, n) ∈ T n(δ1, δ2) and has joint type PṼ L̃ and PṼ L̃Ũ is generated by

PṼ L̃ (cf. condition (c) above), then∣∣∣∣∣|UŨ |Ṽ L̃(vnn)| −M
tŨ|Ṽ L̃
tŨ |L̃

∣∣∣∣∣ < M
tŨ|Ṽ L̃
tŨ|L̃

ε (72)

for any ε > 0 (with ε → 0 as n → ∞), where

UŨ |Ṽ L̃(vnn) � U(n) ∩ T n
Ũ |Ṽ L̃(vnn). (73)

For any PṼ L̃Ũ generated by a joint type of (δ1, δ2)–typical sequence, (vn, n),
and joint type PL̃Ũ Ỹ with marginal distribution PL̃Ũ and any PY |L̃Ũ ∈
QW

(
nunm′(n), τ

)
(notice that QW(nun, τ) depends on (nun) only through

their joint type P�nun !)

M−1
M∑
m=1

∣∣∣∣∣∣T nỸ |L̃Ũ(nũnm(n)
)
∩

 ⋃
m′ �=m

T n
Y |L̃Ũ

(
nũnm′(n)

)∣∣∣∣∣∣ < 2−
n
8 ε2tỸ |L̃Ũ

(74)
if we label the members of U(n) as ũn1 (n), ũn2 (n), . . . , ũnM (n). Consequently
by (70) and the fact that (n, un), (′n, u′n) have the same type QW(nun) =
QW(′nu′n),

M−1
M∑
m=1

∣∣∣∣∣∣T nỸ |L̃Ũ(n, ũnm(n)
)
∩

 ⋃
m′ �=m

⋃
PY |L̃Ũ∈QW (�nun

m′(�n))

T n
Y |L̃Ũ

(
nunm′(n)

)∣∣∣∣∣∣
< 2−

n
9 ε2tỸ |L̃Ũ .

(75)
We call the subset U(n) the codebook for n and its members ũnm(n), for
m = 1, 2, . . . ,M codewords.

2) Choosing Input Sequence to Send through the Channel:
The sender chooses an input sequence xn ∈ Xn according to the output
(vn, n) of the correlated source observed by him and his private randomness
as follows.
— In the case that outcome of the source is a (δ1, δ2)–typical sequence

(vn, n) with joint type PṼ L̃, the sender chooses a codeword in
UŨ |Ṽ L̃(vn, n) in (73) randomly uniformly (by using his private random-
ness), say

ũm(n) ∈ UŨ|Ṽ L̃(vn, n) ⊂ U(n). (76)

Then the sender chooses an input sequence xn ∈ Xn with probability

PX|V LU
(
xn|vn, n, ũnm(n)

)
(77)

by using the chosen ũnm(n) and his private randomness and sends it
through the channel.
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— In the other case i.e., a non–(δ1, δ2)–typical sequence is output, the
sender chooses an arbitrarily fixed sequence, say xne , and sends it through
the channel.

— The codewords randomly chosen here and the random input of the chan-
nel generated here will be denoted by U ′n and X ′n in the part of analysis
below.

3) Choosing the Common domain A of Functions F and G:
Let

J = �2n(H(L)−2ε1)� (78)

and let e be an abstract symbol (which stands for that “an error occurs”).
Then we define

A =
{
{1, 2, . . . ,M} × {1, 2, . . . , J}

}
∪ {e}. (79)

4) Defining the Functions F and G:
To define functions F and G we first partition each T n

L̃
⊂ T nL (δ1) into J

subsets with nearly equal size i.e., each subset has cardinality
⌊ |T n

L̃
|

J

⌋
or⌈ |T n

L̃
|

J

⌉
. Then we take the union of the jth subsets in the partitions over all

T n
L̃

⊂ T nL (δ1) and obtain a subset Lj of T nL (δ1). That is for j = 1, 2, . . . , J

|Lj ∩ T n
L̃
| =

⌊
|T n
L̃
|

J

⌋
or

⌈
|T n
L̃
|

J

⌉
. (80)

4.1) Defining Function F :
The sender observes the output of the source and decides on the value
of function F .
— In the case that the source outputs a (δ1, δ2)–typical sequence (vn, n),

F takes value (m, j) if n ∈ Lj , according to sender’s private random-
ness ũm(n) in (76) is chosen in the step 2) of the coding scheme.

— In the other case F = e.
4.2) Defining Function G:

The receiver observes the output n of the component Ln (side informa-
tion) of the correlated source and output of the channel yn to decide on
the value of function G. We use the abbreviation

Ym(n) =
⋃

PY |L̃Ũ∈QW (�nũn
m(�n),τ)

T n
Y |L̃Ũ

(
nũnm(n), τ

)
.

— In the case that n∈T nL (δ1) and that there exists anm∈{1, 2, . . . ,M}

such that yn ∈ Ym(n) �

{ ⋃
m′ �=m

Ym(n)

}
G takes value (m, j) if

n ∈ Lj . Notice that this m must be unique if it exists.
— In the other case G = e.
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Analysis

1) Distortion Criterion:

First we recall our assumption that the watermarking distortion measure ρ is
bounded i.e.

0 ≤ ρ ≤ ∆. (81)

Then by (58)

1
n
Pr

(
(V n, Ln) /∈ T nV L(δ2)

)
E
[
ρ(V ′n, X ′n)|(V n, Ln /∈ T nV L(δ2)

]
< 2−nξ∆. (82)

On the other hand, under the condition that

(V n, Ln) ∈ T n
Ṽ L̃

⊂ T nV L(δ2),

by definition (V n, Ln, U ′n) ∈ T n
Ṽ L̃Ũ

with probability one for the joint type PṼ L̃Ũ
generated by PṼ L̃.

So, by (60), (61) and the definition of (U ′n, X ′n) we have that

1
n
E
[
ρ(V ′n, X ′n)|(V n, Ln) ∈ T n

L̃Ṽ

]
=

∑
(v,�,u)∈V×L×U

PṼ L̃Ũ (v, , u)
∑
x

PX|V LU (x|v, , u)ρ(v, x)

= Eρ(Ṽ , X̃) < D1. (83)

Thus it follows from (82) and (83) that

1
n
Eρ(V n, X ′n) = Pr

(
(V n, Ln) /∈ T nV L(δ2)

)
E
[
ρ(V n, X ′n)|(V n, Ln) /∈ T nV L(δ2)

]
+

∑
T n

Ṽ L̃
⊂T n

V L(δ2)

Pr
(
(V n, Ln) ∈ T n

Ṽ L̃

)
E
[
ρ(V n, X ′n)|(V n, Ln) ∈ T n

Ṽ L̃

]
< D1, (84)

for sufficiently large n.

2) The Condition of Nearly Uniformity

By the definition of function F in the step 4.1) of the coding scheme,
Pr{F = e} ≤ Pr

{
(V n, Ln) /∈ T nV L(δ2)

}
= 1 − PnV L(T nV L(δ2)

}
, and hence by

(58),
|Pr{F = e} − |A|−1| ≤ max{2−nζ, |A|−1} −→ 0 (n → ∞). (85)

Next fix an n ∈ T nL (δ1) with type PL̃ (say), let PL̃Ũ be the joint type generat-
ed by PL̃, and let Q(L̃Ũ) be the set of joint types PṼ L̃Ũ with marginal distribu-
tion PL̃Ũ and generated by the joint type of some (δ1, δ2)–typical sequence. Then
Pr{U ′n = un|Ln = n} > 0, only if un ∈ U(n) =

{
ũnm(n) : m = 1, 2, . . . ,M

}
.
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Moreover, for a (δ1, δ2)–typical sequence (vn, n) with joint type PṼ L̃, ũnm(n)
∈ U(n), by the coding scheme

Pr
{
V n = vn, U ′n = unm(n)|L = n

}
=

{
PnV |L(V n = vn|n)|UŨ |Ṽ L̃(vnn)|−1 if unm(n) ∈ UŨ|Ṽ L̃(vnn)
0 else.

(86)

Recalling (73), then we have that for all n ∈ T n
L̃

⊂ T nL (δ1), ũnm(n) ∈ U(n)

Pr
{
U ′n = ũnm(n)|L = n

}
=

∑
PṼ L̃Ũ∈Q(L̃Ũ)

∑
vn∈T n

Ṽ |L̃Ũ
(�nũn

m(�n))

PnV |L(vn|n)|UŨ |Ṽ L̃(vnn)|−1. (87)

By (72) we have that

[
M(1 + ε)

]−1
|T n
Ũ |L̃(n)|

|T n
Ũ |Ṽ L̃(vnn)| < |UŨ |Ṽ L̃(vnn)|−1 <

[
M(1 − ε)

]−1
|T n
Ũ |L̃(n)|

|T n
Ũ |Ṽ L̃(vnn)| .

(88)
On the other hand,

∑
PṼ L̃Ũ∈Q(L̃Ũ)

∑
vn∈T n

Ṽ |L̃Ũ
(�nũn

m(�n))

PnV |L(vn|n)
|T n
Ũ |L̃(n)|

|T n
Ũ |Ṽ L̃(vnn)|

=
∑

PṼ L̃Ũ∈Q(L̃Ũ)

∑
vn∈T n

Ṽ |L̃Ũ
(�nũn

m(�n))

PnV n|L(T n
Ṽ |L̃(n)|n)

|T n
Ũ|L̃(n)|

|T n
Ṽ |L̃(n)||T n

Ũ |Ṽ L̃(vn, n)|

=
∑

PṼ L̃Ũ∈Q(L̃Ũ)

PnV |L
(
T n
Ṽ |L̃(n)|n

)
= Pr

{
(V n, n) ∈ T n(δ1, δ2)|n

}
, (89)

where the first equality holds because the value of PnV |L(vn|n) for given n

depends on vn through the conditional type; the second equality hold by the
fact that

tŨ|L̃
tṼ |L̃tŨ|Ṽ L̃

=
tŨ|L̃
tṼ Ũ|L̃

= 1
tṼ |L̃Ũ

; and the last equality holds because PṼ L̃Ũ
is generated by PṼ L̃ uniquely (see its definition in condition (c)).

Thus by combining (57), (87) – (89), we obtain for an η > 0 with η → 0 as
n → ∞, ε→ 0

(1 − η)M−1 < Pr
{
U ′n = ũnm(n)|L = n

}
< (1 + η)M−1, (90)

for n ∈ T nL(δ1)
, ũnm(n) ∈ U(n).
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So for m ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , J},

Pr
{
F = (m, j)

}
= Pr

{
U ′n = ũnm(Ln), Ln ∈ Lj

}
=

∑
�n∈Lj

PnL (n)Pr
{
U ′n = ũnm(n)|L = n

}
< (1 + η)M−1PnL (Lj). (91)

Since |T n
L̃
| > 2n(H(L̃)+

ε1
2 ) for sufficiently large n, by (62) and (78), we have

that
|T n

L̃
|

J > 2
n
2 ε1 and hence by (80)

|Lj ∩ T n
L̃
| ≤

⌈
|T n
L̃
|

J

⌉
<

|T n
L̃
|

J
+ 1 <

|T n
L̃
|

J

(
1 + 2−

n
2 ε1

)
.

Because the value of PnL (n) depends on n through its type, this means that

PnL (Lj ∩ T n
L̃

) < J−1PnL (T n
L̃

)
(
1 + 2−

n
2 ε
)

and consequently

PnL (Lk) < PnL
(
T nL (δ1)

)
J−1

(
1 + 2−

n
2 ε1

)
(92)

which with (91) is followed by

Pr
{
F = (m, j)

}
< M−1J−1(1 + η)

(
1 + 2−

n
2 ε1

)
PnL

(
T nL (δ1)

)
. (93)

Similarly we have that

Pr
{
F = (m, j)

}
> M−1J−1(1 − η)

(
1 − 2−

n
2 ε1

)
PnL

(
T nL (δ1)

)
. (94)

Now (56), (93) and (94) together imply that for an η′ > 0 with η′ → 0 as
n → ∞, η → 0, ∑

(m,j)

|Pr
{
F = (m, j)

}
− |A|−1| < η′, (95)

which with (85) completes the proof of condition of nearly uniformity.

3) The Rate:

In (65) one can choose

α > I
(
U ;Y (W)|L

)
− ε′ for any ε′ with ε2 < ε′ <

1
2
ξ.

Then by (58), (78), (79), (95), we know that for an η′′ > 0 with η′′ → 0 as
n → ∞, η′ → 0

1
n
H(F ) >

1
n

log |A| − η′′ > I
(
U ;Y (W)|L

)
− ε′ +H(L) − 2ε1 − η′

= I
(
U ;Y (W)|L

)
+ I(U ;L) +H(L|U) − ε′ − 2ε1 − η′

= I
(
U ;L, Y (W)

)
+H(L|U) − ε′ − 2ε1 − η′,

for sufficiently large n.
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4) Estimation of Probability of Error:

In and only in the following three cases an error occurs.

Case 1
The source outputs a non–(δ1, δ2)–typical sequence whose probability is less than
2−nζ by (58).

Now we assume that a (δ1, δ2)–typical sequence (vn, n) with joint type PṼ L̃
is output. So the sender first chooses a ũnm(n) ∈ UŨ|Ṽ L̃(vn, n), then an xn ∈
Xn according to his private randomness and sends xn through the channel.
Consequently a yn ∈ Yn is output by the channel. Then in the following two
cases an error occurs.

Case 2
A codeword ũm(n) ∈ UŨ |Ṽ L̃(vnn) ⊂ Un(n) is chosen and an output sequence

yn /∈ Ym(n) =
⋃

PY |L̃Ũ∈QW (�n,ũm(�n))

T n
Y |L̃Ũ

(
nũm(n), τ

)
is output of the channel. Suppose now W ∈ W governs the channel. Then by
(59), and (60) the probability that yn ∈ Yn is output of the channel under the
condition that (V n, Ln) = (vn, n) ∈ T n(δ1, δ2) is output of the correlated source
and U ′n = ũnm(n) ∈ UŨ |Ṽ L̃(vn, n) is chosen is

Pr
{
Y ′n = yn|(V n, Ln) = (vn, n), U ′n = ũnm(n)

}
=

∑
xn∈Xn

PnX|V LU (xn|vn, n, ũnm(n))Wn(yn|xn)

= Pn
Ỹ (W)|Ṽ L̃Ũ

(
yn|vn, n, ũm(n)

)
. (96)

On the other hand

T n
Ỹ (W )|Ṽ L̃Ũ

(
vnnunm(n), τ

)
⊂ T n

Ỹ (W )|L̃Ũ
(
nunm(n), τ

)
⊂ Ym.

So the probability that such an error occurs vanishes exponentially as n grows.

Case 3
A codeword ũnm(n) is chosen and a yn ∈ Ym ∩

[⋃
m′ �=m Ym′

]
is output of the

channel.
Now by (86), (88), (90), and simple calculation, we obtain that[
(1 − η)(1 − ε)

]−1
PnV |L(vn|n)

tŨ|L̃
tŨ |Ṽ L̃

< Pr
{
V n = vn|Ln = n, U ′n = ũnm(n)

}
<
[
(1 + η)(1 + ε)

]−1
PnV |L(vn|n)

tŨ |L̃
tŨ|Ṽ L̃

(97)

for (δ1, δ2)–typical sequences (vn, n) with joint type PṼ L̃ and
ũm(n) ∈ UŨ |Ṽ L̃(vn, n), where PṼ L̃Ũ is the type generated by PṼ L̃.
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Moreover, since tŨ |Ṽ L̃ =
tṼ Ũ|L̃
tṼ |L̃

, tŨ Ṽ |L̃ = tŨ |L̃tṼ |L̃Ũ , and since for given n,

the value of PnV |L(vn|n) depends on vn through the conditional type,

PnV |L(vn|n)
tŨ |L̃
tŨ |Ṽ L̃

= PnV |L(vn|n)
tṼ |L̃
tṼ |L̃Ũ

= PnV |L
(
T n
Ṽ |L̃(n)|n

) 1
tṼ |L̃Ũ

. (98)

Further it is well known that for all

(vn, n, un) ∈ T n
Ṽ L̃Ũ

, lim
n→∞

1
n

(
logPn

Ṽ |L̃Ũ (vn|n, un) − log
1

tṼ |L̃Ũ

)
= 0.

So by (97) and (98), we have that

Pr
{
V = vn|Ln = n, U ′n = ũnm(n)

}
< 2nθPnV |L

(
T n
Ṽ |L̃(n)|n

)
Pn
Ṽ |L̃Ũ

(
vn|n, ũnm(n)

)
≤ 2nθPn

Ṽ |L̃Ũ
(
vn|n, ũnm(n)

)
(99)

for (δ1, δ2)–typical sequences (vn, n) with type PṼ L̃, ũnm ∈ UŨ|Ṽ L̃(n) ⊂ U(n)
and sufficiently large n, and a θ → 0 as n → ∞.

We choose θ < 1
20ε2.

Since Pr
{
(V n, Ln) = (vn, n), U ′n = un

}
> 0 only if (vn, n) is (δ1, δ2) typical

and un ∈ UŨ |Ṽ L̃(vn, n), by (96) and (99) we have that

Pr
{
Y ′n = yn|Ln = n, U ′n = ũnm(n)

}
≤

∑
vn∈Vn

2nθPn
Ṽ |L̃Ũ (vn|n, unm(n)

}
Pn
Ỹ (W )|Ṽ L̃Ũ (yn|vn, n, un)

≤ 2nθPn
Ỹ (W )|L̃Ũ

(
yn|n, unm(n)

)
(100)

for n ∈ T nL (δ1), ũm(n) ∈ U(n) and yn ∈ Yn if W ∈ W governs the channel.
Now we obtain an upper bound in terms of a product probability distribution

Pn
Ỹ (W)|L̃Ũ

(
yn|n, unm(n)

)
whose value depends on yn through the conditional type. Consequently by (75)
and (100) we have that for all n ∈ T nL (δ1), ũm(n) ∈ U(n) with joint type PL̃Ũ ,
PỸ |L̃Ũ ∈ QW

(
ni, ũm(n), τ

)
M−1

M∑
m=1

Pr

Y ′n ∈ T n
Ỹ |L̃Ũ

(
n, unm(n)

)
∩

 ⋃
m′ �=m

Ym′(n)

 |Ln = n, U ′n = ũnm(n)


≤ 2nθM−1

M∑
m=1

Pn
Ỹ (W )|L̃Ũ

T n
Ỹ |L̃Ũ

(
nunm(n)

)
∩

 ⋃
m′ �=m

Ym′(n)

 |n, unm(n)


≤ 2nθ · 2−n

9 ε2Pn
Ỹ (W )|L̃Ũ

{
T n
Ỹ |L̃Ũ

(
n, unm(n)

)
|n, ũnm(n)

}
≤ 2−n(

1
9 ε2−θ) < 2−

n
20 ε2 ,

(101)
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where the last inequality holds by our choice θ < ε2
20 . Recalling

Ym(n) =
⋃

PỸ |L̃Ũ∈QW (�nũm(�n),τ)

T n
Ỹ |L̃Ũ

(
nunm(n)

)
,

by the union bound and (101) we obtain that

M−1
M∑
m=1

Pr

Y ′n ∈ Ym(n) ∩

 ⋃
m′ �=m

Ym(n)

 |Ln = n, U ′n = ũm(n)


< (n+ 1)|L||Ũ||Y|2−

n
20 ε2

< 2−
n
21 ε2 (102)

for n ∈ T nL (δ1), ũnm(n) ∈ U(n) and sufficiently large n. Finally by (90) and
(102) we obtain an upper bound to the probability that on error of this type
occurs, under the condition Ln = n ∈ T nL (δ1).

M∑
m=1

Pr
{
U ′n = ũm(n)|Ln = n

}
Pr

Y ′n ∈ Ym(n) ∩

 ⋃
m′ �=m

Ym′(n)

 |Ln = n, U ′n = ũm(n)


< (1 + η)

M∑
m=1

M−1Pr

Y ′n ∈ Ym(n) ∩

 ⋃
m′ �=m

Ym′(n)

 |Ln = n, U ′n = ũm(n)


< (1 + η)2−

n
21 ε2 ,

(103)

which completes the proof because by definition
M∑
m=1

Pr
{
U ′n = ũm(n)|Ln = n

}
= 1 for all n ∈ T nL (δ1).

Remark: Our model of identification becomes that in [32] if L takes a constant
value with probability one. So our proof of the lemma above provides a new
proof of Theorem 4 in [32] (as special case) without using the Gelfand–Pinsker
Theorem in [24].

Corollary 5.1 (Direct Part Theorem 4.1): For all single channels W

CCRI
(
(V, L),W,D1

)
≥ max

(V,L,U,X,Y )∈Q((V,L),W,D1)

[
I(U ;L, Y ) +H(L|U)

]
.

Lemma 5.5 (Direct Part of Theorem 4.4): For all compound channels W

CCRII
(
(V, L),W,RK , D1

)
≥ sup

(V,L,U,X)∈Q∗
1((V,L),W,RK,D1)

[
I
(
U ;L, Y (W)

)
+H(L|U)

]
+RK . (104)
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Proof: By the same reason as in the proof of the previous lemma, it is sufficient
for us to show the availability of I

(
U ;L, Y (W)

)
+H(L|U)+RK for (V, L, U,X)

with Eρ(V,X) < D1 and for some ξ > 0

I
(
U ;Y (W)|L

)
+RK − I(U ;V |L) > ξ. (105)

In the case I
(
U ;Y (W)|L

)
> I(U ;V |L), by the previous lemma I

(
U ;LY (W)

)
+ H(L|U) is achievable even if the noiseless channel is absent. So sender and
receiver may generate n

(
I(U ;LY (W)) + H(L|U)

)
bits of common randomness

and at the same time the sender sends RK bits of his private randomness via
the noiseless channel to the receiver to make additionally nRK bits of common
randomness. That is, the rate I

(
U ;L, Y (W)

)
+H(L|U) +RK is achievable.

So, next we may assume that I
(
U ;Y (W)|L

)
≤ I(U ;V ; |L). Moreover we can

assume

I
(
U ;Y (W)|L

)
> 0,

because otherwise I
(
U ;L, Y (W)

)
+H(L|U) +RK = I(U ;L) +H(L|U) +RK =

H(L)+RK is achievable as follows. We partition T nL (δ1) into Lj , j = 1, 2, . . . , J
as in the step 4) of the coding scheme in the proof of the previous lemma to get
n
(
H(L)− 2ε1

)
bits of common randomness and get other nRK bits of common

randomness by using the noiseless channel. Thus it is sufficient for us to assume
that

0 < I
(
U ;Y (W)|L

)
≤ I(U ;V |L) < I

(
U ;Y (W)|L

)
+RK − ξ, (106)

for a ξ with 0 < ξ < RK .
We shall use (δ1, δ2)–typical sequences, the joint types PL̃Ũ and PṼ L̃Ũ generat-

ed by the types PL̃ and PŨL̃ respectively, and the random variables (Ṽ , L̃, Ũ , X̃)
and

(
Ṽ , L̃, Ũ , X̃, Ỹ (W)

)
in (59) and (60) satisfying (61) – (64), which are defined

in the conditions (a) – (d) in the proof of the previous lemma.
Instead of the choice α in (65) we now choose β1, β2 > 0 and β3 ≥ 0 for

arbitrarily small but fixed ε2 with 0 < ε2 <
1
2ξ such that

I
(
U ;Y (W)|L

)
− 3

2
ε2 < β1 < I

(
U ;Y (W)|L

)
− ε2, (107)

I(U ;V |L) − I
(
U ;Y (W)|L

)
+ ξ ≤ β2 ≤ RK (108)

and

0 ≤ β3 = RK − β2. (109)

Notice that the existence and positivity of β2 are guaranteed by (106).
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By adding both sides of the first inequalities in (107) and (108), we obtain that

β1 + β2 > I(U ;V |L) +
(
ξ − 3

2
ε2

)
, (110)

and by the first inequality in (107) and the equality in (109) we have that

β1 + β2 + β3 > I
(
U ;Y (W)|L

)
+RK − 3

2
ε2. (111)

Let ξ − 3
2ε2 = 2η and rewrite (110) as

β1 + β2 > I(U ;V |L) + 2η. (112)

Then η > ξ
8 > 0 by our choice ε2 < 1

2ξ.
Next as in the proof to the previous lemma we fix an (arbitrary small)

positive ε2, η, choose ε1 (and consequently δ1, δ2) sufficiently small so that
ε1 < min

(
1
2ε2,

1
2η
)
. Then by (64) and the second inequality in (109) we have

that
β1 < I

(
Ũ ; Ỹ (W)|L̃

)
− ε2

2
, (113)

and by (65) and (112) we have that

β1 + β2 > I(Ũ ; Ṽ |L̃) +
3
2
η. (114)

Without loss of generality we assume that 2nβ1 , 2nβ2 and 2nβ3 are integers
and denote by M1 = 2nβ1, I = 2nβ2 and K ′ = 2nβ3 .

Then similarly as in the proof of the previous lemma, we have that for suffi-
ciently large n, sufficiently small τ , all joint types PṼ L̃Ũ generated by types of
(δ1, δ2)–typical sequences and QW(nun, τ) in the proof of the previous lemma,

2nη
tŨ |L̃
tŨ |Ṽ L̃

< M1I (115)

and

M1 < 2−
n
3 ε2

tŨ|L̃
tŨ |L̃Y

, (116)

for all PY |L̃Ũ ∈ QW(nun, τ).

Coding Scheme

1) Choosing the Codebook:
We choose a codebook for all n ∈ T nL (δ1) in a similar way as in the step 1)
of the coding scheme in the proof of the previous lemma. But we now use
Lemma 5.1 for α = β1 + β2 and Lemma 5.3 for γ = ε2

3 instead of Lemmas
5.1 and 5.2. Thus by random choice we obtain subsets of T nU U i(n) =
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ũnm,i(

n) : m = 1, 2, . . . ,M1

}
for i = 1, 2, . . . , I for all n ∈ T nL (δ1) such

that for

U∗(n) =
I⋃
i=1

U i(n), (117)

and U∗
Ũ |Ṽ L̃(vnn) = U∗(n) ∩ T n

Ũ |Ṽ L̃(vn, n), where PṼ L̃Ũ is the type gener-
ated by the joint type PṼ L̃ of (δ1, δ2)–sequences (vn, n) as before, and with
an abuse of notation in the union in (117): counting it twice and labelling it
as different elements ũnm,i(

n) and ũnm′,i′(
n) if a codeword appears twice in

it, the following holds.∣∣∣∣∣U∗Ũ|Ṽ L̃(vnn) −M1I
tŨ |Ṽ L̃
tŨ |Ṽ L̃

∣∣∣∣∣ < M1I
tŨ|Ṽ L̃
tŨ|Ṽ L̃

ε, (118)

and for QW(nvn, τ) in the proof of the previous lemmas and any conditional
type PỸ |L̃Ũ ,

I−1
I∑
i=1

M−1
1

M1∑
m=1

∣∣∣∣∣∣T nỸ |L̃Ũ(nunm,i(n)) ∩
 ⋃
m′ �=m

⋃
PY |L̃Ũ∈QW (�nvn)

T n
Y |L̃Ũ

(
nunm′,i(

n)
)∣∣∣∣∣∣

< 2−
n
7 ε2tỸ |L̃Ṽ

(119)

here (118) and (119) are analogous to (72) and (75) respectively, and are
shown in an analogous way.

2) Choosing Inputs of the Channels:
In the current model, we have an additional noiseless channel with rate RK
except for the noisy channel which exists in the Model I. The sender chooses
the inputs of the two channels as follows.

2.1) Choosing the Input Sequence of the Noisy Channel:
— In the case that the source outputs a (δ1, δ2)–typical sequence (vn, n)

with joint type PṼ L̃, by (118) for the type PṼ L̃Ũ generated by
PṼ L̃, U∗

Ũ|Ṽ L̃(vnn) = ∅. Then similarly to the Step 2) of the cod-
ing scheme in the proof of the previous lemma, the sender random-
ly and uniformly chooses a member of U∗

Ũ |Ṽ L̃(vnn), say ũnm,i(
n),

and according to the probability PX|V LU
(
xn|vn, n, ũnm,i(n)

)
choos-

es an input sequence xn of the channel W and sends xn through the
channel.

— In the case that the output of the source is non–(δ1, δ2)–typical, the
sender sends an arbitrary fixed sequence xne through the channel.

2.2) Choosing the Input of the Noiseless Channel:
— In the case that a (δ1, δ1)–typical sequence (vn, n) with joint type

PṼ L̃ is output of the correlated channel, the sender first spends
log I = nβ2 bits to send the index i ∈ {1, 2, . . . , I} to the receiver
via the noiseless channel if a codeword ũnm,i(

n) ∈ U i(n) ⊂ U∗(n)
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is chosen in the substep 2.1) in the current coding scheme, then he
randomly and uniformly chooses a k′ ∈ {1, 2, . . . ,K ′} independent of
the output of the source and sends it through the noiseless channel
by using the rest of nRK − nβ2 = nβ3 = logK ′ bits.

— In the case that a non–(δ1, δ2)–typical sequence is output, the sender
sends a constant message through the noiseless channel.

3) Choosing the Common Range A of Functions F and G:
Let J be as in (78) and

A =
[
{1, 2, . . . ,M1} × {1, 2, . . . , I} × {1, 2, . . . ,K ′} × {1, 2, . . . , J}

]
∪ {e}.

(120)
4) Defining the Functions F and G:

Partition T nL (δ1) into Lj , j = 1, 2, . . . , J as in the step 4) of the coding scheme
in the proof of the previous lemma and let Kn = {1, 2, . . . , I}×{1, 2, . . . ,K ′}.

4.1) Defining Function F :
The sender decides on the value of function F according to the output
of the correlated source and his private randomness as follows.
— In the case that a (δ1, δ2)–typical sequence (vn, n) is output, F takes

value (m, i, k′, j) if n ∈ Lj , ũnm,i(n) ∈ Uj(n) ∩ U∗
Ũ |Ṽ L̃(vnn) is

chosen in step 2) of the current coding scheme, and k′ is chosen for
sending it via the noiseless channel in the last nβ3 bits (that means
(i, k′) is sent through the noiseless channel).

— In the other case F = e.
4.2) Defining Function G:

The receiver decides on the value of the function G according to the
output (i, k′) ∈ Kn of the noiseless channel, the output n of the compo-
nent Ln of the correlated source, and the output yn ∈ Yn of the noisy
compound channel W as follows.
Let

Ym.i(n) =
⋃

PY |L̃Ũ∈QW (�nũn
m,i(�

n),τ)

T n
Y |L̃Ũ

(
nunm, i(

n)
)

for m = 1, 2, . . . ,M1, i = 1, 2, . . . , I, and the type PL̃Ũ generated by the
type PL̃ of n ∈ Lj ⊂ T nL (δ1).
— In the case that (i, k′) is output of the noiseless channel, n ∈ T nL (δ1)

is output of the source, and there exists an m ∈ {1, 2, . . . ,M1} such
that the output of the noisy compound channel W ,

yn ∈ Ym,i(n) �

{ ⋃
m′ �=m

Ym′,i(n)

}
, G takes value (m, i, k′, j) if n ∈

Lj .
— In the other case G = e.
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Analysis
1) – 3) Distortion Criterion, The Nearly Uniformity Condition, and the Rate.

One can verify the distortion criterion, the nearly uniformity condition and
the rate

1
n

logH(F ) > β1 + β2 + β3 + o(1) = I
(
U ;Y (W)|L

)
+RK + o(1)

(c.f. (111)), and obtain analogous inequalities

(1 − η)(M1I)−1 < Pr
{
U ′n = unm,i(

n)|L = n
}
< (1 + η)(M1I)−1 (121)

to the inequalities in (90) for n ∈ T nL (δ1), unm,i(
n) ∈ U∗(n) and random

variable U ′n chosen by the sender in step 2) of the coding scheme in the
same way as in parts 1) – 3) of the Analysis in the proof of the previous
lemma except that the roles of U(n) and (72) there are played by U∗(n) =
I⋃
i=1

U i(n) and (118). Notice that in those parts of the proof of the previous

lemma (75) is not used, neither is (119) here correspondingly.
4) Estimation of Probability of Error:

By the same reason as in the proof of the previous lemma, the probabilities
of errors of the first two types, the error caused by that a non–(δ1, δ2)–
typical sequence is output and the error caused by that ũm,i(n) is chosen
and yn /∈ Ym,i(n) is output of the noisy compound channel exponentially
vanish as n grows.

Next by replacing U(n) and (75) by U i(n) and (119), in the same way
as in the proof of the previous lemma we now obtain

(M1I)−1
I∑
i=1

M1∑
m=1

Pr

Y ′n ∈ Ym,i(n) ∩

 ⋃
m′ �=m

Ym′,i(n)

 |Ln = n, U ′n = unm,i(
n)


< 2−

n
21 ε2

(122)instead of (102).

Finally analogously to in the way to obtain (103) in the proof of the
previous lemma from (90) and (102), we finish the proof by combining (121)
and (122).

Corollary 5.2 (Direct Part of Theorem 4.2): For all single channels W

CCRII

(
(V, L), W, RK , D1

)
≥ max

(V,L,U,X,Y )∈Q∗((V,L),W,RK ,D1)

(
I(U ;L, Y )+H(L|U)

)
+RK .

6 The Converse Theorems for Common Randomness

To obtain single letter characterizations for the converse parts of coding theorems
for common randomness, we need a useful identity which appears in [22] (on
page 314).



Watermarking Identification Codes with Related Topics 141

Lemma 6.1. (Csizár-Körner) Let (An, Bn) be an arbitrary pair of random se-
quences and let C be an arbitrary random variable. Then

H(An|C) −H(Bn|C)

=
n∑
t=1

[H(At|At+1, At+2, . . . , An, B
t−1, C)−H(Bt|At+1, At+2, . . . , An, B

t−1, C)].

(123)

Proof
Let (At+1, At+2, . . . , An, B

t) to be understood as An and Bn when t = 0 and
t = n, respectively. Then:

H(An|C) − (Bn|C)

=
n−1∑
t=0

H(At+1, At+2, . . . , An, B
t|C) −

n∑
t=1

H(At+1, At+2, . . . , An, B
t|C)

=
n∑
t=1

H(At, At+1, . . . , An, B
t−1|C) −

n∑
t=1

H(At+1, At+2, . . . , An, B
t|C)

=
n∑
t=1

[H(At, At+1, . . . , An, B
t−1|C) −H(At+1, . . . , An, B

t−1|C)]

−
n∑
t=1

[H(At+1, At+2, . . . , An, B
t|C) −H(At+1, . . . , An, B

t−1|C)]

=
n∑
t=1

[H(At|At+1, At+2, . . . , An, B
t−1, C)−H(Bt|At+1, At+2, . . . , An, B

t−1, C)].

(124)

Lemma 6.2 (The converse part of Theorem 4.1)
For single channel W ,

CCRI((V, L),W,D1) ≤ max(V,L,U,X,Y )∈Q((V,L),W,D1)[I(U ;LY ) +H(L|U)].
(125)

Proof: Assume that for a source output of length n there are functions F and
K such that for the channel Wn and the distortion measure (10) - (16) hold.
Denote by Xn and Y n the random input and output of the channel generat-
ed by the correlated source (V n, Ln), sender’s private randomness M , and the
channel.

Then (10) be rewritten in terms of (V n, Xn) as

1
n
Eρ(V n, Xn) ≤ D1 (126)
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Further by Fano inequality, (11) - (14), we have that

H(F )
≤H(F ) −H(F |G) + nλ log κ+ h(λ)
=I(F ;G) + nλ log κ + h(λ)
≤I(F ;Ln, Y n) + nλ log κ+ h(λ)
=I(F ;Y n|Ln) + I(F ;Ln) + nλ log κ + h(λ)
≤I(F ;Y n|Ln) +H(Ln) + nλ log κ+ h(λ)

=I(F ;Y n|Ln) +
n∑
t=1

H(Lt) + nλ log κ+ h(λ)

=
n∑
t=1

I(F ;Yt|Ln, Y t−1) +
n∑
t=1

H(Lt) + nλ log κ+ h(λ), (127)

where h(z) = −z log z − (1 − z) log(1 − z) for z ∈ [0, 1] is the binary entropy.
Here the first inequality follows from the Fano inequality, (11), (12) and (14);
the second inequality holds by (13); and the third equality holds because the
source is memoryless. Since I(F ;V n, Ln) ≤ H(F ), the first four lines in (127) is
followed by

0 ≤ I(F ;Ln, Y n) − I(F ;V n, Ln) + nλ log κ+ h(λ)
≤ [I(F ;Y n|Ln) + I(F ;Ln)] − [I(F ;V n|Ln) + I(F ;Ln)] + nλ log κ+ h(λ)
= I(F ;Y n|Ln) − I(F ;V n|Ln) + nλ log κ + h(λ)
= [H(Y n|Ln) −H(Y n|Ln, F )] − [H(V n|Ln) −H(V n|Ln, F )] + nλ log κ+ h(λ)
= [H(Y n|Ln) −H(V n|Ln)] + [H(V n|Ln, F ) −H(Y n|Ln, F )] + nλ log κ+ h(λ).

(128)

To obtain a single letter characterization we substitute An, Bn and C in (123)
by V n, Y n and (Ln, F ) respectively and so

H(V n|LnF ) −H(Y n|LnF )

=
n∑
t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F ) −H(Yt|Vt+1, Vt+2, . . . , Vn, L

n, Y t−1, F )].

(129)
Moreover because the source is memoryless, we have

H(V n|Ln) =
n∑
t=1

H(Vt|Lt). (130)

We now substitute (128), (129); (130) and H(Y n|Ln) =
∑n
t=1 H(Yt|Ln, Y t−1)

into (127) and continue it;
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0 ≤
n∑
t=1

[H(Yt|Ln, Y t−1) −H(Vt|Lt)] +
n∑
t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )

−H(Yt|Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )] + nλ log κ+ h(λ)

=
n∑
t=1

[H(Yt|Ln, Y t−1) −H(Yt|Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )]

−
n∑
t=1

[H(Vt|Lt) −H(Vt|Vt+1, Vt+2, . . . , Vn, L
n, Y t−1, F )] + nλ log κ+ h(λ)

=
n∑
t=1

I(Yt;Vt+1, Vt+2, . . . , Vn, F |Ln, Y t−1)

−
n∑
t=1

I(Vt;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt)

+ nλ log κ+ h(λ)

≤
n∑
t=1

[I(Yt;Vt+1, Vt+2, . . . , VnL1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt)]

−
n∑
t=1

I(Vt;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt)]

+ nλ log κ+ h(λ). (131)

Let J be the random variable taking values in {1, 2, . . . , n} uniformly, and

UJ = (VJ+1, VJ+2, . . . , Vn, L1, L2 . . . , LJ−1, LJ+1, . . . , Ln, Y
J−1, F ). (132)

Then J and (VJ , LJ) are independent i. e., I(J ;VJ , LJ) = 0. Thus (131) is
rewritten and continued in the following a few lines.

0 ≤nI(UJ ;YJ |LJ , J) − nI(UJ ;VJ |LJ , J) + nλ log κ+ h(λ)
=n[I(UJ ;LJ , YJ |J) − I(UJ ;LJ |J)] − [I(UJ ;VJ , LJ |J) − I(UJ ;LJ |J)

+ nλ log κ+ h(λ)
=nI(UJ ;LJ , YJ |J) − nI(UJ ;VJ , LJ |J) + nλ log κ+ h(λ)
≤nI(UJ , J ;LJ , YJ ) − n[I(UJ , J ;VJ , LJ) − I(J ;VJ , LJ)] + nλ log κ + h(λ)
=nI(UJ , J ;LJ , YJ ) − nI(UJ , J ;VJ , LJ) + nλ log κ+ h(λ). (133)

Next we denote by

(V ′′, L′′, U ′′, X ′′, Y ′′) = (VJ , LJ , UJJ,XJ , YJ) (*)

for the uniformly distributed J and UJ in (132). Then, obviously (V ′′, L′′) has the
same probability distribution with the generic (V, L) of the correlated source,
the conditional probability distribution PY ′′|X′′ = W , and (V ′′L′′U ′′, X ′′, Y ′′)
forms a Markov Chain. Namely, the joint distribution of (V ′′, L′′, U ′′, X ′′, Y ′′) is
PV ′′L′′U ′′X′′Y ′′ = PV LPU ′′X′′|V ′′L′′W . With the defined random variables, (126)
is rewritten as
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Eρ(V ′′, X ′′) = E[Eρ(V ′′, X ′′)|J ] = E[Eρ(VJ , XJ)|J ] =
1
n
Eρ(V n, Xn) ≤ D1.

(134)
Moreover, by substituting (∗) in (133) and then dividing both sides of resulting

inequality by n, we obtain that

0 ≤ I(U ′′;L′′, Y ′′) − I(U ′′;V ′′, L′′) + o(1), (135)

(as λ → 0).
Because the set {PV,L,U,X,Y : (V, L, U,X, Y ) ∈ Q((V, L),W,D1)} is a closed

set, by (134) and (135) is is sufficient for us to complete the proof to show that

1
n
H(F ) ≤ I(U ′′;L′′, Y ′′) +H(L′′|U ′′) + o(1)

for λ → 0. This is done by dividing both sides of (127) by n and continuing it
by the following few lines.

1
n
H(F )

≤ 1
n

n∑
t=1

I(F ;Yt|Ln, Y t−1) +
1
n

n∑
t=1

H(Lt) + λ log κ+
1
n
h(λ),

≤ 1
n

n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, F ;Yt|Ln, Y t−1) +
1
n

n∑
t=1

H(Lt) + λ log κ +
1
n
h(λ),

≤ 1
n

n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F ;Yt|Lt)

+
1
n

n∑
t=1

H(Lt) + λ log κ +
1
n
h(λ)

=I(UJ ;YJ |LJ , J) +H(LJ |J) + λ log κ +
1
n
h(λ)

≤I(UJ , J ;YJ |LJ) +H(LJ |J) + λ log κ +
1
n
h(λ)

=I(UJ , J ;YJ |LJ) +H(LJ) + λ log κ+
1
n
h(λ)

=I(UJ , J ;YJ |LJ) + I(UJ ;LJ) +H(LJ |UJ) + λ log κ+
1
n
h(λ)

≤I(UJ , J ;YJ |LJ) + I(UJ , J ;LJ) +H(LJ |UJ) + λ log κ+
1
n
h(λ)

=I(UJ , J ;LJ , YJ) +H(LJ |UJ) + λ log κ+
1
n
h(λ)

=I(U ′′;L′′, Y ′′) +H(L′′|U ′′) + λ log κ+
1
n
h(λ), (136)
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where the second equality holds because UJ is independent of J . Finally the
upper bound to the size of U follows from the Support Lemma in [13] (as well
on page 310 in the book [22]).

Lemma 6.3. (The converse part of Theorem 4.2) For a single channel W ,

CCRI((V, L),W,RK , D1) ≤ max
(V,L,U,X,Y )∈Q∗((V,L),W,RK,D1)

[I(U ;L, Y ) +H(L|U)] +RK .

(137)

Proof: Let {(V n, Ln)}∞n=1 be a correlated source with generic (V, L), W be
a noisy channel, and RK and D1 be the key rate and the distortion crite-
rion in the Model II of common randomness respectively. Let F and G be
functions satisfying (10) - (12), (17), and (14) - (16) in the Model II of com-
mon randomness (for output sequence of source of length n). Denote by Xn

and Kn inputs of noisy channel Wn and the noiseless channel chosen by the
sender according to the output of the correlated source and his/her private ran-
domness. Then (126) holds and similarly to (127) by Fano inequality, we have
that

H(F )
≤I(F ;G) + nλ log κ+ h(λ)
≤I(F ;Y n, Ln,Kn) + nλ log κ + h(λ)
=I(F ;Y n, Ln) + I(F ;Kn|Y n, Ln) + nλ log κ+ h(λ)
=I(F ;Y n|Ln) + I(F ;Ln) + I(F ;Kn|Y n, Ln) + nλ log κ+ h(λ)
≤I(F ;Y n|Ln) +H(Ln) +H(Kn|Y n, Ln) + nλ log κ + h(λ)
≤I(F ;Y n|Ln) +H(Ln) +H(Kn) + nλ log κ+ h(λ)
≤I(F ;Y n|Ln) +H(Ln) + nRK + nλ log κ+ h(λ)

=
n∑
t=1

I(F ;Yt|Ln, Y t−1) +
n∑
t=1

H(Lt) + nRK + nλ log κ+ h(λ), (138)

where the second inequality holds by (17). Analogously to (128) we have

0 ≤ I(F ;Y n, Ln,Kn) − I(F ;V n, Ln) + nλ log κ + h(λ)
= I(F ;Y n, Ln) − I(F ;V n, Ln) + I(F ;Kn|Y n, Ln) + nλ log κ+ h(λ)
≤ I(F ;Y n, Ln) − I(F ;V n, Ln) +H(Kn|Y n, Ln) + nλ log κ+ h(λ)
≤ I(F ;Y n, Ln) − I(F ;V n, Ln) + nRK + nλ log κ+ h(λ). (139)

Note that we only used the basic properties of Shannon information measures,
Lemma 6.1, and the assumption that the correlated source is memoryless in the
estimation of I(F ;Y n, Ln) − I(F ;V n, Ln) in the part of (128) - (131) and all
these are available here. So we have the same estimation here i. e.,
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I(F ;Y n, Ln) − I(F ;V nLn)

≤
n∑
t=1

I(Yt;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt)

−
n∑
t=1

I(Vt;Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y
t−1, F |Lt)

+ nλ log κ + h(λ). (140)

Let UJ and J be defined as in (132). Then (140) is rewritten as

I(F ;Y n, Ln) − I(F ;V nLn) ≤ nI(UJ , J ;LJ , YJ) − nI(UJ , J ;VJ , LJ) + nλ log κ+ h(λ).

(141)
Let (V ′′, L′′, U ′′, X ′′, Y ′′) is defined as in the previous lemma.

Then (134) and PV ′′L′′U ′′X′′Y ′′ = PV LPU ′′X′′|V ′′L′′W are certainly fulfilled. But
now (139) - (141) lead us to

0 ≤ I(U ′′;L′′, Y ′′) − I(U ′′;V ′′, L′′) +RK + o(1). (142)

In the same way as (136) we can show

n∑
t=1

I(F ;Yt|Ln, Y t−1) +
n∑
t=1

H(Lt) + nRK + nλ log κ+ h(λ)

≤nI(U ′′;L′′, Y ′′) + nH(U ′′|L′′) + nλ log κ + h(λ) (143)

which with (138) yields

1
n
H(F ) ≤ I(U ′′;L′′Y ′′) +H(U ′′|L′′) +RK + λ log κ+

1
n
h(λ).

Again |U| is bounded by the Support Lemma. Thus our proof is finished.

Finally it immediately follows from Lemmas 6.2 and 6.3 that

Corollary 6.4. For compound channel W,

1) (The converse part of Theorem 4.3:)

CCRI((V, L),W , D1) ≤ inf
W∈W

max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ;L, Y ) +H(L|U)]

(144)
and

2) (The converse part of Theorem 4.4:)

CCRII((V, L),W , RK , D1)
≤ inf
W∈W

max
(V,L,U,X,Y )∈Q∗((V,L),W,RK,D1)

[I(U ;L, Y ) +H(L|U)] +RK . (145)
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7 Constructing Watermarking Identification Codes from
Common Randomness

R. Ahlswede and G. Dueck found in [12] that a identification code with the same
rate can be always obtained from the common randomness between a sender and
and receiver under the condition

(*) The sender can send a massage with arbitrarily small but positive rate (in
the exponential sense).

Thus under the condition (*) the capacity of identification is not smaller than
that of common randomness. Note that the sets Q((V, L),W,D1), Q∗∗(V,W,
Rk, D1), Q1((V, L),W , D1), and Q∗∗1 (V,W , Rk, D1) are not empty implies the
condition (*) in the Theorems 4.5, 4.6, 4.7, and 4.8 respectively. Consequently
Theorems 4.5, 4.6, 4.7, and 4.8 follows from Theorems 4.1, 4.2, 4.3, and 4.4
respectively.

8 A Converse Theorem of a Watermarking Coding
Theorem Due to Steinberg-Merhav

In order to construct identification codes in [32], Y. Steinberg and N. Merhav
introduced the following code to build common randomness between sender and
receiver and obtained an inner bound of the capacity region. This inner bound
is sufficient for their goal. We shall show that it is as well tight. This would
support their conjecture that the lower bound in their Theorem 4 ([32]) is tight
although it does not imply it.

Let {V n}∞n=1 be a memoryless source with alphabet V and generic V and W
be a noisy channel with input and output alphabets X and Y respectively. A
pair of functions (f, g) is called an (n,M, J, δ, λ,D) watermarking transmission
code with a common experiment, distortion measure ρ, distortion level D and
covertext PV if the followings are true.

— f is a function from Vn × {1, 2, . . . ,M} to {1, 2, . . . , J} × Xn.
— g is a function from Yn to {1, 2, . . . , J} × {1, 2, . . . ,M}.

1
M

M∑
m=1

∑
vn∈Vn

PnV (vn)Wn({y : g(yn) = (fJ(vn,m),m)}|fX(vn,m)) ≥ 1 − λ,

(146)
where fX and fJ are projections of f to Xn and {1, 2, . . . , J} respectively.

1
M

M∑
m=1

∑
vn∈Vn

PnV (vn)ρ(vn, fX(vn,m)) ≤ D. (147)

For m = 1, 2, . . . ,M , there exists a subset B(m) ⊂ {1, 2, . . . , J} of cardinality
|B(m)| ≥ J2−nδ such that

J−12−nδ ≤ PnV {fJ(V n,m) = j} ≤ J−12nδ (148)
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for all j and ∑
j∈B(m)

PnV {fJ(V n,m) = j} ≥ 1 − λ. (149)

g serves as a decoding function here. (148) and (149) play the same role as
nearly uniform condition in construction of identification codes from common
randomness. In fact one can find the nearly uniform condition (16) is stronger
but for the purpose to construct identification codes the conditions (148) and
(149) are strong enough.

A pair (R1, R2) is called achievable with distortion D if for all positive reals
δ, λ, and ε there is an (n,M, J, δ, λ,D) code defined as above such that

1
n

logM > R1 − ε (150)

and
1
n

log J > R2 − ε. (151)

The set of achievable pair of rates is called capacity region and denoted by R.
Denote by R(∗) the subset of pair of real numbers such that there exist random
variables (V, U,X, Y ) taking values in V ×U ×X ×Y such that |U| ≤ |Y|+ |X |,
for all
v ∈ V , u ∈ U , x ∈ X and y ∈ Y,

PV UXY (v, u, x, y) = PV (v)PUX|V (u, x|v)W (y|x),

Eρ(V,X) ≤ D,

0 ≤ R1 ≤ I(U ;Y ) − I(U ;V ), (152)
and

0 ≤ R2 ≤ I(U ;V ). (153)
It was shown in [32]

Theorem 8.1 (Steinberg-Merhav)

R∗ ⊂ R. (154)

We now show the opposite contained relation holds i. e.,

Theorem 8.2
R ⊂ R∗. (155)

Proof: Let (f, g) be a pair of functions satisfying (146) - (151) for sufficiently
large n (which is specified later) and Zn be a random variable with uniform
distribution over {1, 2, . . . ,M}. Further let f(V n, Zn) = (Bn, Xn), where Bn
and Xn have ranges {1, 2, . . . , J} and Xn respectively and Y n be the random
output of the channel Wn when Xn is input.

Then (148) and (149) are rewritten as

J−12−nδ ≤ PBn|Zn
(j|m) ≤ J−12nδ (156)
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for all j ∈ B(m) and
PBn|Zn

(Bn ∈ B(m)|m) ≥ 1 − λ (157)

respectively. So,

H(Bn|Zn) =
M∑
m=1

PZn(m)H(Bn|Zn = m)

≥ −
M∑
m=1

PZn(m)
∑
j∈B(m)

PBn|Zn
(j|m) logPBn|Zn

(j|m)

≥ −
M∑
m=1

PZn(m)
∑
j∈B(m)

PBn|Zn
(j|m) log J−12nδ

= (log J − nδ)
M∑
m=1

PZn(m)PBn|Zn
(Bn ∈ B(m)|m)

≥ (log J − nδ)(1 − λ) (158)

where the second inequality holds by (156) and the last inequality follows from
(157). Or equivalently

1
n

log J ≤
1
nH(Bn|Zn)

1 − λ
+ δ. (159)

Since H(Bn) ≤ log J , (159) implies that for a function θ such that θ(δ, λ) → 0
as δ, λ→ 0,

1
n

log J − θ(δ, λ) <
1
n
H(Bn|Zn) ≤

1
n
H(Bn) ≤

1
n

log J. (160)

which says that Bn and Zn are “nearly independent”. Moreover because Zn is
independent of V n, by Fano’s inequality,

R1 − ε <
1
n

logM =
1
n
H(Zn)

=
1
n
H(Zn|V n)

≤ 1
n
H(Bn, Zn|V n)

≤ 1
n

[H(Bn, Zn|V n) −H(Bn, Zn|Y n)] + λ log JM +
1
n
h(λ)

=
1
n

[I(Bn, Zn;Y n) − I(Bn, Zn;V n)] + λ
1
n

log JM +
1
n
h(λ)

(161)

where the second inequality follows from Fano’s inequality. Since Bn is a function
of V n and Zn, we have also

H(Bn, Zn|V n) ≤ H(V n, Zn|V n) = H(Zn), (162)
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which and (160) are followed by

R2 − ε <
1
n

log J <
1
n
H(Bn|Zn) + θ(δ, λ)

=
1
n

[H(Bn, Zn) −H(Zn)] + θ(δ, λ)

≤ 1
n

[H(Bn, Zn) −H(Bn, Zn|V n)] + θ(δ, λ)

=
1
n
I(Bn, Zn;V n) + θ(δ, λ). (163)

So far we have had a non-single-letter characterization of the capacity region
(161) and (163). In the rest part of the proof we shall reduce it to a single letter
one.

First we substitute An, Bn, and C in (123) by V n, Y n, and (Bn, Zn) respec-
tively and obtain that

H(V n|Bn, Zn) −H(Y n|Bn, Zn)

=
n∑
t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn) −H(Yt|Vt+1, Vt+2, . . . , Vn, Y

t−1, Bn, Zn)].

(164)
Next we note that H(V n) =

∑n
t=1 H(Vt) because the source is memoryless

and H(Y n) =
∑
t=1 H(Yt|Y t−1). Therefore, we have

I(Bn, Zn;Y n) − I(Bn, Zn;V n)
=H(Y n) −H(V n) + [H(V n|Bn, Zn) −H(Y n|Bn, Zn)]

=
n∑
t=1

H(Yt|Y t−1) −
n∑
t=1

H(Vt) +
n∑
t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn)

−H(Yt|Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn)]

=
n∑
t=1

[H(Yt|Y t−1) −H(Yt|Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn)]

−
n∑
t=1

[H(Vt) −H(Vt|Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn)]

=
n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, Bn, Zn;Yt|Y t−1)

−
n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn;Vt)

≤
n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn;Yt)

−
n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn;Vt). (165)
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Moreover,

I(Bn, Zn;V n)

=
n∑
t=1

I(Bn, Zn;Vt|Vt+1, Vt+2, . . . , Vn)

≤
n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, Bn, Zn;Vt)

≤
n∑
t=1

I(Vt+1, Vt+2, . . . , Vn, Y
t−1, Bn, Zn;Vt). (166)

So we may let I be a random variable taking values in {1, 2, . . . , n} uniformly
and

U ′ = (VI+1, VI+2, . . . , Vn, Y
I−1, Bn, Zn)

and conclude by (163), (164), (165), (166)

R1 − ε ≤ I(U ′;YI |I) − I(U ′;VI |I) + λ log JM +
1
n
h(λ)

≤ I(U ′, I;YJ) − I(U ′, I;VI) + I(I;VI) + λ log JM +
1
n
h(λ), (167)

and
R2 − ε ≤ I(U ′;VI |I) ≤ I(U ′, I;VI) + θ(δ, λ). (168)

Let U = (U ′, I), V ′ = VI , X = XI and Y = YI . Then PV ′ = PV , (V ′U,X, Y )
forms a Markov chain and (168) can be re-written as

R2 ≤ I(U ;V ′) + θ(δ, λ),

and
EP (v′, x′) < D.

Further that I(I;VI) = 0 (as the source is stationary) and (167) are followed
by

R1 ≤ I(U ;Y ) − I(U ;V ′) + λ log JM +
1
n
h(λ) + ε.

Finally |U| is bounded by the support Lemma in the standard way.
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14. C. Kleinewächter, On identification , this volume.
15. R. Ahlswede and Z. Zhang, New directions in the theory of identification via chan-

nels, IEEE Trans. Inform. Theory, Vol. 41, No. 4, 1040-1050, 1995.
16. M. Barni, F. Bartolini, A. De Rosa, and A. Piva, Capactiy of the watermark

channel: how many bits can be hidden within a digital image?, Proc. SPIE, SPIE,
Vol. 3657, 437-448, San Jose, CA, Jan, 1999.

17. M. Burnashav, On identification capacity of infinite alphabets or continuous time
channel, IEEE Trans. Inf. Theory, Vol. 46, 2407–2414, 2000.

18. N. Cai and L. Y. Lam, On identification secret sharing schemes, Information and
Computation, to appear.

19. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, 1991.
20. I. J. Cox, M. L. Miller, and A. Mckellips, Watermarking as communications with

side information, Proc. of IEEE, Vol. 87, No. 7, 1127-1141, 1999.
21. I. Csiszár, Almost independence and secrecy capacity, Probl. Inform. Trans., Vol.

32, 40-47, 1996.
22. I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Mem-

oryless Systems, Academic, 1981.
23. I. Csiszár and P. Narayan, Common randomness and secret key generation with a

helper, IEEE Trans. Inform. Theory, Vol. 46, no 2, 344-366, 2000.
24. S.I. Gelfand and M.S. Pinsker, Coding for channels with random parameters, Prob-

lems of Control and Inform. Theory, Vol. 9, 19–31, 1980.



Watermarking Identification Codes with Related Topics 153
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Notes on Conditions for Successive Refinement

of Information

A.N. Harutyunyan

Abstract. The successive refinement of information (or source divis-
ibility) under error exponent or reliability constraint is discussed. By
rehabilitating Maroutian’s result on multiple descriptions [13], we refine
our previous proof on successive refinability conditions reported in [7]
and restate the result by Tuncel and Rose [17]. In particular, it is not-
ed that the successive refinement in “purely” reliability sense is always
possible.

Keywords: Successive refinement of information (source divisibility),
reliability (error exponent), rate-reliability-distortion function, hierarchi-
cal (scalable) source coding.

1 The Notes Subject

The concept of source divisibility was introduced by Koshelev [10]-[12] as a cri-
terion of efficiency for source coding in hierarchical systems. The same concept
was independently defined by Equitz and Cover in [5] and named the successive
refinement of information. The authors became an essential mathematical input
from the results of [1], based on a wringing technique. The idea is to achieve the
rate-distortion limit at each level of successively more precise transmission. In
terms of those limits the problem statement has the following description. As-
sume that we transmit information to two users, the requirement of the first on
distortion is no larger than ∆1 and demand of the second user is more accurate:
∆2 ≤ ∆1. It is well known from the rate-distortion theory that the value RP (∆1)
of the rate-distortion function for a source distributed according to a probabil-
ity law P is the minimal satisfactory transmission rate at the first destination.
Adding an information of a rate R′ addressed to the second user the fidelity can
be made more precise providing no larger distortion than ∆2. It is interesting to
know when it is possible to guarantee the equality RP (∆1)+R′ = RP (∆2). The
answer to this question is given in Koshelev’s papers [10]-[12], and in [5] by Equitz
and Cover. Koshelev argued that the Markovity condition for the random vari-
ables (RV) characterizing the system is sufficient to achieve the rate-distortion
limit. Later on the same condition also as the necessity was established in [5],
where the authors exploited Ahlswede’s result [1] on multiple descriptions with-
out excess rate. Another proof of that result by means of characterization of the
rate-distortion region for the described hierarchical source coding situation and
an interpretation of the Markovity condition are given in Rimoldi’s paper [15].

In [7], treating the above notion of successive refinement of information we
introduced an additional criterion to the quality of information reconstruction

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 154–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– the reliability. The extension of the rate-distortion case to the rate-reliability-
distortion one is the assumption that the messages of the source must be coded
for transmission to receiver with a distortion not exceeding ∆1 within error
probability exponent (reliability) E1, and then, using an auxiliary information,
restored with a more precise distortion ∆2 ≤ ∆1 within error probability expo-
nent E2 (naturally ≥ E1). Let RP (E,∆) denotes the rate-reliability-distortion
function introduced by Haroutunian and Mekoush [6] (it would be appropriate
to refer also the paper [8] for details and a further analysis) which is actually
the inverse of Marton’s error exponent function [14]. And let R′ be the rate of
the additional encoding. Under the successive refinement of information (or di-
visibility of source) with reliability requirement, from (E1, ∆1) to (E2, ∆2), the
condition RP (E2, ∆2) = RP (E1, ∆1) +R′ is meant.

The characterization of the rate-distortion region for this hierarchical trans-
mission (also called the scalable source coding) has been independently obtained
by Koshelev [10], Maroutian [13] (as a corollary from error exponents investiga-
tion for the same system), and Rimoldi [15]. Later on, the error exponents in
the scalable source coding was studied in the paper [9] by Kanlis and Narayan.

In [17] Tuncel and Rose pointed out the difference of their result and the nec-
essary and sufficient conditions for successive refinability under error exponent
criterion previously derived by us and reported in [7]. In this paper, accepting
the failure of our conditions which originates from [13], (where the author has
attempted to find the attainable rate-reliability-distortion region for the hierar-
chical source coding), we restate the surprising result by Tuncel and Rose [17],
amending Maroutian’s result [13] and specializing it for both the cases E2 ≥ E1

and vice versa.

2 The Communication System

Let P ∗ = {P ∗(x), x ∈ X} be the probability distribution (PD) of messages x
of the discrete memoryless source (DMS) X of finite alphabet X . And let the
reproduction alphabets of two receivers be the finite sets X 1 and X 2 accordingly,
with the corresponding single-letter distortion measures

dk : X × X k → [0;∞), k = 1, 2.

The distortions dk(x,xk) between a source N -length message x and its repro-
duced versions xk are considered as averages of the per-letter distortions:

dk(x,xk)
�
=

1
N

N∑
n=1

d(xn, xkn), k = 1, 2.

A code (f, F ) = (f1, f2, F1, F2) for the system (Fig. 1) consists of two encoders
(as mappings of the source N -length messages space XN into certain numerated
finite sets {1, 2, ..., Lk(N)}):

fk : XN → {1, 2, ..., Lk(N)}, k = 1, 2,
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and two decoders acting as converse mappings into the reproduction
N -dimensional spaces X 1N and X 2N in the following ways:

F1 : {1, 2, ..., L1(N)} → X 1N ,

F2 : {1, 2, ..., L1(N)} × {1, 2, ..., L2(N)} → X 2N ,

where in F2 we deal with the Cartesian product of the two sets.

�

�

�

f1

f2

�

��

F1

F2

�

�

x

x1

x2

R1

R2

R1

E1, ∆1

E2, ∆2

Fig. 1. The hierarchical communication system

Let the requirement of the first user on the averaged distortion be ∆1 ≥ 0
and of the second one be ∆2 ≥ 0. The sets definitions

A1
�
={x ∈ XN : F1(f1(x)) = x1, d1(x,x1) ≤ ∆1},

A2
�
={x ∈ XN : F2(f1(x), f2(x)) = x2, d2(x,x2) ≤ ∆2}.

will abbreviate the expressions for determination the probability of error (caused
by an applied code (f, F )) at the output of each decoder:

ek(f, F,∆k, N)
�
=1 − P ∗(Ak), k = 1, 2,

where P ∗(Ak) is the probability of the set Ak.
We say that the nonnegative numbers (R1, R2) make an (E1, E2, ∆1, ∆2)-

achievable pair of coding rates if for every ε > 0, δ > 0, and sufficiently large N
there exists a code (f, F ), such that

1
N

logLk(N) ≤ Rk + ε,

ek(f, F,∆k, N) ≤ exp{−N(Ek − δ)}, k = 1, 2.

Just these E1 and E2 are called reliabilities. Denote the set of (E1, E2, ∆1, ∆2)-
achievable rates for the system by RP∗(E1, E2, ∆1, ∆2).

Let
P
�
={P (x), x ∈ X}
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be a PD on X and

Q
�
={Q(x1, x2|x), x ∈ X , xk ∈ X k, k = 1, 2}

be a conditional PD on X 1 × X 2. In the sequel we shall use the divergence
D(P ‖ P ∗) between PDs P and P ∗

D(P ‖ P ∗)�=
∑
x

P (x) log
P (x)
P ∗(x)

,

and the related sets

α(Ek, P ∗)
�
={P : D(P ‖ P ∗) ≤ Ek}, k = 1, 2.

Let

IP,Q(X ∧X1, X2)
�
=

∑
x,x1,x2

P (x)Q(x1, x2 | x) log
Q(x1, x2 | x)∑

x
P (x)Q(x1, x2 | x)

be the Shannon mutual information between RVs X and X1, X2 defined by PDs
P and Q.

The separate informations IP,Q(X ∧Xk), k = 1, 2, between the RVs X and
Xk are defined similarly using the marginal distributions Q(xk | x):∑

xj , j �=k
Q(xj , xk | x) = Q(xk | x), j, k = 1, 2.

For a given quartet (E1, E2, ∆1, ∆2) and a PD P ∈ α(E1, P
∗) let

Q(P,E1, E2, ∆1, ∆2) be the set of those conditional PDs QP (x1, x2|x) that for
the expectations on the distortions hold

EP,QP dk(X,X
k)
�
=

∑
x, xk

P (x)QP (xk | x)d(x, xk) ≤ ∆k, k = 1, 2,

and only
EP,QP d2(X,X2) ≤ ∆2

if P belongs to the subtraction of the sets α(E2, P
∗) and α(E1, P

∗), i.e.

P ∈ α(E2, P
∗)\α(E1, P

∗),

and these all in case of E2 ≥ E1.
And, respectively, in case of E1 ≥ E2, under the notation Q(P,E1, E2, ∆1, ∆2)

we mean the set of those conditional PDs QP for which

EP,QP dk(X,X
k) ≤ ∆k, k = 1, 2,

when P ∈ α(E2, P
∗), and only

EP,QP d1(X,X1) ≤ ∆1

if P ∈ α(E1, P
∗)\α(E2, P

∗).
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For E1 = E2 = E we use the notation Q(P,E,∆1, ∆2) instead of
Q(P,E1, E2, ∆1, ∆2), but when E → 0, α(E,P ∗) consists only the PD P ∗, hence
the notation Q(P ∗, ∆1, ∆2) will replace Q(P,E,∆1, ∆2) one.

For DMS with the generic PD P ∗ denote by RP∗(E,∆) the rate-reliability-
distortion function subject to the reliability E > 0 and distortion ∆ ≥ 0, and
by RP∗(∆) the rate-distortion one [16], see also the classical books [2]-[4]. Each
of the pairs (E1, ∆1) and (E2, ∆2) in the considered hierarchical coding configu-
ration of Fig. 1 determines the corresponding rate-reliability-distortion and the
rate-distortion functions RP∗(Ek, ∆k) and RP∗(∆k), k = 1, 2, respectively. It is
known [6] that

RP∗(Ek, ∆k) = max
P∈α(Ek,P∗)

min
Q:EP,Qdk(X,Xk)≤∆k

IP,Q(X ∧Xk), (1)

and, as a consequence when Ek → 0,

RP∗(∆k) = min
Q:EP,Qdk(X,Xk)≤∆k

IP,Q(X ∧Xk), (2)

therefore, equivalently for (1) in terms of (2)

RP∗(Ek, ∆k) = max
P∈α(Ek,P∗)

RP (∆k), k = 1, 2. (3)

Here it is relevant to point out also another consequence of (1). Let RP∗(E)
denotes the special case of the rate-reliability-distortion function RP∗(E,∆) for
source P ∗, when ∆ = 0 and call it the rate-reliability function in source cod-
ing. Then the minimum asymptotic rate sufficient for the source lossless (zero-
distortion) transmission under the reliability requirement, namely RP∗(E), im-
mediately obtains from (1):

RP∗(E) = max
P∈α(E,P∗)

HP (X), (4)

where HP (X) is the entropy of RV X distributed according to PD P :

HP (X)
�
= −

∑
x

P (x) logP (x).

3 Achievable Rates Region

An attempt to find the entire (E1, E2, ∆1, ∆2)-achievable rates region

RP∗(E1, E2, ∆1, ∆2)

is made in Maroutian’s paper [13]. However, our revision of his result stimulat-
ed by [17] brought us to a different region, although, in the particular case of
E1, E2 → 0, as a consequence, he has obtained the correct answer for the hier-
archical source coding problem under fidelity criterion [11], known also due to
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Rimoldi [15]. A careful treatment of the code construction strategy based on the
type covering technique (by the way, used also by Tuncel and Rose in [17]) and
the combinatorial method for the converse employed in [13], allow us to come to
the results in Theorem 1 and Theorem 2, which together unify the refined result
for the multiple descriptions [13] (or, in other terminology, for the hierarchical
or scalable source coding).

Theorem 1. For every E1, E2 with E1 ≥ E2 > 0, and ∆1 ≥ 0, ∆2 ≥ 0,

RP∗(E1, E2, ∆1, ∆2) =
⋂

P∈α(E2,P∗)

⋃
QP∈Q(P,E1,E2,∆1,∆2)

{(R1, R2) :

R1 ≥ max
(

max
P∈α(E1,P∗)\α(E2,P∗)

RP (∆1), IP,QP (X ∧X1)
)
,

R1 +R2 ≥ IP,QP (X ∧X1, X2)}.

(5)

or, equivalently,

RP∗(E1, E2, ∆1, ∆2) =
⋂

P∈α(E2,P∗)

⋃
QP∈Q(P,E1,E2,∆1,∆2)

{(R1, R2) :

R1 ≥ max
(
RP∗(E1, ∆1), IP,QP (X ∧X1)

)
,

R1 +R2 ≥ IP,QP (X ∧X1, X2)}.

(6)

Note that the equivalence of (5) and (6) is due to the fact that RP (∆1) ≤
IP,QP (X ∧X1) for each P ∈ α(E2, P

∗) and the representation (3).

Theorem 2. In case of E2 ≥ E1,

RP∗(E1, E2, ∆1, ∆2) =
⋂

P∈α(E1,P∗)

⋃
QP∈Q(P,E1,E2,∆1,∆2)

{(R1, R2) :

R1 ≥ IP,QP (X ∧X1),

R1 +R2 ≥ max
(

max
P∈α(E2,P∗)\α(E1,P∗)

RP (∆2), IP,QP (X ∧X1, X2)
)} (7)

or, equivalently,

RP∗(E1, E2, ∆1, ∆2) =
⋂

P∈α(E1,P∗)

⋃
QP∈Q(P,E1,E2,∆1,∆2)

{(R1, R2) :

R1 ≥ IP,QP (X ∧X1),

R1 +R2 ≥ max
(
RP∗(E2, ∆2), IP,QP (X ∧X1, X2)

)}
.

(8)
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In this case, the equivalence of (7) and (8) is due to RP (∆2) ≤ IP,QP (X ∧
X1X2) for each P ∈ α(E1, P

∗) and the representation (3).
Now comparing these regions with the ones (specialized for the corresponding

cases) derived in [17] one can conclude that the regions by Tuncel and Rose
formulated in terms of the scalable rate-reliability-distortion function actually
are alternative forms of RP∗(E1, E2, ∆1, ∆2) characterized in Theorems 1 and 2.

Instead of proofs for the above theorems, we note that those statements are
obtained as an outcome of a scrutiny of [13].

In case of equal requirements of the receivers on the reliability, i.e. E1 = E2 =
E, we get from (5) and (7) a simpler region, denoted here by RP∗(E,∆1, ∆2).

Theorem 3. For every E > 0 and ∆1 ≥ 0, ∆2 ≥ 0,

RP∗(E,∆1, ∆2) =
⋂

P∈α(E,P∗)

⋃
QP∈Q(P,E,∆1,∆2)

{(R1, R2) :

R1 ≥ IP,QP (X ∧X1),

R1 +R2 ≥ IP,QP (X ∧X1, X2)
}
.

(9)

Furthermore, with E → 0 the definition of the set α(E,P ∗) and (9) yield
Koshelev’s [10] result for the hierarchical source coding rate-distortion region,
which was independently appeared then also in [13] and [15].

Theorem 4. For every ∆1 ≥ 0, ∆2 ≥ 0, the rate-distortion region for the
scalable source coding can be expressed as follows

RP∗(∆1, ∆2) =
⋃

QP∗∈Q(P∗,∆1,∆2)

{(R1, R2) :

R1 ≥ IP∗,QP∗ (X ∧X1),

R1 +R2 ≥ IP∗,QP∗ (X ∧X1X2)
}
.

(10)

4 Successive Refinement with Reliability: The Conditions

As in [7], we define the notion of the successive refinability in terms of the rate-
reliability-distortion function in the following way.

Definition. The DMS X with PD P ∗ is said to be successively refinable from
(E1, ∆1) to (E2, ∆2) if the optimal rates pair

(RP∗(E1, ∆1), RP∗(E2, ∆2) −RP∗(E1, ∆1)), (11)

is (E1, E2, ∆1, ∆2)-achievable, provided that RP∗(E2, ∆2) ≥ RP∗(E1, ∆1).
It is obvious that with E → 0 we have the definition of the successive refine-

ment in distortion sense [11], [5]. Another interesting special case is∆1 = ∆2 = 0,
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then we deal with the successive refinement in “purely” reliability sense, namely
the achievability of the optimal rates

(RP∗(E1), RP∗(E2) −RP∗(E1))

related to the corresponding rate-reliability functions for E2 ≥ E1 (since only
this condition ensures the inequality RP∗(E2) ≥ RP∗(E1)).

Below we prove our refined conditions concerning the successive refinement of
information in respect to the above definition, which are coincident with those
obtained in [17]. The different conditions for two cases and their proofs employ
the recharacterized results in Theorem 1 and 2 on multiple descriptions [13].

E1 ≥ E2 case: For this situation, from (6) it follows that the rates pair (11) is
achievable iff for each P ∈ α(E2, P

∗) there exists a QP ∈ Q(P,E1, E2, ∆1, ∆2)
such that the inequalities

RP∗(E1, ∆1) ≥ max
(
RP∗(E1, ∆1), IP,QP (X ∧X1)

)
, (12)

RP∗(E2, ∆2) ≥ IP,QP (X ∧X1, X2) (13)

hold simultaneously. These inequalities are satisfied for each P ∈ α(E2, P
∗) iff

RP∗(E1, ∆1) ≥ IP,QP (X ∧X1), (14)

which is due to (12), and, meanwhile

RP∗(E2, ∆2) ≥ IP,QP (X ∧X1, X2) ≥ IP,QP (X ∧X2) ≥ RP∗(∆2) (15)

for (13).
By the definition of the rate-reliability-distortion function (1) it follows that

(14) and (15) hold for each P ∈ α(E2, P
∗) iff there exist a PD P̄ ∈ α(E2, P

∗)
and a conditional PD QP̄ ∈ Q(P̄ , E1, E2, ∆1, ∆2), such that X → X2 → X1

forms a Markov chain in that order and at the same time

RP∗(E1, ∆1) ≥ IP̄ ,QP̄
(X ∧X1), (16)

RP∗(E2, ∆2) = IP̄ ,QP̄
(X ∧X2). (17)

The conditions (16) and (17) are the same ones derived in [17] for the succes-
sive refinability under the reliability constraint in case of E1 ≥ E2.

E2 ≥ E1 case: Taking into account the corresponding rate-reliability-distortion
region (8) it follows that (RP∗(E1, ∆1), RP∗(E2, ∆2)−RP∗(E1, ∆1)) is achievable
iff for each P ∈ α(E1, P

∗) there exists a QP ∈ Q(P,E1, E2, ∆1, ∆2) such that

RP∗(E1, ∆1) ≥ IP,QP (X ∧X1) (18)

and
RP∗(E2, ∆2) ≥ max

(
RP∗(E2, ∆2), IP,QP (X ∧X1, X2)

)
. (19)
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For each P ∈ α(E1, P
∗), selecting Q̄P as the conditional PD that minimizes the

mutual information IP,QP (X ∧X1, X2) among those which satisfy to (18) and
(19), the optimal pair of rates (RP∗(E1, ∆1), RP∗(E2, ∆2) − RP∗(E1, ∆1)) will
be achievable iff

RP∗(E1, ∆1) ≥ IP,Q̄P
(X ∧X1) (20)

and
RP∗(E2, ∆2) ≥ max

(
RP∗(E2, ∆2), IP,Q̄P

(X ∧X1, X2)
)
. (21)

Since the inequalities have to be satisfied for each P from α(E1, P
∗), (20) and

(21) are equivalent to

RP∗(E1, ∆1) ≥ max
P∈α(E1,P∗)

IP,Q̄P
(X ∧X1) (22)

and
RP∗(E2, ∆2) ≥ max

P∈α(E1,P∗)
IP,Q̄P

(X ∧X1, X2). (23)

Then, recalling (1) again, the inequalities (22) and (23) in turn hold for each
P ∈ α(E1, P

∗) iff

RP∗(E1, ∆1) = max
P∈α(E1,P∗)

IP,Q̄P
(X ∧X1) (24)

and meantime

RP∗(E2, ∆2) ≥ max
P∈α(E1,P∗)

IP,Q̄P
(X ∧X1, X2). (25)

Now, noting that the right-hand side of the last inequality does not depend on E2

and the function RP∗(E2, ∆2) is monotonically nondecreasing in E2, we arrive
to the conclusion that (25) will be satisfied for Q̄P meeting (24) iff Ê2 ≥ E2,
where

RP∗(Ê2, ∆2) = max
P∈α(E1,P∗)

IP,Q̄P
(X ∧X1, X2). (26)

The derived here condition for E2 ≥ E1 with specifications (24) and (26) was
proved by Tuncel and Rose [17] in terms of the scalable rate-distortion function.

It must be noted also that the successive refinement in reliability sense in case
of E2 ≥ E1 is not possible if

max
P∈α(E1,P∗)

IP,Q̄P
(X ∧X1, X2) > max

P
RP (∆2),

where the right-hand side expression is the value of the zero-error rate-distortion
function (see [4]) for the second hierarchy (the maximum is taken over all PDs on
X ), which can be obtained as the ultimate point of the rate-reliability-distortion
function for extremely large reliabilities (i.e., when E2 → ∞ in (3)).

Finally note that we obtain the conditions for the successive refinability in
distortion sense [11], [5], and [15], letting E1 = E2 = E → 0, as it can be seen
from (16) and (17).
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Concluding Notes

In course of research [10]-[12], [5], and [15] we have known that the successive re-
finement of information in distortion sense is possible if and only if the Markovity
condition for the source is fulfilled. As a correcting addendum to our previous
work [7], we restated the surprising result of [17], at the same time revising
Maroutian’s region [13] for the hierarchical source coding problem under relia-
bility criterion. In the more natural case E2 ≥ E1, the restated necessary and
sufficient condition asserts that the successive refinement is possible if and only
if E2 is larger than an indicated here threshold. Meanwhile it would be interest-
ing to note (as a particular outcome of previous discussions) that the successive
refinement in the “purely” reliability sense, i.e. when ∆1 = ∆2 = 0, is always
possible for E2 ≥ E1, since in that case Theorem 2 yields the achievability of
the rates

R1 = max
P∈α(E1,P∗)

HP (X),

R1 +R2 = max
P∈α(E2,P∗)

HP (X),

which are the corresponding values of the rate-reliability functions (4).
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Coding for the Multiple-Access Adder Channel

B. Laczay�

Abstract. The coding problem for the multiple-access adder channel is
considered, both for the case of permanent user activity and partial user
activity. For permanent user activity, Khachatrian [10] has written an
excellent survey for general, symmetric and non-symmetric rates. In this
survey, we only deal with the special symmetric rate case, where all users
have two codewords. The length of the shortest possible code is charac-
terized, and amongst others, we present the code construction of Chang
and Weldon [5]. We also deal with the case of signature coding (where
we mean that one of the codewords for each user is the zero vector). As
a code construction of this kind, we show Lindström’s one [12].

We also consider partial user activity. For this case, the resulting upper
and lower bounds on the length of the shortest possible code differs
by a factor of two. There are some constructions for suboptimal codes,
but we do not know about constructions with length approaching the
upper bound. The signature code is similar to the Bm code examined
by D’yachkov and Rykov [7]. It is interesting, that the upper and lower
bounds for the length of Bm codes are the same as for signature codes.

1 The Problem

1.1 Multiple-Access Channel

From the viewpoint of information theory the multiple-access channel is a
black-box operating in discrete time with a fixed number of inputs and one
output. There are also extended models, with multiple outputs, the so called
interference channels, but we do not deal with them now (c.f. [14,1]). We consider
that one user “sits” at each input, so instead of inputs we usually refer to users.
Let us denote the number of users with t. The input and output alphabets of
the channel are denoted by I and O, respectively.

We will deal only with the case of memoryless channel, so to fully describe
the channel, it is enough to give the channel transition probabilities py|x1x2...xt

:

P
(
Y = y

∣∣X1 = x1, X2 = x2, . . . , Xt = xt
)

= py|x1x2...xt

∀(x1, x2, . . . , xt) ∈ It, ∀y ∈ O.
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Here X1, X2, . . . , Xt denote the t inputs of the channel, while Y denotes the
output.

Each user of the channel has a so called component code. A component
code is a set of fixed codewords, one for each possible message of the user. We
assume, that all these codewords of all users have a common length n. So the
component code of the ith user can be written as

Ci =
{
x(i)

1 ,x(i)
2 , . . . ,x(i)

|Ci|

}
⊆ In.

The code itself is the set of the component codes defined above:

C = {C1, C2, . . . , Ct}.

The message user i wants to send is denoted by the random variable Ki ∈
{1, 2, . . . , |Ci|}. To send this message, the user transmits x(i)

Ki
through the chan-

nel. We will use a further restriction, that the codewords sent by the users are
bit and block synchronized. This means, that at a given instant, all users are
sending the same component of their codewords. Say, when user i is sending the
mth component of his codeword ([x(i)

Ki
]m), then user j is also sending the mth

component ([x(j)
Kj

]m). So we can treat the channel output as a vector of length n.
Since the channel is memoryless, we can write a simple formula for the distri-

bution of the vectorial channel output, conditionally on that user i sends its kth
i

codeword:

P
(
Y = y

∣∣∣K1 = k1,K2 = k2, . . . ,Kt = kt

)
= P

(
Y = y

∣∣∣X1 = x(1)
k1
,X2 = x(2)

k2
, . . . ,Xt = x(t)

kt

)
=

n∏
m=1

P
(
Y = [y]m

∣∣∣X1 = [x(1)
k1

]m, X2 = [x(2)
k2

]m, . . . Xt = [x(t)
kt

]m
)
.

To define the error probability of a given code C, we must have a decoding
function for each user:

di : On → {1, 2, . . . , |Ci|} ∀i ∈ [t].

(Here [t] denotes {1, 2, . . . , t}.) The aim of the decoding function di is to recover
the message Ki of the ith user from the channel output vector (Y). The error
probability (Pe) of a given code is defined as the probability of making a mistake
for at least one user, considering the optimal decoding functions:

Pe(C) = inf
d1,d2,...,dt

P
({

∃i ∈ [t] : di(Y) = Ki
})
.

Here we consider, that the random variables K1,K2, . . . ,Kt are independent and
uniformly distributed over the set of possible messages ({1, 2, . . . , |Ci|}):

P
(
Ki = k

)
=

1
|Ci|

∀i ∈ [t], ∀k ∈ {1, 2, . . . , |Ci|}.
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The code rate of a given code for user i is defined as

ri(C) =
log |Ci|

n
,

while the rate vector of a given code is formed by arranging these quantities into
a vector:

r(C) = (r1, r2, . . . , rt).

The rate region of a channel is the set of rate vectors that can be reached
by arbitrarily small error:

R =
{
r : ∀ε > 0: ∃C : Pe(C) ≤ ε and ∀i ∈ [t] : ri(C) ≥ [r]i

}
.

Ahlswede [1] and van der Meulen [15] have determined the rate region for the
case t = 2. Liao [11] has formulated the rate region for the general t user case.

1.2 Binary Adder Channel

The binary adder channel (Figure 1) is a special case of the multiple-access
channel. Here the channel input alphabet is binary (B = {0, 1}), while the output
alphabet is the set of nonnegative integer numbers. The channel is deterministic:
the output is the sum of the inputs, where the summation is the usual summation
over N (and it is not the mod 2 summation). The channel transition probabilities
can be written as

P(Y = y|X1 = x1, X2 = x2, . . . , Xt = xt) =

{
1 if y =

∑t
i=1 xi;

0 otherwise.

Using the vectorial form we can say, that the received vector is (almost sure) the
sum of the sent codeword vectors:

Y =
t∑
i=1

x(i)
Ki
.

The rate region of this channel has been determined by Chang and Weldon
[5]. For t = 2 it is shown in Figure 2. Ahlswede and Balakirsky [2] have given a
code construction with high rates for the t = 2 case.

For a deterministic channel, like the adder channel, it is interesting to define
the class of uniquely decipherable (u.d.) codes. Code C is a u.d. code for the
adder channel, if the messages of the users can be recovered without error from
the output of the channel (Pe(C) = 0). I.e. if the users send different messages,
then the received sum vector must be different. To formulate this, let us denote
the message of the ith user with ki. We call message-constellation the vector
formed by the messages of the users:

k = (k1, k2, . . . , kt) ∈
t⊗
i=1

{1, 2, . . . , |Ci|}.
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y =
∑t

i=1 xiD
D
E
R

x1

x2

xt

A

Fig. 1. The binary adder channel (x1, x2, . . . , xt ∈ B, y ∈ N)

r1

1

0.5

0.5 1

r2

Fig. 2. The rate region of the binary adder channel for t = 2 users

For the adder channel, given the message-constellation k, the channel output
vector is deterministic, and is denoted by S(k). In the case of the adder channel

S(k) =
t∑
i=1

x(i)
[k]i

.

Definition 1. A multiple-access code is a uniquely decipherable (u.d.) code for
the adder channel, if the received vector is unique considering all message-
constellations:

S(k) = S(l) ⇐⇒ k = l ∀k, l ∈
t⊗
i=1

{1, 2, . . . , |Ci|}.

Khachatrian [10] has written an excellent survey on u.d. code constructions for
the adder channel, with various rates.

In this article, we will deal only with a special class of u.d. codes with sym-
metric rates. If we take the sum rate

rsum =
t∑
i=1

ri
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of arbitrary u.d. codes for the adder channel, then from the results of Chang and
Weldon [5] it follows, that the maximal achievable sum rate for large t is

rsum ∼ 1
2

log t.

They have also given a u.d. code construction with two codewords per user with
asymptotically the same rate. This means, that to maximize the sum rate, it is
enough to consider codes with two codewords per user:

Ci =
{
x(i)

1 ,x(i)
2

}
∀i ∈ [t].

In this case, the rates for all users are the same, namely

ri =
1
n

∀i ∈ [t],

and because of this, we can even use the code length instead of the rate vector
to compare codes.

As we have just mentioned, Chang and Weldon [5] and later Lindström [12]
have given u.d. code constructions for the binary adder channel. Chang and
Weldon’s construction is, in fact, a statistical design that was given by Cantor
and Mills [4]. Both constructions will be shown later in Sections 2.6 and 2.5.

We will deal also with the signature coding problem. Consider an alarming
or signaling system: there are t stations, and some of them want to send an
alarm signal: they send their codeword to the channel. The others, who do not
want to signal an alarm, turn off their transmitter to conserve power. We can
consider these stations as they are sending a zero vector to the channel.

The task of the receiver is to detect the alarming stations. This scenario is
much like the general two codeword coding problem with one additional con-
straint: one of the codewords in all component codes should be the zero vector.

C =
{{

0,x(1)
}
,
{
0,x(2)

}
, . . . ,

{
0,x(t)

}}
.

We can define the class of uniquely decipherable (u.d.) signature codes,
where the channel output must be different for all different set of active users.
We will denote the channel output vector for a given set U of active users as
S(U) (U ⊆ [t]). For the binary adder channel

S(U) =
∑
i∈U

x(i).

Definition 2. A signature code for the adder channel is uniquely decipherable
(u.d.), if the received vector is unique considering all possible sets of active users:

S(U) = S(V ) ⇐⇒ U = V ∀U, V ⊆ [t].
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1.3 User Models

Modeling the behavior of the users is as important as to model the channel itself.
There are two fundamental user models, the permanent activity model and the
partial activity model.

The permanent activity model is a rather simple one. Here the users con-
sidered to be active all the time, i.e. they always have some information to send.
In the previous sections we considered this case.

In many real-life examples (think about a mobile phone network, for example)
the users are not always active, they are just partially active, i.e. sometimes
they have information to send, but most of the time they do not have. There are
many possibilities to model a user population with this behavior. One interesting
scenario is the m-out-of-t model: in this model we assume, that at most m users
out of the t total ones are active at any instant, but this active set can vary
arbitrarily with time as long as its size does not exceed m.

To make a good formalism for this partial activity case, we consider that the
zero vector is added to each component code as a new codeword. The active
users simply send the appropriate codeword belonging to their messages, while
the inactive ones send the zero vector. This model corresponds to real life, where
inactivity means simply turning off the transmitter.

This motivates the use of signature codes, introduced in the previous section.
It those signature codes, for the active users there are only one usable codeword
in their component codes. Thus we cannot transfer messages directly, but we can
solve signaling and alarming tasks. For real information transfer, we will show a
simple scenario a bit later.

The point in using m-out-of-t model is that, if m is significantly smaller than
t, which is usually a realistic case, then a m-out-of-t code can be significantly
shorter than a conventional t user multiple-access code.

For real information transmission with signature codes, one can use the fol-
lowing simple scenario. Consider a population of t users with m-out-of-t partial
activity model. (Note, that the following construction works also for the per-
manent activity model.) We will create a u.d. multiple-access code with three
codewords per user, one codeword is the all zero one, for signaling inactivity,
while the other two are for the messages of the active users. Let us take a u.d.
signature code C∗ for 2t virtual users out of which at most m are active simul-
taneously (a code for the 2t-out-of-m model):

C∗ =
{{

0,x(1)
}
,
{
0,x(2)

}
, . . . ,

{
0,x(2t)

}}
.

Create the component codes of the new multiple-access code by distributing two
codewords from C∗ for each of the t real users, and additionally, put the all zero
codeword into the component codes:

Ci = {0,x(2i−1),x(2i)} ∀i ∈ [t].

This way we have got a multiple-access code with two message codewords and
one inactivity codeword for t users:

C = {C1, C2, . . . , Ct}.
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Each user can transmit messages with the nonzero codewords, or signal inactivity
with the zero one. If the number of simultaneously active users does not exceed
m, then the code is u.d. Moreover, the partial activity of the users is exploited
in the code, so the codeword length can be far below the length of a code for
the permanent activity case.

2 Permanent Activity Case

In this section we survey some well known results regarding the u.d. coding
problem of the multiple-access adder channel for the permanent activity case.
We will present some bounds on the minimal length of u.d. codes, as well as
some code constructions.

2.1 Equivalent Representations

There are many equivalent representations of the u.d. signature coding problem
for the adder channel. In this section we show some of them.

Problem 1 (Coin Weighing Problem). Given t coins, some of them are
counterfeit, some are genuine, and we have to distinguish between them. The
weight of the counterfeit coins are e.g. 9 grams, while the original ones weigh
10 grams. We have a scale, that weighs exactly. Give sets of coins, for which by
measuring the weight of these sets, we can find the counterfeit coins. What is
the minimal number of weighings required?

We have to stress, that we consider here the problem, when the set of coins
selected for the future weighings does not depend on the results of the previous
weighings, so the sets to weigh is given before we start measuring at all. In terms
of search theory this is called non-adaptive or parallel search. (There is another
problem, when the next set to weigh can be selected according to the results of
the previous weighings, but we do not deal with this so called adaptive search
problem here.)

To show how this problem is related to the coding problem, first make some
simplifications: let the weight of a counterfeit coin be one, and the weight of a
genuine one be zero. Certainly this is still the same problem.

Now let us consider that each coin represents a user. Construct a codeword for
each user: let the length of the codeword be equal to the number of weighings.
Put 1 to the ith position if the coin associated with this user participates in the
ith weighing. If the coin is not participating in that weighing, then put 0 there.
If we give the zero vector as a common second codeword for all users, then we
get a signature code.

Consider a given set of counterfeit coins, and consider that the users associated
with the counterfeit coins send their non-zero codeword. (We can consider, that
the other users send the zero vector.) The result of the weighings will be equal
to the sum vector at the channel output. If we can determine the set of false
coins from the output of the weighings, then we can determine the messages of
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the users from the sum vector, and vica versa. So the problems of planning the
weighings and finding u.d. signature codes are equivalent.

Problem 2 (Combinatorial Detection Problem). Given a finite set T con-
struct a set M of subsets of it (M ⊆ P(T ), where P(T ) is the power-set of T ),
in such a way that given an arbitrary U ⊆ T we can determine U from the sizes
of the intersections |U ∩M | for all M ∈ M. What is the minimal size of M?

To find the equivalence of this problem with the previous one is really easy. Here
the sets in M denotes the sets of coins weighed together. So it follows, that this
combinatorial detection problem is equivalent to the u.d. coding problem. But
we will give a more formal proof of it using the matrix representation.

The matrix representation is simply another representation of the last
combinatorial detection problem. If T = [t], then we can represent one subset U
of it with a binary column vector u of length t:

[t] ⊇ U �→ u ∈ Bt where [u]i =

{
1 if i ∈ U ;
0 if i /∈ U

∀i ∈ [t]. (1)

The combinatorial detection problem can be formulated as to find column
vectors y1,y2, . . . ,yn ∈ Bt in such a way, that if we know the values yi�u
for all i ∈ [n], then we can determine the vector u. To complete the matrix
representation, create a matrix from the row vectors yi� by simply writing them
below each other:

C =


y1
�

y2
�

...
yn�

 .

Now the problem is to find a matrix C for which

Cu = Cv ⇐⇒ u = v ∀u ∈ Bt, ∀v ∈ Bt, (2)

or equivalently, introducing w = u− v, the problem is to find a C, for which

Cw = 0 ⇐⇒ w = 0 ∀w ∈ {−1, 0, 1}t. (3)

Now we show the mapping between this matrix representation of the combi-
natorial detection problem and the u.d. coding problem of the multiple-access
adder channel.

Let us write the above matrix C as column vectors x(1),x(2), . . . ,x(t) ∈ Bn
written next to each other:

C =
(
x(1) x(2) · · · x(t)

)
.

Consider a multiple-access code, where each user has two codewords, one is
the zero vector, the other is a column vector x(i) from above:

C = {C1, C2, . . . , Ct},
Ci = {0,x(i)} ∀i ∈ [t].
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It is easy to see, that this code is a u.d. signature code for the adder channel
for t users. Let T = [t] denote the population of the t users. At a given instant,
each user sends that codeword from his component code, which corresponds
to his message. Let ki denote the message of the ith user, and let us map the
messages and codewords in such a way, that “message 1” (ki = 1) is associated
with the 0 vector, and “message 2” (ki = 2) is associated with the x(i) vector.
With these notations, the u.d. property in the case of the adder channel was the
following (see Definition 1):∑

i:[k]i=2

x(i) =
∑
i:[l]i=2

x(i) ⇐⇒ k = l ∀k, l ∈ {1, 2}t.

Let us denote the subset of users sending their nonzero codeword (ki = 2) in
constellation k with U and in constellation l with V (U ⊆ T, V ⊆ T ). Let us
represent these sets U and V with vectors u and v in the way given by our
mapping (1). Now the uniquely decipherable property becomes

Cu = Cv ⇐⇒ u = v ∀u ∈ Bt, ∀v ∈ Bt.

which is exactly the same formula as (2) which was given as the condition on C.

2.2 Trivial Bounds on N(t)

First we present here a very simple statement about the minimal code length
for the binary adder channel with two codewords per user.

Definition 3. The minimal code length N(t) is the length of the shortest
possible u.d. code for a given number of users:

N(t) = min{n : ∃C u.d. code with length n for t users}.

Definition 4. The minimal signature code length Ns(t) is the length of the
shortest possible u.d. signature code for a given number of users:

Ns(t) = min{n : ∃C u.d. signature code with length n for t users}.

Theorem 1.
t

log(t+ 1)
≤ N(t) ≤ Ns(t) ≤ t.

Proof. For the lower bound, we simply use enumeration: there are 2t possible
message-constellations for t users (k ∈ {1, 2}t). On the other side, the received
vector has components in {0, 1, . . . , t}, and in case of the shortest possible code it
is of length N(t). For the u.d. property, the number of possible received vectors
cannot be smaller than the number of possible user subsets. Thus we have

(t+ 1)N(t) ≥ 2t,
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from which
N(t) ≥ t

log(t+ 1)
.

(Here and from now, log represents the logarithm of base 2.)
The statement N(t) ≤ Ns(t) follows simply from the definition: all u.d. signa-

ture code is also a u.d. code, so the minimal u.d. code length cannot be greater
than the minimal u.d. signature code length.

For the upper bound, we show a trivial u.d. signature code construction for
t users with codeword length n = t: simply let the codewords of the ith user be
0 and e(i) which is the ith unit vector. Using the matrix representation, we can
say, that for t users let C = It (which is the identity matrix of size t× t). Since
this matrix is invertible, this signature code certainly has the u.d. property. So
Ns(t) ≤ t. �

2.3 Upper Bound of Erdős and Rényi

Erdős and Rényi [8] has presented a nontrivial asymptotic upper bound on the
minimal signature code length for the adder channel:

Theorem 2. (Erdős–Rényi [8])

lim
t→∞

Ns(t) log t
t

≤ log 9.

Proof. The proof is based on random coding. We select a random signature
code C of length n+1 in such a way, that the first n components of the non-null
codewords are i.i.d. uniformly distributed binary random variables, while the
(n+ 1)th component is fixed to 1:

P
([

x(j)
]
i
= 0

)
= P

([
x(j)

]
i
= 1

)
=

1
2

∀j ∈ [t], ∀i ∈ [n] (i.i.d.),[
x(j)

]
n+1

= 1 ∀j ∈ [t].

We will work with the probability of the event

Code C is not a u.d. signature code, (*)

and we will give an upper bound for it, which will tend to 0 as t → ∞.
We have introduced S(U) as the channel output when the set of active users

is U . Simply we have that if C is not a u.d. signature code, then there are two
different sets of active users, say U and V , for which S(U) = S(V ).

P
(
event (*)

)
= P

 ⋃
U �=V⊆[t]

{
S(U) = S(V )

} .

If there are two subsets U and V for which S(U) = S(V ), then there are also
two disjoint subsets with the same property: U \ V and V \ U will suite. We
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know also, that |U | = |V |, since the (n + 1)th component of the received vector
is simply the number of active users, so if the received vectors are equal, then
the sets of the active users must be of the same size:

P
(
event (*)

)
= P

 ⋃
U �=V⊆[t] :

|U|=|V |,U∩V=∅

{
S(U) = S(V )

} .

We can use the so called union bound as an upper bound:

P
(
event (*)

)
≤

∑
U �=V⊆[t] :
|U|=|V |,
U∩V=∅

P
(
S(U) = S(V )

)

=
� t

2�∑
k=1

∑
U,V⊆[t] :
|U|=|V |=k,
U∩V=∅

P
(
S(U) = S(V )

)
, (4)

since the common size of the active subsets is at most
⌊
t
2

⌋
.

The components of the codewords in C has a simple distribution, so it is easy
to calculate P

(
S(U) = S(V )

)
for some fixed disjoint U and V of the same size k:

P
(
S(U) = S(V )

)
= P

(
n⋂
i=1

k⋃
�=0

{[S(U)]i =  and [S(V )]i = }
)

=

(
k∑
�=0

(
k



)
2−k

(
k



)
2−k

)n
,

since the components of S(U) and S(V ) are independent, and for disjoint U and
V , S(U) and (V ) has independent binomial distribution.

Let us introduce

Q(k) =
k∑
�=0

(
k



)
2−k

(
k



)
2−k. (5)

We have

Q(k) =
k∑
�=0

(
k



)(
k

k − 

)
2−2k =

(
2k
k

)
2−2k.

For 1 < k (
2k
k

)
2−2k ≤ 1√

πk
.

(C.f. Gallager [9] Problem 5.8 pp. 530.) Thus

Q(k) ≤ 1√
πk

. (6)
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Substituting this result into (4), we get

P
(
event (*)

)
≤

� t
2�∑
k=1

∑
U,V⊆[t] :

|U|=k,|V |=k,
U∩V=∅

(
1√
πk

)n

=
� t

2�∑
k=1

(
t

k

)(
t− k

k

)(
1√
πk

)n
. (7)

Split the summation into two parts:

k = 1, 2, . . . ,
⌊

t

2 ln2 t

⌋
,

and

k =
⌊

t

2 ln2 t

⌋
+ 1,

⌊
t

2 ln2 t

⌋
+ 2, . . . ,

⌊
t

2

⌋
.

(Here and from now, ln represents the natural logarithm.) For the first part, we
use 1√

πk
≤ 1√

π
and

(
t
k

)(
t−k
k

)
≤ t2k:

� t
2 ln2 t

�∑
k=1

(
t

k

)(
t− k

k

)(
1√
πk

)n
≤

� t
2 ln2 t

�∑
k=1

t2k
(

1√
π

)n

≤
(
t2
) t

2 ln2 t − 1
t2 − 1

(
1√
π

)n
≤ t

t
ln2 t

(
1√
π

)n
≤ exp

(
t

ln t
− n

2
lnπ

)
,

which tends to zero as t → ∞ if

lim
t→∞

(
t

ln t
− n

2
lnπ

)
= −∞. (8)

For the second part of the summation in (7), we use
∑� t

2�
k=1

(
t
k

)(
t−k
k

)
≤ 3t,

which holds since selecting two subsets of [t] is equivalent of partitioning it into
three parts. So
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� t
2�∑

k=� t
2 ln2 t

�+1

(
t

k

)(
t− k

k

)(
1√
πk

)n
≤

� t
2�∑
k=1

(
t

k

)(
t− k

k

) 1√
πt

2 ln2 t

n

≤ 3t

 1√
πt

2 ln2 t

n

= exp
(
t ln 3 − n

2
ln

πt

2 ln2 t

)
,

which tends to zero as t → ∞ if

lim
t→∞

(
t ln 3 − n

2
ln

πt

2 ln2 t

)
= −∞. (9)

Let us set

n =
⌈
ct

ln t

⌉
.

In the first condition (8) this yields

lim
t→∞

(
t

ln t
− n

2
lnπ

)
≤ lim
t→∞

(
t

ln t
− ct lnπ

2 ln t

)
=

(
1 − c lnπ

2

)
lim
t→∞

t

ln t
,

which is −∞ if c > 2
lnπ ≈ 1.747. In the second condition (9),

lim
t→∞

(
t ln 3 − n

2
ln

πt

2 ln2 t

)
≤ lim
t→∞

(
t ln 3 − ct

2 ln t
ln

πt

2 ln2 t

)
= lim
t→∞

(
t

(
ln 3 − c

2
lnπt− ln

(
2 ln2 t

)
ln t

))
=
(
ln 3 − c

2

)
lim
t→∞

t,

which is −∞ if c > ln 9 ≈ 2.197.
So we have shown, that for all ε > 0 and n =

⌈
(ε+ln 9)t

ln t

⌉
,

lim
t→∞

P
(
event (*)

)
= 0.

This means, that for t large enough, the random code of length n + 1 we select
is a u.d. signature code with positive probability. So there exists a u.d. signature
code of this length:

Ns(t) ≤
⌈

(ε + ln 9)t
ln t

⌉
+ 1 ≤ (ε+ ln 9)t

ln t
+ 2,

for t large enough, or equivalently

lim
t→∞

Ns(t) log t
t

≤ log 9. �
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2.4 A Lower Bound

From our trivial lower bound (Theorem 1) and the upper bound of Erdős and
Rényi (Theorem 2), for the minimal length of u.d. codes for the adder channel
we have

1 ≤ lim inf
t→∞

N(t)
log t
t

≤ lim
t→∞

Ns(t)
log t
t

≤ log 9,

while the truth is that

lim
t→∞

N(t)
log t
t

= lim
t→∞

Ns(t)
log t
t

= 2.

Here we present an improved lower bound for the limes inferior. The upper
bound for the limes superior will follow from the construction of Lindström (see
Section 2.6).
Theorem 3. (Chang–Weldon [5])

lim inf
t→∞

N(t)
log t
t

≥ 2.

For the proof, we will need a lemma which is following from a bound of the
discrete entropy (cf. e.g. [6] Theorem 9.7.1 pp. 235.):
Lemma 1. Let X have an arbitrary distribution over the integers:

P(X = i) = pi ∀i ∈ Z,∑
i∈Z

pi = 1.

If X has variance D2(X) and Shannon–entropy H(X) = −
∑
i∈Z pi log pi, then

H(X) ≤ 1
2

log
(

2πe
(

D2(X) +
1
12

))
.

Lemma 2.

Hbin

(
n,

1
2

)
≤ logn

2
+O(1),

where Hbin(n, p) denotes the entropy of the binomial distribution with parameters
(n, p).

Proof. The variance of the binomial distribution with parameters
(
n, 1

2

)
is n4 .

Putting this into Lemma 1 we get

Hbin

(
n,

1
2

)
≤ 1

2
log

(
2πe

(
n

4
+

1
12

))
=

1
2

log
(
πe

2

)
+

1
2

log
(
n+

1
3

)
=

1
2

log
(
πe

2

)
+

1
2

(
logn+O

(
1
n

))
=

logn
2

+O(1). �
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Proof of Theorem 3. We will bound the same entropy in two different ways,
and this will yield the bound. Consider an arbitrary u.d. code for the adder
channel. Let us define the message-constellation K as a random vector variable
with uniform distribution over all the possible constellations:

P(K = k) =
1
2t

∀k ∈ {1, 2}t

Since the code is u.d., the received vector Y must be different for all different
K, so

H(Y) = H(K) = t. (10)

On the other hand, the entropy of Y can be upper bounded by the sum of
the entropies of its components. Each component of the vector Y has a binomial
distribution. To show this, considering only the jth bit of the codewords, split the
user population into three groups. For the users in the first group both codewords
has 0 in the jth position. For the users in the second group, one codeword is 0
and the other is 1 at the jth position, while for the third group both codewords
are 1 at the jth position. If we denote the number of users in the first group with
aj , in the second group with bj and in the third group with cj the we can write

P([Y]j = s) =
2aj

(
bj
s−cj

)
2cj

2aj+bj+cj
=
(

bj
s− cj

)
2−bj ∀s : cj ≤ s ≤ bj + cj ,

where 2aj is the number of possible constellations for the users in the first group,(
bj
s−cj

)
is the number of possible constellations for users in the second group

(select exactly s − cj users out of the bi ones who have both zero and one at
position j), and 2cj is the number of possible constellations for users in the third
group. 2aj+bj+cj is the total number of possible constellations.

Now we can write

H(Y) ≤
n∑
j=1

H([Y]j)

≤
n∑
j=1

Hbin

(
bi,

1
2

)
,

and with Lemma 2

H(Y) ≤
n∑
j=1

(
log bi

2
+O(1)

)

≤ n

(
log t
2

+O(1)
)
. (11)

Putting (10) and (11) together we get that

n ≥ t
log t
2 +O(1)

,
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so for the minimal n

N(t)
log t
t

≥ 2
1 +O( 1

log t )
,

thus

lim inf
t→∞

N(t)
log t
t

≥ 2. �

2.5 Chang and Weldon’s Construction

In this section we show the u.d. code construction of Chang and Weldon [5] for
the binary multiple-access adder channel. Their code construction is for tk =
(k + 2)2(k−1) users, where k is an arbitrary natural number. Their code length
is nk = 2k. If we put these together, we get

lim
k→∞

nk
log tk
tk

= 2,

from which
lim
k→∞

N(tk)
log tk
tk

≤ 2.

First, we present a difference matrix representation of codes with two code-
words per user. Given an arbitrary code

C =
{{

x(1)
1 ,x(1)

2

}
,
{
x(2)

1 ,x(2)
2

}
, . . . ,

{
x(t)

1 ,x(t)
2

}}
,

we can create a so called difference matrix D by writing the differences of the
two vectors in the component codes next to each other:

D =
(
x(1)

2 − x(1)
1 x(2)

2 − x(2)
1 · · · x(t)

2 − x(t)
1

)
It is easy to see, that given a difference matrix D (a matrix with all elements

from {−1, 0, 1}) we can construct at least one code, for which this is the difference
matrix. E.g. for all user i ∈ [t] and for all code bit j ∈ [n] let

[x(i)
1 ]j =


1 if [D]ij = −1;
0 if [D]ij = 0;
0 if [D]ij = 1,

and [x(i)
2 ]j =


0 if [D]ij = −1;
0 if [D]ij = 0;
1 if [D]ij = 1.

Certainly we could also use 1 in both codewords if [D]ij = 0.
It is easy to show (with the same reasoning given in Section 2.1 at the matrix

representation), that that the u.d. property can be expressed in the following
property of matrix D:

∀w ∈ {−1, 0, 1}t : Dw = 0 ⇐⇒ w = 0. (12)



Coding for the Multiple-Access Adder Channel 181

We have trivial u.d. difference matrices for t = 1 (D0) and for t = 3 (D1):

D0 =
(
1
)
,D1 =

(
1 1 1
1 −1 0

)
.

Moreover, we can find a recursive construction for u.d. difference matrices Dk

for t = (k + 2)2k−1 users. This is stated as the next theorem.

Theorem 4. (Chang–Weldon [5]) The Dk matrices defined below are u.d. dif-
ference matrices for tk = (k + 2)2k−1 users with code length nk = 2k:

D0 =
(
1
)

∀k ≥ 1 : Dk =
(
Dk−1 Dk−1 I2k−1

Dk−1 −Dk−1 02k−1

)

Proof. It is easy to see by induction, that Dk has tk = (k + 2)2k−1 columns,
since the two matrices Dk−1 have two times (k + 1)2k−2 columns, and the ad-
ditional identity and zero matrices has 2k−1 columns. The sum is really tk =
(k + 2)2k−1.

Now let us suppose, that for a given w ∈ {−1, 0, 1}tk

Dkw = 0

We decompose vector w of length tk into three vectors w1,w2,w3 of length
(k + 1)2k−2, (k + 1)2k−2, and 2k−1 respectively:

w =

w1

w2

w3

 .

Now using the recursive definition of Dk we get

(
Dk−1 Dk−1 I2k−1

Dk−1 −Dk−1 02k−1

)w1

w2

w3

 =
(
0
0

)
,

which gives two equations:

Dk−1w1 + Dk−1w2 + w3 = 0,

Dk−1w1 − Dk−1w2 = 0.

From this we have
2Dk−1w1 = −w3

and since w3 has components in {−1, 0, 1}, it follows that w3 = 0, and therefore

Dk−1w1 = 0

Dk−1w2 = 0.
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But Dk−1 has property (12) by induction, so

w1 = 0,
w2 = 0.

follows, and the proof is complete. �
Chang and Weldon [5] have also given a decoding algorithm for their code.

It is the following: let us suppose, that user i sends message ki, so the received
vector is

v =
t∑
i=1

x(i)
ki

If we introduce vector u ∈ Btk which has 0 in the positions corresponding to
users sending their “message 1” and 1 in the positions corresponding to users
sending their “message 2”

[u]i =

{
0 if ki = 1;
1 if ki = 2;

∀i ∈ [tk].

then we can write, that

v = Dku +
t∑
i=1

x(i)
1 ,

and therefore

Dku = v −
t∑
i=1

x(i)
1 . (13)

Now we make a decomposition:

v −
t∑
i=1

x(i)
1 =

(
v1

v2

)
=

(
Dk−1 Dk−1 I2k−1

Dk−1 −Dk−1 02k−1

)u1

u2

u3

 ,

where v1 and v2 has 2k−1 rows, u1 and u2 has (k + 1)2k−2 rows, and u3 has
2k−1 rows. This equation yields

v1 + v2 = 2Dk−1u1 + u3.

Then

v1 + v2 ≡ u3 mod 2,

and from this we get u3 ∈ Bt. We have also

Dk−1u1 =
1
2
(v1 + v2 − u3),

Dk−1u2 =
1
2
(v1 − v2 − u3),
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where the right hand side of the equations are known vectors. This is two in-
stances of the same problem but with a smaller k like we started with in formula
(13). In the k = 0 case we will have a trivial equation for u since D0 = (1).

2.6 Lindström’s Construction

Lindström presented a u.d. signature code construction for the multiple-access
adder channel in [12]. His code is asymptotically optimal, since it sets an upper
bound on the minimal u.d. signature code length which is equal to the lower
bound in Theorem 3.

In the construction we will use P([t]) → N functions. Just to keep the original
notation of Lindström, these functions will be noted as indexed variables like ai
rather than as functions like a(i):

a : P([t]) → N [t] ⊇ M �→ aM ∈ N.

In the followings we will give Lindström’s u.d. signature code matrix Cs for
t = s2s−1 users where s ∈ N. First let us fix an enumeration of the nonempty
subsets of [s]:

M1,M2, . . . ,M2s−1 (Mi ⊆ [s],Mi = ∅ ∀i ∈ [2s − 1]).

Construction of matrix As. We have 2s−1 nonzero binary vectors of length s:

a1,a2, . . . ,a2s−1 (ai ∈ Bs,ai = 0 ∀i ∈ [2s − 1]).

Now introduce functions a(j) : P([t]) → B based on these aj vectors for all j =
1, . . . , 2s − 1 in the following way. For each M ⊆ [t] let us represent M with a
vector m ∈ Bt where

[m]i =

{
1 if i ∈M ;
0 if i /∈M.

(This is the same way, as it was given at the matrix representation by (1).) Now
let

a
(j)
M = m�aj mod 2 ∀M ⊆ [t]. (14)

Let us define matrix As of size 2s − 1 × 2s − 1 in the following way:

[As]ij = a
(j)
Mi
.

Construction of matrices B(k)
s . We have 2s−s−1 subsets of [s] with at least

two elements:

L1, L2, . . . , L2s−s−1 (Li ⊆ [s], |Li| ≥ 2 ∀i ∈ [2s − s− 1])

We will define a matrix B(k)
s for each k ∈ [22 − s− 1] in the following way. For

each j ∈ [|Lk| − 1] and for each nonempty subset M of Lk (M ⊆ Lk,M = ∅)
introduce b(k,j) : P(Lk) \ {∅} → B such that the following condition holds:
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M⊆Lk
M �=∅

b
(k,j)
M = 2j−1.

This is possible for all k and j: e.g. order the nonempty subsets M of Lk ar-
bitrarily, then for the first 2j−1 subsets M let b

(k,j)
M = 1, while for the other

subsets M let b(k,j)M = 0. (This construction is valid for all j ∈ [|Lk| − 1], since
2j−1 ≤ 2|Lk|−2 < 2|Lk| − 1, which is the number of nonempty subsets of Lk.)

Now extend b(k,j) for all M ⊆ [s]:

b̂(k,j) : P([t]) → B b̂
(k,j)
M =


0 if M = ∅;
b
(k,j)
M if ∅ = M ⊆ Lk;
b
(k,j)
M∩Lk

+
∣∣M \ Lk

∣∣ mod 2 if M � Lk.

(15)
Finally define matrix B(k)

s of size 2s − 1 × |Lk| − 1 as

[B(k)
s ]ij = b̂

(k,j)
Mi

.

Construction of Cs. Now we will construct matrix Cs of size (2s−1)× s2s−1,
which will be the matrix of an u.d. code for the adder channel. Let us write the
above defined As and B(k)

s matrices next to each other:

Cs =
(
As B(1)

s B(2)
s . . . B(2s−s−1)

s

)
Cs has 2s − 1 rows, and it is easy to check that it has s2s−1 columns:

2s − 1 +
s∑
i=2

(
s

i

)
(i− 1) =

s∑
i=0

(
s

i

)
i = s2s−1.

Theorem 5. The construction of Lindström gives u.d. signature codes for ts =
s2s−1 users, where s is an arbitrary natural number. His code is of length ns =
2s − 1. Thus

lim
s→∞

ns
log ts
ts

= 2.

For the minimal u.d. signature code length it follows, that

lim
s→∞

Ns(ts)
log ts
ts

≤ 2.

From the values of ts and ns, the statement about the limes and the limes
superior is trivial. It is important to note, that even if we had shown it for special
values of t only, Lindström has given his construction for arbitrary t. This means,
that he has proven, that

lim
t→∞

Ns(t)
log t
t

≤ 2.

What we need to proof in Theorem 5 is that this is a u.d. signature code. For
this, we will start with some lemmas.
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Lemma 3. Choose an arbitrary a ∈ Bt. Let us define function “a” : P([t]) → B
by construction (14). Then for every P ⊆ [t],

∑
M⊆P

aM =

{
0 if ∀i ∈ P : [a]i = 0;
2|P |−1 otherwise.

Proof. If [a]i = 0 for all i ∈ P , then aM = 0 for all M ⊆ P , and then the
sum is trivially 0. If exists i ∈ P with [a]i = 1, then for all M not containing i
we have aM∪{i} ≡ aM + 1 mod 2, so one of aM and aM∪{i} is 1, the other is 0,
thus aM + aM∪{i} = 1. Then∑

M⊆P
aM =

∑
M⊆P\{i}

(aM + aM∪{i}) =
∑

M⊆P\{i}
1 = 2|P |−1.

�

Lemma 4. Choose an arbitrary a ∈ Bt and b ∈ Bt in such a way, that a = 0
and b = 0. Define a : P([t]) → B and b : P([t]) → B by construction (14). Then

∑
M⊆[t]

aM bM =

{
2t−1 if a = b;
2t−2 if a = b.

Proof. If a = b then ∀M ⊆ [t] : aM = bM thus aM = bM = 0 or aM = bM = 1.
In both cases aM bM = aM holds:∑

M⊆[t]

aMbM =
∑
M⊆[t]

aM ,

and then we continue with Lemma 3:∑
M⊆[t]

aMbM = 2t−1.

If [a]i = [b]i for some i, then either [a]i = 0 and [b]i = 1 or [a]i = 1 and [b]i = 0.
If [a]i = 0 and [b]i = 1 then for all M not containing i we have aM = aM∪{i}
moreover one of bM and bM∪{i} is 0 while the other is 1, so

aMbM + aM∪{i}bM∪{i} = aM bM + aMbM∪{i}

= aM (bM + bM∪{i})
= aM .

If the case is the opposite ([a]i = 1 and [b]i = 0), then the result will be

aMbM + aM∪{i}bM∪{i} = bM .
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For both cases we can finish by Lemma 3:∑
M⊆[t]

aMbM =
∑

M⊆[t]\{i}

(
aM bM + aM∪{i}bM∪{i}

)
=

{∑
M⊆[t]\{i} aM∑
M⊆[t]\{i} bM

= 2t−2 �

Lemma 5. Let aM be defined arbitrarily for all nonempty subsets M of a given
L ⊆ [t], and let us extend this function over all subsets of [t] by construction
(15). Then for every P ⊆ [t] for which P � L∑

M⊆P
aM = 2|P |−1.

Proof. First observe, that the third case of (15) is valid for all not empty
M ⊆ [t]. Since P � L there must exists an i ∈ P for which i /∈ L. From (15) we
have for all M ⊆ [t] \ {i}, that

aM∪{i} ≡ a(M∪{i})∩L +
∣∣(M ∪ {i}) \ L

∣∣ mod 2

≡ aM∩L +
∣∣(M \ L) ∪ {i}

∣∣ mod 2

≡ aM∩L +
∣∣M \ L

∣∣+ 1 mod 2
≡ aM + 1. mod 2

And from this for all M not containing i we have aM + aM∪{i} = 1 (one term is
0 while the other is 1). Now with this i:∑

M⊆P
aM =

∑
M⊆P\{i}

(
aM + aM∪{i}

)
=

∑
M⊆P\{i}

1

= 2|P |−1. �

Now we present some important lemmas on the previously defined matrices As

and B(k)
s . First define d(P )

s ∈ B2s−1 for all P ⊆ [s] in the following way:

[d(P )
s ]i =

{
1 if Mi ⊆ P ;
0 if Mi � P.

Lemma 6. For the above defined vectors d(P )
s and for matrix As

d(P )
s

�As = 0� mod 2|P |−1.
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Proof. By the definition of d(P )
s and As we have[

d(P )
s

�As

]
j

=
∑

i:Mi⊆P
[As]ij

=
∑

i:Mi⊆P
a
(j)
Mi

=
∑
M⊆P
M �=∅

a
(j)
M

=
∑
M⊆P

a
(j)
M .

By Lemma 3 this is 0 mod 2|P |−1. �

Lemma 7. For the above defined vectors d(P )
s and for matrix B(k)

s

d(P )
s

�B(k)
s =

{
(
(
2|P |−1 2|P |−1 · · · 2|P |−1) if P � Lk;

20 21 · · · 2|P |−2) if P = Lk.

Proof. By the definition of d(P )
s we have[

d(P )
s

�B(k)
s

]
j

=
∑

i:Mi⊆P
[B(k)
s ]ij

=
∑

i:Mi⊆P
b̂
(k,j)
Mi

=
∑
M⊆P
M �=∅

b̂
(k,j)
M .

For P = Lk this is ∑
M⊆Lk
M �=∅

b̂
(k,j)
M =

∑
M⊆Lk
M �=∅

b
(k,j)
M = 2j−1,

given by the construction of b(k,j). For P � Lk this is 2|P |−1 by Lemma 5. �

Lemma 8. As is nonsingular.

Proof. According to Lemma 4,

As
�As =


2s−1 2s−2 · · · 2s−2

2s−2 2s−1 · · · 2s−2

...
... D2ots

...
2s−2 2s−2 · · · 2s−1

 .
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Thus

det(As)2 = det(As
�As) = 22+(s−2)2s

.

So det(As) = 0. �
Proof of Theorem 5. To prove that Cs is a u.d. code matrix, we need to show,
that condition (3) given in section 2.1 holds:

Csw = 0 ⇐⇒ w = 0 ∀w ∈ {−1, 0, 1}s2s−1
.

Let us partition w into w0 ∈ {−1, 0, 1}2s−1 and wk ∈ {−1, 0, 1}|Lk|−1 for all
k ∈ [2s − s− 1].

w =


w0

w1

...
w2s−s−1

 .

Now the u.d. condition can be written as

Asw0 +
2s−s−1∑
k=1

B(k)
s wk = 0 ⇐⇒ w = 0. ∀w ∈ {−1, 0, 1}s2

s−1
. (16)

First note, that ⇐= is trivial. To see =⇒, we will distinguish two cases. If
wk = 0 holds for all k ≥ 1, then this is trivial, since As is nonsingular (Lemma 8).
If there are some k for which wk = 0, then we select that k∗, which corresponds
to the Lk of the largest size:

wk∗ = 0,
wk = 0 ∀k ∈ [2s − s− 1] : |Lk| > |Lk∗ |.

If we multiply the left side of the equivalence in (16) by d(Lk∗)
s

�, then we get

d(Lk∗)
s

�Asw0 +
2s−s−1∑
k=1

d(Lk∗ )
s

�B(k)
s wk = 0,

and using Lemma 6 and Lemma 7(
20 21 · · · 2|Lk∗ |−2

)
wk∗ ≡ 0 mod 2|Lk∗ |−1

But since wk∗ ∈ {−1, 0, 1}|Lk∗|−1, this implies wk∗ = 0, which is a contradiction
with the choice of k∗. �

3 Partial Activity m-out-of-t Model

In this section we present the signature coding results for the partial activity
m-out-of-t model for the binary adder channel. Recall, that in this model there
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are t total users of the channel, out of which at most m are active at any instant.
The inactive users send the zero vector from their component code, while the
active ones send their other (non-zero) codeword. The received vector is the
vectorial sum of the sent codewords, and from this we should recover the set of
active users. We still use the simple notation S(U) for the received vector if the
active users are those in set U :

S(U) =
∑
u∈U

x(u).

Definition 5. For the m-out-of-t model, the minimal signature code length
N(t,m) is the length of the shortest possible u.d. signature code for a given
number t of total users and for a given maximal number m of simultaneously
active ones:

N(t,m) = min
{
n : ∃C u.d. signature code with length n

for t users out of which at most m are active simultaneously
}
.

We show two bounds for N(t,m) saying that for 1 � m � t,

2m
logm

log t � N(t,m) � 4m
logm

log t.

Based on Bose and Chowla’s [3] work, Lindström [13] constructed a u.d. sig-
nature code with code length

n ∼ m log t.

This is the best known construction so far, thus there is no asymptotically op-
timal code construction for the m-out-of-t model.

3.1 Bounds for U.D. Signature Codes

The next theorem gives the asymptotic upper bound on N(t,m). This follows
from a similar theorem of D’yachkov and Rykov in [7], see the remark after
Theorem 8 and 9. We present here a more simple proof.

Theorem 6. (D’yachkov–Rykov [7]) For N(t,m) we have that

lim
m→∞

lim
t→∞

N(t,m)
logm
m log t

≤ 4.

Proof. Let the length of codewords be n + 1, let the last component of each
non-zero codeword be fixed to 1, and the rest of the components be randomly
chosen from B = {0, 1} with uniform distribution:

P
([

x(u)
]
k

= 0
)

= P
([

x(u)
]
k

= 1
)

=
1
2

∀u ∈ U , ∀k : 1 ≤ k ≤ n (i.i.d.),[
x(u)

]
n+1

= 1 ∀u ∈ U .
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We will give an upper bound on the probability of the event

Code C =
{{

0,x(1)
}
,
{
0,x(2)

}
, . . . ,

{
0,x(t)

}}
is not a u.d. signature code (*)

and then show that for a given m and t, and for an n great enough this bound
is less than 1. So the probability of randomly selecting a good code is definitely
positive, and this means that there exists a good code for that n great enough,
so we have an upper bound on the minimal code length.

A code is not a signature code, if and only if there are two different subsets
U and V of U which contain at most m users, and the sum of the corresponding
code vectors are the same:

P
(
event (*)

)
= P

 ⋃
U �=V⊆[t] :

|U|≤m,|V |≤m

{
S(U) = S(V )

} .

If there are two subsets U and V which satisfy S(U) = S(V ), then there are
also two disjoint subsets which satisfy it (e.g. U \ V and V \ U). Moreover, the
(n+1)th component is 1 in all codewords, so the last component of the received
vector is the size of the active set. Thus, if S(U) = S(V ) then |U | = |V |, thus it
is enough to take into account disjoint subsets of equal size:

P
(
event (*)

)
= P


⋃

U �=V⊆[t] :
|U|=|V |≤m
U∩V=∅

{
S(U) = S(V )

}
 .

Now we can calculate the upper bound with the so called union bounding:

P
(
event (*)

)
=

m∑
k=1

P


⋃

U,V⊆[t] :
|U|=|V |=k
U∩V=∅

{
S(U) = S(V )

}


≤
m∑
k=1

∑
U,V⊆[t] :
|U|=|V |=k
U∩V=∅

P
(
S(U) = S(V )

)
.

Here P
(
S(U) = S(V )

)
= Qn(k), where Q(k) is defined by (5) and bounded by

(6):
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P
(
event (*)

)
≤

m∑
k=1

∑
U,V⊆[t] :
|U|=|V |=k
U∩V=∅

Qn(k)

≤
m∑
k=1

(
t

k

)(
t− k

k

)(
1√
πk

)n
≤

m∑
k=1

t2k
(

1√
πk

)n
≤m max

k : 1≤k≤m
t2k

(
1√
πk

)n
=m exp

(
max

k : 1≤k≤m

(
2k log t− n

2
log πk

))
.

The exponent is convex in k, so the maximum is either at k = 1 or at k = m:

P
(
event (*)

)
≤ m exp

(
max

{
2 log t− n

2
log π, 2m log t− n

2
log πm

})
.

If we want to ensure that a u.d. code exists, it is enough to show that
the probability of randomly selecting a non-u.d. code is less than 1, namely
P(event (*)) < 1. This is surely satisfied if our upper bound tends to 0 as t → ∞.
For this we require

lim
t→∞

2 log t− n

2
log π = −∞, (17)

and
lim
t→∞

2m log t− n

2
log πm = −∞. (18)

Let us set

n =
⌈

4m
logm

log t
⌉
. (19)

Then (17) holds for all m ≥ 2:

lim
t→∞

2 log t− n

2
log π ≤ 2

(
1 − m logπ

logm

)
lim
t→∞

log t = −∞,

and (18) also holds:

lim
t→∞

2m log t− n

2
log πm ≤ 2m

(
1 − log πm

logm

)
lim
t→∞

log t

= −2m
log π
logm

lim
t→∞

log t

= −∞.

So if we choose n as given in (19) then a u.d. signature code of length n + 1
will exist, so the length of the shortest possible u.d. signature code is bounded
upper for large t:

N(t,m) ≤
⌈

4m
logm

log t
⌉

+ 1.
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It follows, that

lim
t→∞

N(t,m)
logm
m log t

≤ 4.

�
We show in the next theorem, that asymptotically for 1 � m� t we have that
N(t,m) � 2m

logm log t. This is new, but closely relates to Theorem 9 of D’yachkov
and Rykov.

Theorem 7. For N(t,m) we have that

lim inf
m→∞

lim inf
t→∞

N(t,m)
logm
m log t

≥ 2.

Proof. Take an arbitrary u.d. signature code of length n for t users out of which
at most m are active, and let U (the set of active users) be a discrete random
variable with uniform distribution over the

(
t
m

)
m-sized subsets of [t]:

P(U = A) =

{(
t
m

)−1
if A ⊆ [t] and |A| = m;

0 otherwise.

We will bound the entropy of S(U) in two different ways, to get an upper and
a lower bound. Then by joining these bounds, we will get a lower bound on the
code length.

First we set the lower bound on H(S(U)), which is the Shannon–entropy of
the random variable S(U):

H(S(U)) = H(U),

since for all different values of U the corresponding S(U) values are different for
a u.d. signature code. But U has uniform distribution, so for it is entropy

H(U) = log
(
t

m

)
,

and now we are ready to derive the lower bound on H(S(U)):

H(S(U)) =H(U)

= log
(
t

m

)
= log

t(t− 1) · · · (t− (m− 1))
m(m− 1) · · · 1

≥m log
t

m
. (20)

Now we will derive an upper bound, via bounding the entropy of the individual
components of S(U). We can easily get the distribution of the ith component,
if we introduce wi, which is the number of codewords having 1 in their ith

component:
wi =

∣∣∣{x(u) : [x(u)]i = 1
}∣∣∣ .
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The number of all possible values of U is
(
t
m

)
. Moreover, the number of those

U values for which [S(U)]i = k can be enumerated. First we select k users out
of the wi ones those have 1 in the ith component of their codeword. Then we
select m− k more out of the t− wi ones those have 0 there. This is

(
wi

k

)(
t−wi

m−k
)
,

if max{0,m − (t − wi)} ≤ k ≤ min{wi,m}. So the distribution of [S(U)]i is
hypergeometrical, with parameters (m,wi, t− wi):

P
(
[S(U)]i = k

)
=


(wi

k )(t−wi
m−k)

( t
m) if max{0,m− (t− wi)} ≤ k ≤ min{wi,m};

0 otherwise.

If we introduce Hhyp(m, a, b) which is the entropy of the hypergeometrical dis-
tribution with parameters (m, a, b), then we have that

H
(
[S(U)]i

)
= Hhyp(m,wi, t− wi).

Since the entropy of a vector can be bounded by the sum of the entropies of its
components, we get the following upper bound on H (S(U)):

H (S(U)) ≤
n∑
i=1

H
(
[S(U)]i

)
=

n∑
i=1

Hhyp(m,wi, t− wi)

≤nmax
w

Hhyp(m,w, t− w),

and using Lemma 1 we get

H(S(U)) ≤ nmax
w

1
2

log
(

2πe
(

D2
hyp(m,w, t− w) +

1
12

))
,

where D2
hyp(m,w, t − w) denotes the variance of the hypergeometrical distrib-

ution with parameters (m,w, t− w). Therefore

H(S(U)) ≤nmax
w

1
2

log
(

2πe
(
m
w

t

(
1 − w

t

)(
1 − m− 1

t− 1

)
+

1
12

))
≤n1

2
log

(
1
2
πe

(
m

(
1 − m− 1

t− 1

)
+

1
12

))
. (21)

Combining (20) and (21) we get

m log
t

m
≤ H(S(U)) ≤ n

1
2

log
(

1
2
πe

(
m

(
1 − m− 1

t− 1

)
+

1
12

))
,

which holds for all u.d. signature codes, including the shortest possible one. So

N(t,m) ≥
m log t

m

1
2 log

(
1
2πe

(
m
(
1 − m−1

t−1

)
+ 1

12

)) ,
form which

lim inf
m→∞

lim inf
t→∞

N(t,m)
logm
m log t

≥ 2. �
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3.2 Bounds for Bm Codes

D’yachkov and Rykov [7] considered a special class of u.d. signature codes, name-
ly the Bm codes.

Definition 6. A Bm code is a set of t binary codewords of length n

C =
{
x(1),x(2), . . . ,x(t)

}
⊆ Bn

which has the following property: all sums of exactly m (not definitely different)
codewords are different.

It is obvious, that a Bm code C can be converted into a u.d. signature code Cs
for the adder channel. What we have to do, is just to append a fixed 1 bit to the
end of all the codewords in the Bm code:

Cs =
{{

0,y
}

: y ∈ Bn+1, ∃x ∈ C : ∀j ∈ [n] : [y]j = [x]j and [y]n+1 = 1
}
.

The length of this signature code is n + 1. To see that this is really a u.d.
signature code, we indirectly put up that there are two different subsets U and
V of the users for which the sum vector is the same. If the size of U and V
cannot differ, since then the (n+ 1)th component of the sum vectors would also
differ. So we can assume that |U | = |V |. Now take the following (exactly) m
codewords: all the codewords in U plus x(1) as many times as needed to get
exactly m codewords (m− |U | times). The sum vector of this multiset must be
equal to the sum vector of all the codewords in V plus x(1) m− |V | times. But
then we have found two multisets of codewords with m elements in the original
Bm code C, for which the sum vector is the same. This is a contradiction with
the definition of the Bm codes.

D’yachkov and Rykov [7] have given upper and lower bounds on NB(t,m),
which is the length of the shortest possible Bm code for t total users out of which
at most m are active simultaneously. Their main result is that for 1 � m � t,

2m
logm

log t � NB(t,m) � 4m
logm

log t. (22)

More precisely, for the length of the shortest possible signature code, they
have proven that

Theorem 8. If t → ∞ then for any fixed m

NB(t,m) ≤ 2m

log
22m(
2m
m

) (1 + o(1)) log t.

Theorem 9. For any m < t

NB(t,m) ≥
log

tm

m!
Hbin(m, 1

2 )
.

From these theorems, formula (22) easily follows. Using the construction of sig-
nature codes from Bm codes, Theorem 6 also follows.
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Kluwer, 181-196, 2000.

11. H. Liao, A coding theorem for multiple access communications, Proceedings of the
International Symposium on Information Theory, 1972.

12. B. Lindström, On a combinatory detection problem I, Publications of the Mathe-
matical Institute of the Hungarian Academy of Science 9, 195–207, 1964.

13. B. Lindström, Determining subsets by unramified experiments, J. Srivastava, edi-
tor, A Survey of Statistical Designs and Linear Models, North Holland Publishing
Company, 407–418, 1975.

14. C. E. Shannon, Two–way communication channels, Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, University of
California Press, Vol. 1, 611–644, 1961.

15. E. C. van der Meulen, The discrete memoryless channel with two senders and one
receiver, Proceedings of the 2nd International Symposium on Information Theory,
Hungarian Academy of Sciences, 103–135, 1971.



Bounds of E-Capacity for Multiple-Access

Channel with Random Parameter

M.E. Haroutunian�

Abstract. The discrete memoryless multiple-access channel with ran-
dom parameter is investigated. Various situations, when the state of the
channel is known or unknown on the encoders and decoder, are consid-
ered. Some bounds of E-capacity and capacity regions for average error
probability are obtained.

1 Introduction

The discrete memoryless multiple-access channel (MAC) with two encoders
and one decoder W = {W : X1 × X2 → Y} is defined by a matrix of transition
probabilities

W = {W (y|x1, x2), x1 ∈ X1, x2 ∈ X2, y ∈ Y},
where X1 and X2 are the finite alphabets of the first and the second inputs of
the channel, respectively, and Y is the finite output alphabet.
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Fig. 1. Regular MAC

The multiple-access channel W (Q) with random parameter is a family
of discrete memoryless MAC Ws : X1 × X2 → Y, where s is the channel state,
varying independently in each moment with the same probability distribution
Q(s) on a finite set S. In other words we have a set of conditional probabilities

Ws = {W (y|x1, x2, s) , x1 ∈ X1, x2 ∈ X2, y ∈ Y}, s ∈ S.

If there is no distribution on the state sequence then the channel is called
arbitrarily varying MAC.
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Let Q(S) is the set of all probability distributions on S.
The MAC with random parameter is memoryless and stationary, that is for

N -length sequences

x1 = (x11, x12, . . . , x1N ) ∈ XN1 , x2 = (x21, x22, . . . , x2N ) ∈ XN2 ,

y = (y1, y2, . . . , yN) ∈ YN , s = (s1, s2, ..., sN ) ∈ SN ,

the transition probabilities are given in the following way

WN (y|x1,x2, s) =
N∏
n=1

W (yn|x1n, x2n, s), QN (s) =
N∏
n=1

Q(sn).

Here we investigate the so-called E-capacity region. The investigation of opti-
mal rates of codes, ensuring when N increases the error probability exponential
decrease with given exponent (reliability) E, is equivalent to studying of error
exponents but sometimes is more expedient. E-capacity region is the generaliza-
tion of the regular capacity region (reducing to the latter when E → 0). In this
paper some bounds of E-capacity region for the MAC with random parameter
are obtained.

The MAC for the case of sending two independent messages (fig. 1) was con-
sidered by Ahlswede, who proved the simple characterization for the capacity
region of this model [1], [2]. The E-capacity region was investigated in [3] and [4],
where bounds for E-capacity regions for several models of discrete memoryless
MAC were obtained. Various bounds of error probability exponents for MAC
have been derived in [5], [6], [7], [8].

The oneway channel with random parameter was investigated by Gelfand
and Pinsker [9]. They found the capacity of this channel in the situation, when
the sequence s is known at the encoder, but unknown at the decoder. Some
upper and lower bounds of E-capacity for channel with random parameter were
obtained in [10], [11], [12].

Time varying MAC were considered in [13], [14], [15], [16], [17], [18]. Here we
consider the MAC with random parameter, which can be considered in various
situations, when the whole state sequence s is known or unknown at the encoders
and at the decoder. The considered cases are not equally interesting from the
mathematical point of view. The most interesting is the case, when the state
sequence is known on one of the encoders and unknown on the other encoder
and on the decoder.

2 Formulation of Results

Let M1 = {1, 2, ...,M1} and M2 = {1, 2, ...,M2} be the message sets of corre-
sponding sources. The numbers

1
N

logMi, i = 1, 2,
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are called transmission rates. We use the logarithmical and exponential functions
to the base 2. Denote by e(m1,m2, s) the probability of error transmission of the
messagesm1 ∈ M1, m2 ∈ M2 for given s. We study the average error probability
of the code:

e(N,W (Q)) =
1

M1M2

∑
m1,m2

∑
s∈SN

QN(s)e(m1,m2, s). (1)

Let E is a positive number called reliability. Nonnegative numbers R1, R2 are
called E-achievable rates for MAC with random parameter W (Q), if for any
δi > 0, i = 1, 2, for sufficiently large N there exists a code such that

1
N

logMi ≥ Ri − δi, i = 1, 2, (2)

and the average error probability satisfies the condition

e(N,W (Q)) ≤ exp{−NE}. (3)

The region of all E-achievable rates is called E-capacity region for average error
probability and denoted C(E,W (Q)). When E → 0 we obtain the capacity
region C(W (Q)) of the channel W (Q) for average probability of error.

For our notations of entropies, mutual informations, divergences as well as
for the notions of types, conditional types and some basic relations we refer
to [19], [20], [12]. In particular, we use the following notations: the set of all
sequences s of type Q = {Q(s), s ∈ S} on SN is denoted by T NQ (S), the set
of all sequences (x1,x2) of conditional type P = {P (x1, x2|s), x1 ∈ X1, x2 ∈
X2, s ∈ S}, for given vector s ∈ T NQ (S) is denoted by T NQ,P (X1X2|s), and so
on. The following representation will be used in the proofs: for s ∈ T NQ (S),
(x1,x2) ∈ T NQ,P (X1X2|s), y ∈ T NQ,P,V (Y |x1,x2, s)

WN (y|x1,x2, s) = exp{−N(HQ,P,V (Y |X1, X2, S) +D(V ‖W |Q,P ))}. (4)

Note also that

D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) = D(Q′‖Q) +D(P‖P ∗|Q′) +D(V ‖W |Q′, P ). (5)

1. Consider the case when s is known at the encoders and decoder
The code of length N for this model is a collection of mappings (f1, f2, g), where
f1 : M1 × SN → XN1 and f2 : M2 × SN → XN2 are encodings and
g : YN × SN → M1 ×M2 is decoding. Denote

f1(m1, s) = x1(m1, s), f2(m2, s) = x2(m2, s),

g−1(m1,m2, s) = {y : g(y) = (m1,m2, s)},
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then

e(m1,m2, s) = WN{YN − g−1(m1,m2, s)|f1(m1, s), f2(m2, s), s}

is the error probability of the transmission of messages m1 and m2. Let random
variables X1, X2, Y, S take values in alphabets X1,X2,Y,S respectively with the
following probability distributions :

Q = {Q(s), s ∈ S},

P ∗i = {P ∗i (xi|s), xi ∈ Xi}, i = 1, 2,

P ∗ = {P ∗1 (x1|s)P ∗2 (x2|s), x1 ∈ X1, x2 ∈ X2},
P = {P (x1, x2|s), x1 ∈ X1, x2 ∈ X2},

with ∑
x3−i

P (x1, x2|s) = P ∗i (xi|s), i = 1, 2,

and joint probability distribution

Q ◦ P ◦ V = {Q(s)P (x1, x2|s)V (y|x1, x2, s), s ∈ S, x1 ∈ X1, x2 ∈ X2, y ∈ Y},

where V = {V (y|x1, x2, s), s ∈ S, x1 ∈ X1, x2 ∈ X2, y ∈ Y} is some conditional
probability distribution.

The following region is called random coding bound:

Rr(E,W (Q)) = co{
⋃
P∗

Rr(P ∗, E,W (Q))},

where |a|+ = max(o, a), co{R} is the convex hull of the region Rr and
Rr(P ∗, E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (X1 ∧X2, Y |S)

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+,
0 ≤ R2 ≤ min

Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E
|IQ′,P,V (X2 ∧X1, Y |S)

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+,
R1+R2 ≤ min

Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E
|IQ′,P,V (X1, X2∧Y |S)+IQ′,P (X1∧X2|S)

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+}.
The next region is called sphere packing bound:

Rsp(E,W (Q)) = co
⋃
P

Rsp(P,E,W (Q)),
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where
Rsp(P,E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
Q′,V :D(Q′◦P◦V ‖Q◦P◦W )≤E

IQ′,P,V (X1 ∧ Y |X2, S),

0 ≤ R2 ≤ min
Q′,V :D(Q′◦P◦V ‖Q◦P◦W )≤E

IQ′,P,V (X2 ∧ Y |X1, S),

R1 +R2 ≤ min
Q′,V : D(Q′◦P◦V ‖Q◦P◦W )≤E

IQ′,P,V (X1, X2 ∧ Y |S)}.

The following theorem takes place.

Theorem. For all E > 0, for MAC with random parameter the following inclu-
sions are valid

Rr(E,W (Q)) ⊆ C(E,W (Q)) ⊆ Rsp(E,W (Q)).

Corollary. When E → 0, we obtain the inner and outer estimates for the
channel capacity region, the expressions of which are similar but differ by the
probability distributions P and P ∗. The inner bound is:

Rr(P ∗,W (Q)) = {(R1, R2) : 0 ≤ Ri ≤ IQ,P∗,W (Xi ∧ Y |X3−i, S), i = 1, 2,

R1 +R2 ≤ IQ,P∗,W (X1, X2 ∧ Y |S)}.

2. The states are unknown at the encoders and decoder
For this model the mappings (f1, f2, g) are f1 : M1 → XN1 , f2 : M2 → XN2 and
g : YN → M1 ×M2. Then

f1(m1) = x1(m1), f2(m2) = x2(m2),

g−1(m1,m2) = {y : g(y) = (m1,m2)},
and the error probability of the transmission of messages m1 and m2 is

e(m1,m2, s) = WN{YN − g−1(m1,m2)|f1(m1), f2(m2), s}.

Consider the distributions

Q = {Q(s), s ∈ S},

P ∗i = {P ∗i (xi), xi ∈ Xi}, i = 1, 2,

P ∗ = {P ∗1 (x1)P ∗2 (x2), x1 ∈ X1, x2 ∈ X2},
P = {P (x1, x2), x1 ∈ X1, x2 ∈ X2},

V = {V (y|x1, x2), x1 ∈ X1, x2 ∈ X2, y ∈ Y},
and

W ∗(y|x1, x2) =
∑
s∈S

Q(s)W (y|x1, x2, s).
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In this case the bounds in the theorem take the following form:
Rr(P ∗, E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
P,V :D(P◦V ‖P∗◦W∗)≤E

|IP,V (X1 ∧X2, Y ) +D(P ◦ V ‖P ∗ ◦W ∗) − E|+,

0 ≤ R2 ≤ min
P,V :D(P◦V ‖P∗◦W∗)≤E

|IP,V (X2 ∧X1, Y ) +D(P ◦ V ‖P ∗ ◦W ∗) − E|+,

R1 +R2 ≤ min
P,V :D(P◦V ‖P∗◦W∗)≤E

|IP,V (X1, X2 ∧ Y ) + IP (X1 ∧X2)+

+D(P ◦ V ‖P ∗ ◦W ∗) − E|+},

and
Rsp(P,E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
V :D(V ‖W∗|P )≤E

IP,V (X1 ∧ Y |X2),

0 ≤ R2 ≤ min
V :D(V ‖W∗|P )≤E

IP,V (X2 ∧ Y |X1),

R1 + R2 ≤ min
V :D(V ‖W∗|P )≤E

IP,V (X1, X2 ∧ Y )}.

Corollary. When E → 0, we obtain the inner and outer estimates for the
channel capacity region, the expressions of which as in the previous case are
similar but differ by the probability distributions P and P ∗. The inner bound
is:

Rr(P ∗,W (Q)) = {(R1, R2) : 0 ≤ Ri ≤ IP∗,W∗(Xi ∧ Y |X3−i), i = 1, 2,

R1 + R2 ≤ IP∗,W∗(X1, X2 ∧ Y )}.

3. Now consider the case, when s is known on the decoder and un-
known on the encoders
The code (f1, f2, g) in this case is a collection of mappings f1 : M1 → XN1 ,
f2 : M2 → XN2 and g : YN × S → M1 ×M2. Then the error probability of the
transmission of messages m1 and m2 will be

e(m1,m2, s) = WN{YN − g−1(m1,m2, s)|f1(m1), f2(m2), s}. (6)

For this model the following distributions are present in the formulation of
the results

P ∗i = {P ∗i (xi), xi ∈ Xi}, i = 1, 2,

P ∗ = {P ∗1 (x1)P ∗2 (x2), x1 ∈ X1, x2 ∈ X2},

P = {P (x1, x2), x1 ∈ X1, x2 ∈ X2},

Q′ = {Q′(s|x1, x2), s ∈ S, x1 ∈ X1, x2 ∈ X2},

V = {V (y|x1, x2, s), s ∈ S, x1 ∈ X1, x2 ∈ X2, y ∈ Y}.
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Then the bounds in the theorem take the following form:
Rr(P ∗, E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (X1 ∧X2, S, Y )+

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+,
0 ≤ R2 ≤ min

Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E
|IQ′,P,V (X2 ∧X1, S, Y )+

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+,
R1 +R2 ≤ min

Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E
|IQ′,P,V (X1, X2 ∧ S, Y ) + IP (X1 ∧X2)+

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+},
and
Rsp(P,E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
Q′,V :D(Q′◦V ‖Q◦W |P )≤E

IQ′,P,V (X1 ∧ Y, S|X2), (7)

0 ≤ R2 ≤ min
Q′,V :D(Q′◦V ‖Q◦W |P )≤E

IQ′,P,V (X2 ∧ Y, S|X1), (8)

R1 +R2 ≤ min
Q′,V :D(Q′◦V ‖Q◦W |P )≤E

IP,V (X1, X2 ∧ Y, S)}. (9)

The statement of the corollary is the same with the inner bound of the channel
capacity:

Rr(P ∗,W (Q)) = {(R1, R2) : 0 ≤ Ri ≤ IQ,P∗,W (Xi ∧ S, Y |X3−i), i = 1, 2,

R1 +R2 ≤ IQ,P∗,W (X1, X2 ∧ S, Y )}.

4. The state of the channel is known on the encoders and unknown
on the decoder
In this case f1 : M1 × SN → XN1 and f2 : M2 × SN → XN2 are encodings and
g : YN → M1 ×M2 is decoding.

e(m1,m2, s) = WN{YN − g−1(m1,m2)|f1(m1, s), f2(m2, s), s}

is the error probability of the transmission of messages m1 and m2. Let the
auxiliary random variables U1, U2 take values correspondingly in some finite sets
U1,U2. Then with

Q = {Q(s), s ∈ S},
P ∗i = {P ∗i (ui, xi|s), xi ∈ Xi, ui ∈ Ui}, i = 1, 2,

P ∗ = {P ∗1 (u1, x1|s)P ∗2 (u2, x2|s), x1 ∈ X1, x2 ∈ X2},
P = {P (u1, u2, x1, x2|s), x1 ∈ X1, x2 ∈ X2},

and
V = {V (y|x1, x2, s), s ∈ S, x1 ∈ X1, x2 ∈ X2, y ∈ Y}
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the random coding bound in the theorem will be written in the following way:

Rr(P ∗, E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (U1 ∧ U2, Y ) − IQ′,P (U1 ∧ S)+

+ D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+ ,

0 ≤ R2 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (U2 ∧ U1, Y ) − IQ′,P (U2 ∧ S)+

+ D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+ ,

R1 +R2 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (U1, U2∧Y )− IQ′,P (U1, U2∧S)+

+IQ′,P (U1 ∧ U2) +D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+.

Corollary. When E → 0, we obtain the inner estimate for the channel capacity
region:

Rr(P ∗,W (Q)) = {(R1, R2) : 0 ≤ Ri ≤ IQ,P∗,W (Ui ∧ Y |U3−i) − IQ,P∗(U1 ∧
S), i = 1, 2,

R1 +R2 ≤ IQ,P∗,W (U1, U2 ∧ Y ) − IQ,P∗(U1, U2 ∧ S)}.

This result was obtained by Pinsker [18].

5. The state is known on one of the encoders and unknown on the
other encoder and on the decoder
For distinctness we shall assume, that the first encoder has an information about
the state of the channel. Then the code will consist of the following mappings:
f1 : M1×SN → XN1 and f2 : M2 → XN2 are encodings and g : YN → M1×M2

is decoding. The error probability of the transmission of messages m1 and m2 is

e(m1,m2, s) = WN{YN − g−1(m1,m2)|f1(m1, s), f2(m2), s}. (10)

Let the auxiliary random variable U take values in some finite set U . Then with

Q = {Q(s), s ∈ S},

P ∗1 = {P ∗1 (u, x1|s), x1 ∈ X1, u ∈ U},

P ∗2 = {P ∗2 (x2), x2 ∈ X2},

P ∗ = {P ∗1 (u, x1|s)P ∗2 (x2), x1 ∈ X1, x2 ∈ X2},

P = {P (u, x1, x2|s), x1 ∈ X1, x2 ∈ X2},

and
V = {V (y|x1, x2, s), s ∈ S, x1 ∈ X1, x2 ∈ X2, y ∈ Y}
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the random coding bound in the theorem will be:

Rr(P ∗, E,W (Q)) = {(R1, R2) :

0 ≤ R1 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

∣∣IQ′,P,V (U ∧ Y,X2) − IQ′,P∗
1
(U ∧ S)+

(11)
+ D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+ ,

0 ≤ R2 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

∣∣IQ′,P,V (X2 ∧ Y, U) − IQ′,P∗
1
(U ∧ S)+

(12)
+ D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+ ,

R1+R2 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (U,X2∧Y )+IQ′,P (U∧X2)−IQ′,P∗
1
(U∧S)+

(13)
+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+}.

Corollary. When E → 0, we obtain the inner estimate for the channel capacity
region:

Rr(P ∗,W (Q)) = {(R1, R2) : 0 ≤ R1 ≤ IQ,P∗,W (U ∧ Y |X2) − IQ,P∗
1
(U ∧ S),

0 ≤ R2 ≤ IQ,P∗,W (X2 ∧ Y |U) − IQ,P∗
1
(U ∧ S),

R1 +R2 ≤ IQ,P∗,W (U,X2 ∧ Y ) − IQ,P∗
1
(U ∧ S)}.

The proofs repeat principle steps, so we shall give each proof only for one
case.

3 Proof of Outer Bound for the Case 3

Let δ > 0 and a code (f1, f2, g) is given, with rates Ri = (1/N) logMi, i = 1, 2
and error probability

e(N,W (Q)) ≤ exp{−N(E − δ)}, E − δ > 0.

According to (1) and (6) it means that

1
M1M2

∑
m1,m2

∑
s∈SN

QN (s)WN{YN − g−1(m1,m2|s)|f1(m1), f2(m2), s} ≤

≤ exp{−N(E − δ)}.
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The left side of this inequality can only decrease if we take the sum by vectors
s of some fixed type Q′:∑
s∈T N

Q′ (S)

QN(s)
∑

(x1(m1),x2(m2))∈f(M1,M2)

W N{YN−g−1(m1, m2|s)|x1(m1),x2(m2), s} ≤

≤M1M2 exp{−N(E − δ)},
where f(M1,M2) is the set of all codewords.

As
M1M2 =

∑
P

|f(M1,M2)
⋂

T NP (X1, X2)|

and the number of conditional types P does not exceed (N + 1)|X1||X2|, then
there exists at least one conditional type P of the sequences (x1,x2), such that

M1M2(N + 1)−|X1||X2| ≤ |f(M1,M2)
⋂

T NP (X1, X2)|. (14)

Now for any type Q′ and conditional type V we have∑
(x1(m1),x2(m2))∈T N

P (X1,X2)
⋂
f(M1,M2)

∑
s∈T N

Q′,P (S|x1(m1),x2(m2))

QN (s) ·

· WN
{
T NQ′,P,V (Y |x1(m1),x2(m2), s)− −g−1(m1,m2|s)|x1(m1),x2(m2), s

}
≤M1M2 exp{−N(E − δ)}.

Taking into account that the conditional probability QN (s)WN (y|x1,x2, s) is
constant for different x1,x2 ∈ T NP (X1, X2), s ∈ T NQ′,P (S|x1,x2), and
y ∈ T NQ′,P,V (Y |x1,x2, s), we can write∑

(x1(m1),x2(m2))∈T N
P (X1,X2)

⋂
f(M1,M2)

∑
s∈T N

Q′,P (S|x1(m1),x2(m2))

{
|T N

Q′,P,V (Y |x1(m1),x2(m2), s)|−
∣∣∣T N

Q′,P,V (Y |x1(m1),x2(m1), s)
⋂

g−1(m1, m2|s)
∣∣∣}

≤ M1M2 exp{−N(E − δ)}
WN (y, s|x1,x2)

,

or according to (4) ∑
(x1(m1),x2(m2))∈T N

P (X1,X2)
⋂
f(M1,M2)

∑
s∈T N

Q′,P (S|x1(m1),x2(m2))

|T N
Q′,P,V (Y |x1(m1),x2(m2), s)|− M1M2 exp{−N(E − δ)}

exp{−N(HQ′,P,V (Y,S|X1, X2)+D(Q′◦V ‖Q◦W |P ))}
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≤
∑

(x1(m1),x2(m2))∈T N
P (X1,X2)

∑
s∈T N

Q′,P (S|x1(m1),x2(m2))∣∣∣T NQ′,P,V (Y |x1(m1),x2(m1), s)
⋂

g−1(m1,m2|s)
∣∣∣

= K.

The sets g−1(m1,m2|s) are disjoint for different m1 ∈ M1, m2 ∈ M2, so K
can be upper bounded by diverse values:

K ≤


M2 exp{NHQ′,P,V (Y, S|X2)},
M1 exp{NHQ′,P,V (Y, S|X1)},

exp{NHQ′,P,V (Y, S)}.
From (14) using each of last estimates we obtain correspondingly

M1M2(N + 1)−|X1||X2| exp{NHQ′,P,V (Y, S|X1, X2)}−
−M1M2 exp{N(HQ′,P,V (Y, S|X1, X2) +D(Q′ ◦ V ‖Q ◦W |P ) − E + δ)} ≤

≤M2 exp{NHQ′,P,V (Y, S|X2)},

M1M2(N + 1)−|X1||X2| exp{NHQ′,P,V (Y, S|X1, X2)}−
−M1M2 exp{N(HQ′,P,V (Y, S|X1, X2) +D(Q′ ◦ V ‖Q ◦W |P ) − E + δ)} ≤

≤M1 exp{NHQ′,P,V (Y, S|X1)},
M1M2(N + 1)−|X1||X2| exp{NHQ′,P,V (Y, S|X1, X2)}−

−M1M2 exp{N(HQ′,P,V (Y, S|X1, X2) +D(Q′ ◦ V ‖Q ◦W |P ) − E + δ)} ≤
≤M1M2 exp{NHQ′,P,V (Y, S)}.

Now it is easy to obtain the following bounds:

M1 ≤ exp{NHQ′,P,V (Y, S|X2) −HQ′,P,V (Y, S|X1, X2)}
(N + 1)−|X1||X2| − exp{N(D(Q′ ◦ V ‖Q ◦W |P ) − E + δ)} ,

M2 ≤ exp{NHQ′,P,V (Y, S|X1) −HQ′,P,V (Y, S|X1, X2)}
(N + 1)−|X1||X2| − exp{N(D(Q′ ◦ V ‖Q ◦W |P ) − E + δ)} ,

M1M2 ≤ exp{NHQ′,P,V (Y, S) −HQ′,P,V (Y, S|X1, X2)}
(N + 1)−|X1||X2| − exp{N(D(Q′ ◦ V ‖Q ◦W |P ) − E + δ)} .

The right sides of these inequalities can be minimized by the choice of types
Q′, V , meeting the condition

D(Q′ ◦ V ‖Q ◦W |P ) ≤ E.

It is left to note that

HQ′,P,V (Y, S|X2) −HQ′,P,V (Y, S|X1, X2) = IQ′,P,V (X1 ∧ Y, S|X2),

HQ′,P,V (Y, S|X1) −HQ′,P,V (Y, S|X1, X2) = IQ′,P,V (X2 ∧ Y, S|X1),

HQ′,P,V (Y, S) −HQ′,P,V (Y, S|X1, X2) = IQ′,P,V (X1, X2 ∧ Y, S).

Hence (7), (8) and (9) are proved.
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4 Proof of Inner Bound in the Case 5

The proofs of inner bounds are based on the random coding arguments. Here we
bring the proof for case 5.

Let us fix positive integers N,M1, type Q, conditional type P ∗1 , δ > 0. For
brevity we shall denote u(m1, s),x1(m1, s) = ux1(m1, s). Denote by LM1(Q,P ∗1 )
the family of all matrices

L(Q,P ∗1 ) = {ux1(m1, s)}
s∈T N

Q (S)

m1=1,M1
,

such that the rows Ls(Q,P ∗1 ) = (ux1(1, s),ux1(2, s), . . . ,ux1(M1, s)) are not
necessarily distinct vector pairs, majority of which are from T NQ,P∗

1
(U,X1|s).

Let us consider for any m1 ∈ M1 and s ∈ T NQ (S) the random event

AQ,P∗
1
(m1, s)

�
= {ux1(m1, s) ∈ T NQ,P∗

1
(U,X1|s)}.

Let us now consider the sets

S(m1, Q, P
∗
1 )

�
= {s ∈ T NQ (S) : AQ,P∗

1
(m1, s)}, m1 ∈ M1,

T EQ (S) =
⋃

Q′:D(Q′‖Q)≤E
T NQ′ (S),

and the matrix
L(Q,P ∗1 , E) = {ux1(m1, s)}

s∈T E
Q (S)

m1=1,M1
.

We shall use the following modification of packing lemma [19].

Lemma 1. For each E > 0, δ ∈ (0, E) and any types P ∗1 , P
∗
2 there exist M2

vectors x2(m2) from T NP∗
2
(X2) and a matrix L(Q,P ∗1 , E)={ux1(m1, s)}

s∈T E
Q (S)

m1=1,M1
,

with

1
N

logM1 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (U ∧ Y,X2) − IQ′,P∗
1
(U ∧ S)+

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+, (15)

1
N

logM2 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (X2 ∧ Y, U) − IQ′,P∗
1
(U ∧ S)+

+D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+, (16)

1
N

logM1M2 ≤ min
Q′,P,V :D(Q′◦P◦V ‖Q◦P∗◦W )≤E

|IQ′,P,V (U,X2∧Y )+IQ′,P (U∧X2)−

−IQ′,P∗
1
(U ∧ S) +D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) − E|+, (17)
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such that for each Q′ : D(Q′‖Q) ≤ E and s ∈ T NQ′ (S) the following inequality is
true

Pr{AQ′,P∗
1
(m1, s)} ≤ exp{− exp{Nδ/4}}, (18)

and for each Q′ : D(Q′‖Q) ≤ E and s ∈ T NQ′ (S), type Q̂ such that D(Q̂‖Q) ≤ E,
conditional types P, P̂ , V, V̂ , for sufficiently largeN the following inequality holds

1
M1M2

∑
ux1(m1,s),x2(m2)∈T N

Q′,P (U,X1,X2|s)

∣∣∣T NQ′,P,V (Y |ux1(m1, s),x2(m2), s)
⋂

⋂ ⋃
(m′

1,m
′
2) �=(m1,m2)

⋃
s′∈S(m1,Q̂,P∗

1 )

T N
Q̂,P̂ ,V̂

(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣ ≤ (19)

≤
∣∣T NQ′,P,V (Y |ux1(m1, s),x2(m2), s)

∣∣ exp{−N |E−D(Q̂◦ P̂ ◦ V̂ ‖Q◦P ∗ ◦W )|+}×
× exp{−N(D(P‖P ∗|Q′) − δ)}.

The proof of lemma 1 follows from lemma 2, which is proved in appendix.

Lemma 2. For each E > 0, δ ∈ (0, E) and any types Q,P ∗1 , P
∗
2 there exist M2

vectors x2(m2) from T NP∗
2
(X2) and a matrix L(Q,P ∗1 ) = {ux1(m1, s)}

s∈T N
Q (S)

m1=1,M1
,

with
1
N

logM1 ≤ min
P,V :D(P◦V ‖P∗◦W |Q)≤E

|IQ,P,V (U ∧ Y,X2) − IQ,P∗
1
(U ∧ S)+

+D(P ◦ V ‖P ∗ ◦W |Q) − E|+, (20)
1
N

logM2 ≤ min
P,V :D(P◦V ‖P∗◦W |Q)≤E

|IQ,P,V (X2 ∧ Y, U) − IQ,P∗
1
(U ∧ S)+

+D(P ◦ V ‖P ∗ ◦W |Q) − E|+, (21)

1

N
log M1M2 min

P,V :D(P◦V ‖P∗◦W |Q)≤E
|IQ,P,V (U,X2 ∧Y )+ IQ,P (U ∧X2)− IQ,P∗

1
(U ∧S)+

+D(P ◦ V ‖P ∗ ◦W |Q) − E|+, (22)

such that for each s ∈ T NQ (S)

Pr{AQ,P∗
1
(m1, s)} ≤ exp{− exp{Nδ/4}}, (23)

and for any s ∈ T NQ (S), types P, P ′, V, V ′, for sufficiently large N the following
inequality holds

1
M1M2

∑
ux1(m1,s),x2(m2)∈T N

Q,P (U,X1,X2|s)

∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂

⋂ ⋃
(m′

1,m
′
2) �=(m1,m2)

⋃
s′∈S(m1,Q,P∗

1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣ ≤ (24)
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≤
∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)

∣∣ exp{−N |E −D(P ′ ◦ V ′‖P ∗ ◦W |Q)|+}×
× exp{−N(D(P‖P ∗|Q) − δ)}.

Now we pass to the proof of the random coding bound for the case 5.
The existence of codewords x2(m2) and matrix L(Q,P ∗1 , E) =

{ux1(m1, s)}
s∈T E

Q (S)

m1=1,M1
, satisfying (15), (16), (17), (18) and (19) is guaranteed

by lemma 1. Note that for Q′ : D(Q′‖Q) > E

QN(T NQ′ (S)) ≤ exp{−ND(Q′‖Q)} < exp{−NE}. (25)

Let us apply the following decoding rule for decoder g: each y is decoded to
such m1,m2 for which y ∈ T NQ′,P,V (Y |ux1(m1, s),x2(m2), s) where Q′, P, V are
such that D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ) is minimal.

The decoder g can make an error during the transmission of messages m1,m2,
if AQ′,P∗

1
(m1, s) takes place or if there exist types Q̂ : D(Q̂‖Q) ≤ E, P̂ , V̂ , some

vector s′ ∈ TQ̂(S), messages (m′1,m
′
2) = (m1,m2), for which AQ̂,P∗

1
(m′1, s

′) takes
place, such that

y ∈ T NQ′,P,V (Y |ux1(m1, s),x2(m2), s)
⋂

T N
Q̂,P̂ ,V̂

(Y |ux1(m′1, s
′),x2(m′2), s

′)

and
D(Q̂ ◦ P̂ ◦ V̂ ‖Q ◦ P ∗ ◦W ) ≤ D(Q′ ◦ P ◦ V ‖Q ◦ P ∗ ◦W ). (26)

Denote
D =

{
Q̂, P̂ , V, V̂ : (26) is valid

}
.

Then from (18) and (25) average error probability (1) is upper bounded by the
following way:

e(N, W (Q)) ≤ 1

M1M2

∑
m1,m2

∑
Q′:D(Q′‖Q)>E

∑
s∈T N

Q′ (S)

QN(s)e(m1, m2, s)+

+
1

M1M2

∑
m1,m2

∑
Q′:D(Q′‖Q)≤E

∑
s∈T N

Q′ (S)

QN(s)e(m1, m2, s) ≤

≤ (N + 1)|S| exp{−NE}+

+
1

M1M2

∑
m2

∑
Q′:D(Q′‖Q)≤E

∑
s∈T N

Q′ (S)

∑
m1

QN(s) Pr{AQ′,P∗
1
(m1, s)}+

+
1

M1M2

∑
Q′:D(Q′‖Q)≤E

∑
s∈T N

Q′ (S)

QN(s)
∑

m1:AQ′,P∗
1

(m1,s)

∑
P

∑
x2(m2)∈T N

Q′,P (X2|ux1(m1,s),s)

e(m1, m2, s) ≤
≤ exp{−N(E − ε)} +

∑
Q′:D(Q′‖Q)≤E

∑
s∈T N

Q′ (S)

QN(s) exp{− exp{Nδ/4}}+

+
1

M1M2

∑
Q′:D(Q′‖Q)≤E

∑
s∈T N

Q′ (S)

∑
m1:AQ′,P∗

1
(m1,s)

∑
P

∑
x2(m2)∈T N

Q′,P
(X2|ux1(m1,s),s)

QN(s)×
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×W N

{⋃
D

T N
Q′,P,V (Y |ux1(m1, s),x2(m2), s)

⋂
⋂ ⋃

(m′
1,m

′
2) �=(m1,m2)

⋃
s′∈S(m′

1,Q̂,P
∗
1 )

T N
Q̂,P̂ ,V̂

(Y |ux1(m′1, s
′),x2(m′2), s

′)|x1(m1, s),x2(m2), s

 ≤

≤ exp{−N(E − ε)} + exp{− exp{Nδ/4}+Nδ1}+

+
1

M1M2

∑
Q′:D(Q′‖Q)≤E

∑
s∈T N

Q′(S)

∑
m1:AQ′,P∗

1
(m1,s)

∑
P

∑
x2(m2)∈T N

Q′,P (X2|ux1(m1,s)s)

∑
D

QN (s)WN (y|x1,x2, s)×

⋂ ⋃
(m′

1,m
′
2) �=(m1,m2)

⋃
s′∈S(m′

1,Q̂,P
∗
1 )

T N
Q̂,P̂ ,V̂

(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣ .
According to (5), (19) and (26) we have

e(N,W (Q)) ≤ exp{−N(E − ε)} + exp{− exp{Nδ/4} +Nδ1}+

+
∑
Q′

∑
P

∑
D

exp{−N(Q′‖Q)} exp{−N(HQ′,P,V (Y |X1, X2, S) + D(V ‖W |Q′, P ))}×

× exp{NHQ′,P,V (Y |X1, X2, S)} exp{−N |E −D(Q̂ ◦ P̂ ◦ V̂ ‖Q ◦ P ∗ ◦W )|+}×

× exp{−N(D(P‖P ∗|Q′) − δ)} ≤ exp{−N(E − ε1)}.

The inner bound for the case 5 is proved.
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Appendix

Proof of the Lemma 2
Let P ′ and V ′ be such that D(P

′ ◦ V ′‖P ∗ ◦W |Q) > E, then we have

exp{−N
∣∣∣E −D(P

′ ◦ V ′‖P ∗ ◦W |Q)
∣∣∣+} = 1.

Since∣∣∣∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂ ⋃

(m′
1,m

′
2) �=(m1,m2)

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣
≤ |T NQ,P,V (Y |ux1(m1, s),x2(m2), s)|,

for the proof of (24) in this case it is enough to show that

|T NQ,P (U,X1, X2|s)
⋂
f(M1,M2)|

M1M2
≤ exp{−N(D(P‖P ∗|Q) − δ}.

To prove that (24) takes place for all P, V and P ′, V ′, it is enough to prove
the inequality
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∑
P,V

∑
P ′ ,V ′ :D(P ′◦V ′‖P∗◦W |Q)≤E

1
M1M2

∑
ux1(m1,s),x2(m2)∈T N

Q,P (U,X1,X2|s)

∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)

⋂ ⋃
(m′

1,m
′
2) �=(m1,m2)

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣× (27)

× exp{N(E−HQ,P,V (Y |U,X1, X2, S)+D(P‖P ∗|Q)−D(P ′◦V ′‖P ∗◦W |Q)−δ}+

+
∑
P,V

∑
P ′ ,V ′ :D(P ′◦V ′‖P∗◦W |Q)>E

|T NQ,P (U,X1, X2|s)
⋂
f(M1,M2)|

M1M2
×exp{N(D(P‖P ∗|Q)−δ} ≤ 1.

Let us construct a random matrix L̃(Q,P ∗1 ) = {ux1(m1, s)}
s∈T N

Q (S)

m1=1,M1
, in the

following way. We choose at random from T NQ,P∗
1
(U) according to uniform distri-

bution M1 collections J (m1) each of

J = exp{N(IQ,P∗
1
(U ∧ S) + δ/2)}

vectors uj(m1), j = 1, J,m1 = 1,M1.
For each m1 = 1,M1 and s ∈ T NQ (S) we choose such a uj(m1) from J (m1)

that uj(m1) ∈ T NQ,P∗
1
(U |s). We denote this vector by u(m1, s). If there is no such

vector, let u(m1, s) = uJ (m1).
Next, for each m1 and s we choose at random a vector x1(m1, s) from

T NQ,P∗
1
(X1|u(m1, s), s) if u(m1, s) ∈ T NQ,P∗

1
(U |s) and from T NQ,P∗

1
(X1|s) if u(m1, s)

/∈ T NQ,P∗
1
(U |s).

We choose also at random M2 vectors x2(m2) from T NP∗
2
(X2).

First we shall show that for N large enough and any m1 and s (23) takes
place. Really,

Pr{AQ,P∗
1
(m1, s)} = Pr


J⋂
j=1

uj(m1) ∈ T NQ,P∗
1
(U |s)

 ≤

≤
J∏
j=1

[
1 − Pr

{
uj(m1) ∈ T NQ,P∗

1
(U |s)

}]
≤

[
1 −

|T NQ,P∗
1
(U |s)|

|T NQ,P∗
1
(U)|

]J
≤

≤
[
1 − exp{−N(IQ,P∗

1
(U ∧ S) + δ/4)}

]exp{N(IQ,P∗
1

(U∧S)+δ/2)}
.

Using the inequality (1− t)a ≤ exp{−at}, which is true for any a and t ∈ (0, 1),
we can see that

Pr{AQ,P∗
1
(m1, s)} ≤ exp{− exp{Nδ/4}}.
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To prove (27) it suffices to show that

∑
P,V

∑
P ′ ,V ′ :D(P ′◦V ′‖P∗◦W |Q)≤E

E
∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)

⋂

⋂ ⋃
(m′

1,m
′
2) �=(m1,m2)

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣× (28)

× exp{N(E−HQ,P,V (Y |U,X1, X2, S)+D(P‖P ∗|Q)−D(P ′◦V ′‖P ∗◦W |Q)−δ}+

+
∑
P,V

∑
P ′ ,V ′ :D(P ′◦V ′‖P∗◦W |Q)>E

E
|T NQ,P (U,X1, X2|s)

⋂
f(M1,M2)|

M1M2
×exp{N(D(P‖P ∗|Q)−δ} ≤ 1.

To this end we estimate expectation

B = E
∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)

⋂
⋂ ⋃

(m′
1,m

′
2) �=(m1,m2)

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣ =

= E

∣∣∣∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂ ⋃

m′
1 �=m1

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m2), s′)

∣∣∣∣∣∣+
+E

∣∣∣∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂ ⋃

m′
2 �=m2

⋃
s′∈S(m1,Q,P∗

1 )

T NQ,P ′,V ′(Y |ux1(m1, s′),x2(m′2), s
′)

∣∣∣∣∣∣+
+E

∣∣∣∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂ ⋃

m′
1 �=m1,m′

2 �=m2

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣ .
The first summand can be estimated in the following way

E

∣∣∣∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂ ⋃

m′
1 �=m1

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m2), s′)

∣∣∣∣∣∣ ≤

≤
∑

y∈YN

Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)}×

×
∑

m
′
1 �=m1

Pr{y ∈
⋃

s′∈S(m′
1,Q,P

∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m2), s′)},

which follows from the independent choice of codewords. The first probability
will be positive only when y ∈ T NQ,P,V (Y |x2(m2), s). It can be estimated by the
following way
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Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)} =

=

∣∣T NQ,P,V (U,X1|s,y,x2)
∣∣ ∣∣T NQ,P (X2|s)

∣∣∣∣∣T NQ,P∗
1
(U,X1|s)

∣∣∣ ∣∣∣T NP∗
2
(X2)

∣∣∣ ≤

≤ (N + 1)|U||X1||X2||S| exp{−N(IQ,P,V (U,X1 ∧ Y,X2|S) + IQ,P (X2 ∧S))}. (29)

The second probability will be

Pr{y ∈
⋃

s′∈S(m′
1,Q,P

∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m2), s′)} ≤

≤ Pr

y ∈
⋃

s′∈S(m′
1,Q,P

∗
1 )

T NQ,P ′,V ′(Y |u(m′1, s
′),x2(m2), s′)

 ≤

≤ Pr

y ∈
⋃

uj(m′
1)∈J (m′

1)

⋃
s′∈T N

Q,P∗
1

(S|uj(m′
1))

T NQ,P ′,V ′(Y |uj(m′1),x2(m2), s′)

 ≤

≤
∑

uj(m′
1)∈J (m′

1)

Pr
{
y ∈ T N

Q,P ′,V ′(Y |uj(m
′
1),x2(m2))

}
≤ J

|T N
Q,P ′,V ′(U |y,x2(m2))|

|T N
Q,P∗

1
(U)| ≤

≤ (N + 1)|U| exp
{
−N(IQ,P ′,V ′(U ∧ Y,X2) − IQ,P∗

1
(U ∧ S) − δ/2)

}
. (30)

Let us estimate the second expectation:

E

∣∣∣∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂ ⋃

m′
2 �=m2

⋃
s′∈S(m1,Q,P∗

1 )

T NQ,P ′,V ′(Y |ux1(m1, s′),x2(m′2), s
′)

∣∣∣∣∣∣ ≤
≤

∑
y∈YN

Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)}×

×
∑

m
′
2 �=m2

Pr{y ∈
⋃

s′∈S(m1,Q,P∗
1 )

T NQ,P ′,V ′(Y |ux1(m1, s′),x2(m′2), s
′)}.

The first probability will be positive only when y ∈ T NQ,P,V (Y |ux1(m1, s), s). It
is estimated by

Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)} =

∣∣T NP,V (X2|y,ux1(m1, s), s)
∣∣∣∣∣T NP∗

2
(X2)

∣∣∣ ≤

≤ (N + 1)|X2| exp{−N(IQ,P,V (X2 ∧ Y,X1, U, S))}. (31)
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The second probability will be

Pr{y ∈
⋃

s′∈S(m1,Q,P∗
1 )

T NQ,P ′,V ′(Y |ux1(m1, s′),x2(m′2), s
′)} ≤

≤
∑

uj(m1)∈J (m1)

Pr
{
y ∈ T N

Q,P ′,V ′(Y |uj(m1),x2(m
′
2))

}
≤ J

|T N
Q,P ′,V ′(X2|y, uj(m1))|

|T N
P∗
2
(X2)|

≤

≤ (N + 1)|X2| exp
{
−N(IQ,P ′,V ′(X2 ∧ U, Y ) − IQ,P∗

1
(U ∧ S) − δ/2)

}
. (32)

At last

E

∣∣∣∣∣∣T NQ,P,V (Y |ux1(m1, s),x2(m2), s)
⋂ ⋃

m′
1 �=m1,m′

2 �=m2

⋃
s′∈S(m′

1,Q,P
∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)

∣∣∣∣∣∣ ≤
≤

∑
y∈YN

Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)}×

×
∑

m
′
1 �=m1,m′

2 �=m2

Pr{y ∈
⋃

s′∈S(m′
1,Q,P

∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)},

which is positive only when y ∈ T NQ,P,V (Y |s) and

Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)} =

=
|T NQ,P,V (X2|y, s)||T NQ,P,V (U,X1|y,x2(m2), s)|

|T NQ,P∗
1
(U,X1|s)||T NP∗

2
(X2)|

≤

≤ (N + 1)|U||X1||X2||S| exp{−N(IQ,P,V (X2 ∧ Y, S) + IQ,P,V (U,X1 ∧ Y,X2|S))}.
(33)

The last probability to be estimated is

Pr{y ∈
⋃

s′∈S(m′
1,Q,P

∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)} ≤

≤
∑

uj (m′
1)∈J (m′

1)

Pr
{
y ∈ T N

Q,P ′,V ′(Y |uj(m
′
1),x2(m

′
2))

}
≤ J

|T N
Q,P ′,V ′(U, X2|y)|

|T N
Q,P∗

1
(U)||T N

P∗
2
(X2)|

≤

≤ (N+1)|U||X2| exp
{
−N(IQ,P ′,V ′(U,X2 ∧ Y ) + IQ,P ′(U ∧X2) − IQ,P∗

1
(U ∧ S) − δ/2)

}
.

(34)
Now we can write

B ≤
∣∣T NQ,P,V (Y |x2(m2), s)

∣∣Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)}×

×(M1 − 1)Pr{y ∈
⋃

s′∈S(m′
1,Q,P

∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m2), s′)}+
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+
∣∣T NQ,P,V (Y |ux1(m1, s), s)

∣∣Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)}×

×(M2 − 1)Pr{y ∈
⋃

s′∈S(m1,Q,P∗
1 )

T NQ,P ′,V ′(Y |ux1(m1, s′),x2(m′2), s
′)}+

+
∣∣T NQ,P,V (Y |s)

∣∣Pr{y ∈ T NQ,P,V (Y |ux1(m1, s),x2(m2), s)}×

×(M1M2 − 1)Pr{y ∈
⋃

s′∈S(m′
1,Q,P

∗
1 )

T NQ,P ′,V ′(Y |ux1(m′1, s
′),x2(m′2), s

′)}.

According to (20), (21), (22) and (29)–(34) we have

B ≤ (N+1)|U|(|X1||X2||S|+1) exp{−N(IQ,P,V (U,X1∧Y,X2|S)+IQ,P (X2∧S)−HQ,P,V (Y |X2, S))}×

× exp
{
−N(IQ,P ′,V ′(U ∧ Y,X2) − IQ,P∗

1
(U ∧ S) − δ/2)

}
×

× exp{N min
P,V :D(P◦V ‖P∗◦W |Q)≤E

∣∣IQ,P,V (U ∧ Y,X2) − IQ,P∗
1
(U ∧ S) +D(P ◦ V ‖P ∗ ◦W |Q) − E

∣∣+}+
+(N + 1)2|X2| exp{−N(IQ,P,V (X2 ∧ Y,X1, U, S) −HQ,P,V (Y |U,X1, S))}×

× exp
{
−N(IQ,P ′,V ′(X2 ∧ U, Y ) − IQ,P∗

1
(U ∧ S) − δ/2)

}
×

× exp{N min
P,V :D(P◦V ‖P∗◦W |Q)≤E

∣∣IQ,P,V (X2 ∧ U, Y ) − IQ,P∗
1
(U ∧ S) +D(P ◦ V ‖P ∗ ◦W |Q) − E

∣∣+}+
+(N+1)|X2|(|X1||S|+1) exp{−N(IQ,P,V (X2∧Y, S)+IQ,P,V (U,X1∧Y,X2|S)−HQ,P,V (Y |S))}×
× exp

{
−N(IQ,P ′,V ′(U,X2 ∧ Y ) + IQ,P ′(U ∧X2) − IQ,P∗

1
(U ∧ S) − δ/2)

}
×

× exp{N min
P,V :D(P◦V ‖P∗◦W |Q)≤E

|IQ,P,V (U,X2 ∧ Y ) + IQ,P (U ∧X2)− (35)

−IQ,P∗
1
(U ∧ S) +D(P ◦ V ‖P ∗ ◦W |Q) − E

∣∣+}.
By using the following inequality min

x
f(x) ≤ f(x

′
) from (35) we obtain

B ≤ (N + 1)|U|(|X1||X2||S|+1) exp{−N(IQ,P,V (U,X1 ∧ Y,X2|S) + IQ,P (X2 ∧ S)−

−HQ,P,V (Y |X2, S) −D(P ′ ◦ V ‖P ∗ ◦W |Q) + E − δ/2)}+

+(N + 1)2|X2| exp{−N(IQ,P,V (X2 ∧ Y,X1, U, S)−

−HQ,P,V (Y |U,X1, S) −D(P ′ ◦ V ‖P ∗ ◦W |Q) + E − δ/2)}+

+(N + 1)|X2|(|X1||S|+1) exp{−N(IQ,P,V (X2 ∧ Y, S) + IQ,P,V (U,X1 ∧ Y,X2|S)−

−HQ,P,V (Y |S) −D(P ′ ◦ V ‖P ∗ ◦W |Q) + E − δ/2)}. (36)



Bounds of E-Capacity for Multiple-Access Channel with Random Parameter 217

Now notice that:

E

∣∣T NQ,P (U,X1, X2|s)
⋂
f(M1,M2)

∣∣
M1M2

=

∣∣T NQ,P (U,X1, X2|s)
∣∣∣∣∣T NQ,P∗

1
(U,X1|s)

∣∣∣ ∣∣∣T NP∗
2
(X2)

∣∣∣ ≤
≤ (N + 1)|U||X1||S|+|X2| exp{−ND(P‖P ∗|Q)}, (37)

and
D(P‖P ∗|Q) = IQ,P (U,X1, S ∧X2).

Substitute (36) and (37) into (28) and note that:

IQ,P,V (U,X1 ∧X2, Y |S) + IQ,P (S ∧X2) −HQ,P,V (Y |X2, S)−

−IQ,P (U,X1, S ∧X2) +HQ,P,V (Y |U,X1, X2, S) = 0,

IQ,P,V (X2 ∧ U,X1, Y, S) −HQ,P,V (Y |U,X1, S)−
−IQ,P (U,X1, S ∧X2) +HQ,P,V (Y |U,X1, X2, S) = 0,

IQ,P,V (U,X1 ∧X2, Y |S) + IQ,P,V (Y, S ∧X2) −HQ,P,V (Y |S)−
−IQ,P (U,X1, S ∧X2) +HQ,P,V (Y |U,X1, X2, S) = 0.

It is easy to see that for N large enough (28) is true and hence lemma is
proved.
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Abstract. It is well-known from pioneering papers published since 1989
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services, such as when occasional alarm services are to be conveyed via
a simple MAC which is controlled by the same single common cyclically
permutable sequence at all nodes involved. It is pointed out under which
circumstances the use of huge IT codes might be worth further detailed
investigation by designers interested in such prospective services.

1 Introduction

A widely used simple way of identification via a communication channel is to
place the identifier (ID) into the heading of the codeword meant for transmitting
the message content (MC). In this case, the identifier and message content are
necessarily encoded jointly by the channel encoder, and both decoded by the
channel decoder (cf. Fig. 1). For this situation and a binary communication
channel the identifier set size is clearly N(n) = 2n, for any n ≥ 1, where n
stands for the length of the binary representation of the identifier.

Fig. 1. The well-known simple way of handling an identifier

Identification via a communication channel under the constraint of joint chan-
nel coding and decoding might be well accomplished according to the scheme
of Fig. 1, as long as there is no need at a given block length n for an identifier
set size exceeding N(n). However, the constraint of joint channel coding and
decoding of both identifier and message content should be lifted if this is not the
case. Obviously, more freedom is offered to the designer if also the identifier it-
self might be encoded, before combining it with the message block conveying the
message content. This separate encoding is depicted in Fig. 2. Here two encoders
are shown, a constant weight binary identifier encoder (CIE) and a channel en-
coder (CE). In this scheme, a single bit is retained (denoted by R1 and “1” in
Fig. 2) out of the M bits of the identification codeword assigned to the identifier,
namely the one which depends on the message content to the conveyed. If no
MC is to be sent, one out the M weights is drawn at random.

It is well-known that the scheme of Fig. 2 is not confined to a singly exponen-
tial growth, like the one of Fig.1, but might exhibit, by an appropriate choice of
the parameters, an (at most) doubly exponential growth as n → ∞ as shown by
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Fig. 2. More freedom for the designer

Ahlswede and Dueck [5]. Verdú and Wei [24] have shown how to explicitly con-
struct an identification code the size of which achieves asymptotically a doubly
exponential growth. It is those asymptotically good identification code designs
which we have in mind in the present paper.

Notice that the joint channel coding and decoding is not the only constraint
imposed in Fig. 1, but also the fact that distinct headings of length n are assigned
to distinct identifiers. Thus the assignment is one-to-one and in this sense nec-
essarily deterministic. A consequence of this fact is that the probability of false
identification and, if the channel is noiseless, also that of missed identification
equals zero.

The scheme of Fig. 2 could offer to the designer also additional freedom in
this regard, if any value of the missed identification probability not exceeding λ1

and of the false identification probability not exceeding λ2 could be tolerated,
and randomized identification codes could be allowed.

That such identification codes exist, with the size N(n) of the identifier grow-
ing doubly exponentially with the length n of the identification code if a random-
ized code is selected in a suitable way, is the main content of the achievability
part of the fundamental result of Ahlswede and Dueck [5].

Han and Verdú [14] initiated the study of conveying identifiers and message
contents jointly via a communication channel of given Shannon capacity C, and
improved also the converse of the underlying theorem for identification from a
soft version proved in [5] to a strong version. The first constructions of iden-
tification codes relying upon the complexity of random number generation are
due to Ahlswede and Verboven [6], whereas the first explicit code constructions
(which seem suitable also for real-time generation of identification codes) are
due to Verdú and Wei [24].

In the present paper we will rely on these fundamental results concerning
the sending of a single identifier (or any of a great amount of identifiers) over a
communication channel. A brief account of this background is given in Section 2.

The third section of this paper contains new results obtained by the authors
on the subject of identification plus transmission via a single, one-way channel
under a wordlength constraint. In certain practical situations it may be required
to constrain the wordlength n of an identification plus transmission (IT) code by
a finite number n0. Under such constraint the probabilities of missed and false
identification do not necessarily fall below the preset thresholds λ1 and λ2.
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In Section 3 we thoroughly analyze the effect this constraint has on the various
parameters characterizing the IT code. We study hereby in particular a basic
component of the IT code, which we have termed the IT-generating code. The
Verdú-Wei code is such IT-generating (ITG) code. This ITG code is a binary
constant-weight code, the rows of which correspond to the identifiers. The ones
in each row correspond to messages. In identification plus transmission first a
row is selected, and then a one is selected from this row. The position of this
selected single bit is transmitted over the channel.

For simplicity we assume the transmission-channel to be noiseless, so that the
probability of missed identification equals zero, and we only need to analyze the
probability of false identification.

Following our previous paper [23], we establish an upper bound on the proba-
bility of false identification in terms of the parameters characterizing the Verdú-
Wei code. By keeping two parameters of the Verdú-Wei code fixed, and letting
the third one go to infinity, this upper bound will get as small as desired. How-
ever, when the constraint n ≤ n0 is imposed, this bound may still exceed λ2.

Next, in Section 3, two kinds of forward error control (FEC) are introduced to
further reduce drastically the probability of false identification under a wordlength
constraint. FEC version 1 is a serial scheme and FEC version 2 a parallel scheme.
In both FEC versions the position of the selected single bit is transmitted a fixed
number times, either by consecutive transmissions or by parallel transmissions.

FEC version 1 was already to some extent introduced in [22] and [23], but
here its properties are thoroughly investigated and the wordlength constraint
is imposed. Both FEC versions result in a drop in size of the set of available
identifiers, and in a reduction of the second-order rate of the ID code and of the
probability of false identification. Our results are formulated in Theorems 3 and
4 below. A comparison of these two theorems shows that the new FEC version 2
provides essentially a much better performance than FEC version 1 in reducing
the probability of false identification. The reduction in size of the identifier set
is for both FEC versions rather drastic, but the remaining amount of available
identifiers is still doubly exponential, i.e., huge.

A numerical example shows that for a moderate constraint n0 and only a few
(2 or 4) repetitions in the FEC schemes the probability of false identification in
either version can be made very small.

In Section 4 a view is taken towards the application of the results obtained
in Section 3 on identification plus transmission via a noiseless one-way channel
under a wordlength constraint to multiple access communication. This addresses
the problem of simultaneous identification plus transmission by several users
over a common noiseless channel to a common receiver. This problem combines
several problems of substantial importance and difficulty in information theory,
i.e., that of multiaccess communication (as treated in [1], [7], [17], and [20]),
that of least length control sequences (as investigated in [9], [10], [21], and [23]),
and that of IT codes (as described in [24] and Section 3 of this paper). The
imposition of a wordlength constraint might be particularly appropriate when
several users are communicating simultaneously over a common multiple access
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channel. Obviously, it is a rather difficult task to solve the union of these three
subproblems. In this paper we only outline the basic ideas of the subject of
identification plus transmission via a multiple access channel under a wordlength
constraint and discuss the underlying technique. Hereby we build forth on our
earlier work [11].

In Section 5 we consider a class of important real life tasks where the use of
huge identification codes, and our considered way of identification via a multi-
ple access channel, are of much prospective interest. We mention in this regard
already remote alarm services, which seem particularly appropriate for demon-
strating circumstances where a plethora of identifiers makes practical sense.

In this paper we consider only conventional identification tasks. However,
we are aware of other interesting kinds of networking tasks, which eventually
might be formulated as so-called K-identification tasks, a notion introduced by
Ahlswede [4]. A treatment of this topic is, however, outside the scope of this
paper.

2 Recalling Some Well-Known Fundamental Results

In this section we describe in more detail some well-known fundamental relations
that will serve as an immediate background of our subsequent investigations.

Ahlswede and Dueck [5] showed that there exist block codes for identification
of length n the size N of which grows asymptotically as

N = N(n) = 22nC
,

as n → ∞, while the probabilities of missed and false identification are kept
arbitrarily small. Here n stands for the length of a (binary) codeword of the
identification code, and C for the Shannon capacity of the channel via which
the codewords are to be conveyed. Thus the size N of the set of possible mes-
sages (identifiers) which can be sent for identification by the receiver exhibits
asymptotically doubly exponential growth.

The above corresponds to the situation where the receiver is only interested in
verifying whether a certain message is the transmitted message or not. Another
way to formulate this is to say that the receiver is monitoring a certain message
and wants to match that one to the message received from the sender. In this
paper, as in [23], we will also use the term “identifier” to mean the actually
transmitted message in the identification problem. An identifier match means
the event that the message received from the sender is decoded into the message
monitored by the receiver. An identifier match is thus a match at the receiver side
between an arriving and a stored (monitored) identifier (typically a sequence of
symbols). The fact that only one monitored identifier is matched at the receiver
at any given time allows for a huge number of possible identifiers to be sent at
the side of the source. This is in contrast with the classic Shannon formulation
of the problem of reliable transmission of a message through a noisy channel,
where the task of the receiver is to decide which one out of a large, but not huge,
set of possible messages has been sent.
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The task of identification is in this sense simpler than the task of decoding in
the Shannon formulation.

We first recall the basic notions from [5]. A channel W with input alphabet
A and output alphabet B is described by a sequence of conditional probability
distributions {Wn : An → Bn}∞n=1.

An (n,N, λ1, λ2) identification (ID) code is a collection

{(Qa, Da), a = 1, . . . , N}

where Qa is a probability distribution on An and Da ⊂ Bn, such that the
probability of missed identification is at most λ1, for any a = 1, · · · , N , and the
probability of false identification is at most λ2 for all a = b.

The rate of an (n,N, λ1, λ2) ID code is defined as 1
n log logN . We confine

ourselves to logarithms of base 2, as in the present paper binary identification
codes will be of our main interest.
R′ is an achievable ID rate if for any γ > 0, 0 < λ1 < 1, 0 < λ2 < 1, and for

all sufficiently large n, there exist (n,N, λ1, λ2) ID codes with

1
n

log logN > R′ − γ.

The ID capacity C′ of the channel is the maximum achievable ID rate.
For the ID capacity of the channel the following direct identification coding

theorem holds:

Theorem 1. [5] The ID capacity C′ of any channel is greater than or equal to
its Shannon capacity C.

Increasingly more general versions of the converse of Theorem 1 were proved
consecutively in [5], [14], [15], and [4].

We next recall the notions introduced by Han and Verdú [14] for joint iden-
tification and transmission of identifier and message content over a channel W .

An (n,N,M, λ1, λ2) identification plus transmission (IT) code consists of a
mapping

f : {1, . . . , N} × {1, . . . ,M} → An,

and a collection of subsets Da,m of Bn, a ∈ {1, · · · , N},m ∈ {1, · · · ,M}, such
that suitably defined error probabilities (corresponding to the probabilities of
missed and false identification) are at most λ1 and λ2, respectively. For the pre-
cise definition of an IT code see [14] or [24]. One can easily derive an (n,N, λ1, λ2)
ID code and N (n,M, λ1) transmission codes from any given (n,N,M, λ1, λ2)
IT code. We shall not give these derivations here, but instead refer to [14] and
[24]. The rate pair of an (n,N,M, λ1, λ2) IT code is defined by

(R =
1
n

logM,R′ =
1
n

log logN).

Following [14], a pair (R,R′) is said to be an achievable IT rate-pair, if for every
γ > 0, 0 < λ1 < 1, 0 < λ2 < 1, and for all sufficiently large n, there exist
(n,N,M, λ1, λ2) IT codes such that
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1
n

logM > R − γ,

1
n

log logN > R′ − γ.

Han and Verdú [14] proved both an achievability part and a converse part of
the identification plus transmission coding theorem.

Theorem 2. [14] For any finite-input channel W with Shannon capacity C, the
pair (C, C) is an achievable IT rate-pair, and conversely, every achievable IT
rate-pair (R,R′) must satisfy max(R,R′) ≤ C.

Theorem 2 holds in particular for a discrete memoryless channel (DMC), which
will be of our interest in this paper.

The construction of IT codes in the proof of the achievability part of Theo-
rem 2 can be viewed as the concatenation of a transmission code and a binary
constant-weight code. This idea was further worked out in [24], where an explic-
it construction of optimal binary constant-weight codes for identification (and
for identification plus transmission) was shown. The corresponding notions and
results will be described next; they form important background material for
understanding the results of Section 3.

Definition 1. [24] An (S,N,M,K) binary constant-weight code C is a set of N
binary S-tuples of Hamming weight M such that the pairwise overlap (maximum
number of coincident 1’s for any pair of codewords) does not exceed K.

Any (S,N,M,K) binary constant-weight code can be described by an N ×
M matrix s(a,m) ∈ {1, · · · , S} such that, for every a ∈ {1, · · · , N}, the row
(s(a, 1), · · · , s(a,M)) gives the locations of the M 1’s in the ath codeword. In
an IT-code, it is the position (location) of such one (a single bit) which will be
selected for transmission over a channel W .

Definition 2. [24],[25] An (n, S, λ) transmission code C for channel {Wn :
An → Bn} is a collection {(φ(s), Es) ∈ An× exp2(B

n)}, s = 1, · · · , S} such that
the subsets Es are nonoverlapping and

Wn(Es|φ(s)) ≥ 1 − λ.

In [24] the following three measures associated with a binary constant-weight
code were defined:

(i) the weight factor β := logM
logS ,

(ii) the second-order rate factor ρ := log logN
logS ,

(iii) the pairwise overlap fraction µ := K
M .

Any (S,N,M,K) binary constant-weight code satisfies β ≤ 1 and ρ ≤ 1.

Proposition 1. [24] Given an (S,N,M, µM) binary constant-weight code
{s(a,m), a = 1, · · · , N ;m = 1, · · · ,M}, 0 ≤ µ ≤ 1, denoted by C, and an
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(n, S, λ) transmission code {(φ(s), Es), s = 1, · · · , S} for channel W, denoted by
C, the following is an (n,N,M, λ, λ+ µ) IT-code :

f(a,m) = φ(s(a,m))

Da,m = Es(a,m), a = 1, · · · , N, m = 1, · · · ,M.

In [24] the following was observed. The rate-pair (R,R′) of an IT code, con-
structed as in Proposition 1 from a transmission code C for a channel W with
capacity C and a constant-weight code C, equals (βR, ρR), where R = ( 1

n ) logS
is the rate of the transmission code, and β and ρ are the weight factor and
second-order rate factor of the constant-weight code C. In order for (R,R′) to
approach the optimal rate-pair (C, C), as is theoretically achievable according
to Theorem 2, one needs transmission codes whose rates R approach C and bi-
nary constant-weight codes C whose weight factor and second-order rate factor
approach unity.

Definition 3. [24] Consider a sequence {Ci} of binary constant-weight codes
Ci = (Si, Ni,Mi, µiMi) with weight factor βi, second-order rate factor ρi and
pairwise overlap fraction µi.

The sequence of codes {Ci} is said to be optimal for identification plus trans-
mission if

βi → 1, ρi → 1, and µi → 0, as i → ∞. (1)

It may well happen that a sequence of binary constant-weight codesCi satisfies
condition (1), so that, when linked with a sequence of transmission codes Ci for a
channel W (as in Proposition 1), the resulting IT-code sequence yields an optimal
rate-pair (R,R′) for identification plus transmission, but that the actual first-
order rate logNi

Si
of Ci tends to zero. We shall encounter such example shortly.

This fact is immaterial, though, for joint identification and transmission with
the combined scheme of a binary constant-weight code C and a transmission
code C described in Proposition 1.

We next turn to the description of a sequence of codes {Ci} which is optimal
for identification plus transmission in the sense of Definition 3, as invented by
Verdú and Wei [24]. Such codes are based on the concatenation of a pulse posi-
tion modulation code with two Reed-Solomon codes. Concatenated codes were
originally introduced by Forney [12] to solve a theoretical problem, but have
turned out to be useful in a variety of applications [13].

Definition 4. [24] Let C1 and C2 be codes with blocklength ni, size Ni, and
alphabet Ai, i = 1, 2. If N1 = |A2|, then the concatenated (or nested) code C12 =
C1 ◦ C2 with blocklength n12 = n1n2, size N12 = N2 and alphabet A12 = A1 is
constructed by using any one-to-one mapping h : A2 → C1 :

C12 = {(h(y1), · · · , h(yn2)) : (y1, · · · , yn2) ∈ C2}.
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Thus, to form the concatenation C12, each letter of each codeword (y1, · · · , yn2)
of C2 is replaced by a different codeword of C1. C1 is called the inner code and
C2 the outer code.

One way to construct a binary constant-weight code is to concatenate a pulse
position modulation (PPM) code C1 with an outer code C2 for which |A2| > 2.

Definition 5. [24] A [q] PPM code is a (q, q, 1, 0) binary constant-weight code;
it consists of all binary q-vectors of unit weight.

If one concatenates a [q] PPM code C1 with an outer code C2 with |A2| = q, n2 =
n′, N2 = N , and minimum distance d2 = d, one obtains an (n′q,N, n′, n′ −
d) binary constant-weight code C12. The parameters of C12 are thus S12 =
n′q,N12 = N,M12 = n′, and K12 = n′ − d.

Eventually we are interested in concatenating a [q] PPM code C1 with the
concatenation of two Reed-Solomon codes C2 and C3.

Definition 6. [24] Let q be a prime power (i.e. q = pm), and denote the ele-
ments of the Galois field GF (q) by {a1, · · · , aq}. A [q, k] Reed-Solomon (R-S)
code (k < q) is the set of q-vectors over GF (q) : {(p(a1), · · · , p(aq)) : p(x) is a
polynomial of degree < k with coefficients from GF (q)}.

For a [q, k] R-S code C2, it holds that n2 = q,N2 = qk, and d2 = q − k + 1.
The concatenation of a [q] PPM code C1 with a [q, k] R-S code C2 results in
a (q2, qk, q, k − 1) binary constant-weight code C12 = C1 ◦ C2, i.e. S12 = q2,
N12 = qk, M12 = q, and K12 = k − 1.

It was observed in [24] that the concatenation of a PPM code C1 with a
R-S code C2 will not lead to binary constant-weight codes which are optimal
for identification plus transmission in the sense of Definition 3. However, the
concatenation of a PPM code C1 with the concatenation C2 ◦ C3 of two R-
S codes will lead to such optimal codes. The following construction is due to
Verdú and Wei [24].

Proposition 2. [24] The [q, k, t] three-layer concatenated code C = C123 =
C1 ◦ C2 ◦ C3, with C1 = [q] PPM, C2 = [q, k] Reed-Solomon and C3 = [qk, qt]
Reed-Solomon, with t < k < q = prime power, is a (qk+2, qkq

t

, qk+1, kqk + qt+1)
binary constant-weight code.

The parameters of C123 in Proposition 2 satisfy S123 = qk+2, N123 = qkq
t

,M123 =
qk+1, and K123 < kqk + qt+1, and depend on the choice of q, k and t.

Consider now a sequence {Ci} of binary constant-weight codes, with Ci being
a [qi, ki, ti] three-layer concatenated code constructed as in Proposition 2. In
order for this sequence to be optimal for identification plus transmission in the
sense of Definition 3, Verdú and Wei [24] established the following conditions.

Proposition 3. [24] Let Ci be a [qi, ki, ti] three-layer concatenated code as con-
structed in Proposition 2. The sequence of codes {Ci} is optimal for identification
plus transmission if (a) ti → ∞, (b) ti

ki
→ 1, (c) ki

qi
→ 0, and (d) qti−ki

i → 0, as
i → ∞.
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The proof of Proposition 3 is based on the fact that, for the Ci considered, the
parameters βi, ρi, and µi satisfy the following:

βi =
ki + 1
ki + 2

, (2)

ρi =
ti

ki + 2
+

log ki + log log qi
(ki + 2) log qi

, (3)

µi ≤
ki
qi

+ qti−ki

i . (4)

Hence (1) holds if conditions (a) - (d) of Proposition 3 are satisfied.
It is observed in [24] that a simple sequence of parameters satisfying the condi-

tions of Proposition 3 is given by ti = i, ki = i+1, and qi any increasing sequence
of prime powers, and furthermore that the first-order rate Ri = logN123,i

Si
tends

to zero for any sequence {Ci} satisfying condition (d) of Proposition 3.
As remarked before, the latter fact is of no importance for evaluating the

performance of the joint identification and transmission scheme described in
Proposition 1. In this joint identification and transmission scheme one aims for
codes Ci which are optimal for identification, i.e. provide a high second-order
rate, not necessarily a good first-order rate.

When considering the joint IT scheme of Proposition 1, consisting of a binary
constant-weight code C linked with a transmission code C, it is the combined
scheme that forms the IT-code which allows joint identification and message
content transmission. From it one can derive an (n,N, λ1, λ2) ID code and N
(n,M, λ1) transmission codes (λ1 = λ, λ2 = λ + µ). Although the joint scheme
cannot be separated into these derived ID and transmission codes, it is clear that
the binary constant-weight code C plays the major role in the identification part
and C is the essential component for the transmission part of the joint IT-code.
We shall refer to the binary constant-weight code C, underlying the scheme of
Proposition 1, as an IT-generating (ITG) code, and denote it regularly by CITG.
Similarly, binary constant-weight codes Ci, which form a sequence {Ci} as in
Definition 3, may be denoted by CITG,i. The particular binary constant-weight
code described in Proposition 2 is such CITG, and conditions for a sequence
{CITG,i}, when CITG,i is a [qi, ki, ti] three-layer concatenated code, to be optimal
for identification plus transmission are given by Proposition 3.

We further remark that, when linking a code CITG from Proposition 2 with
a channel code (according to the procedure of Proposition 1), the position (one
out of S) of the single bit (one out of M) needs to be transmitted over the
channel. If the channel is binary, as will be our case, the binary representation
of the position of the single bit to be transmitted is needed.

There are two properties of the binary constant-weight ITG code, construct-
ed in Proposition 2 as a three-layer concatenated code, which are worthwhile
mentioning. First, the size of this code (N = qkq

t

) exhibits a doubly exponential
growth in q, thereby revealing the expected doubly exponential growth of the
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identifier set size. Second, for a sequence {Ci} of [qi, ki, ti] three-layer concatenat-
ed codes which is optimal for identification plus transmission, it is a consequence
of conditions (c) and (d) of Proposition 3 that the overlap fraction µi = Ki

Mi
→ 0

as i → ∞. If the channel is noiseless this implies that the false identification
probability will vanish. We will confine ourselves in this paper to a binary noise-
less channel for transmitting the binary representation of the position of the
single bit selected. For a noiseless channel the missed identification probability
is zero.

In Fig. 3, the concatenated code of Proposition 2 is shown schematically.
Whereas the component codes are ordered from right to left, the path of the
message flow is from left to right.

Fig. 3. From ID input to channel encoder

In practice, we are frequently interested in identification via a channel under
a wordlength constraint n ≤ n0 < ∞. Under such a constraint one should reckon
with the fact that adopting the just described asymptotically optimal explicit
construction might yield an unacceptably (too large) probability of false identi-
fication. Usually the false identification probability proves to be really critical in
this respect. When the channel is noiseless this is the only quality-of-performance
characteristic. A drastic suppression of the false identification probability with
respect to an ITG code of blocklength S, the corresponding sequence of bina-
ry constant-weight codes of which is asymptotically suboptimal, might offer a
solution to the problem. Two ways of doing so will be considered in the next
section.

It has been pointed out in [24] that even if there is no simultaneous message
transmission, the conveying of a single bit through the channel should be done
by randomization. In this case one might choose the position of the bit to be
transmitted uniformly from the M weights of C = CITG. We will propose an
extension of such a design in the next section, not only for a reiterated (i.e.
serial) but also for a simultaneous (i.e. parallel) transmission of more than one
copy of the identifier, assuming an idealized model of scrambled messages, with
the very same randomization also.

3 Elementary Forward Error Control Meant Especially
for Huge Identification Codes

In the remote alarm services we have in mind, it is a rather common demand to
constrain the wordlength n of a IT code by n ≤ n0 < ∞.
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While a wordlength n will be immediately related to the characteristics of the
forward error correction (FEC) to be considered, it does not characterize the
delay with respect to the instant the identification codeword has been initiated.

Note that, when n ≤ n0, the error probabilities of missed and false identifi-
cation may exceed the preset tolerance thresholds λ1 and λ2, respectively, since
the basic ID and IT coding theorems (Theorems 1 and 2 above) are asymptotic
results holding only for n → ∞.

For a noiseless channel, the missed identification probability equals zero, and
then the false identification probability becomes the only characterizer of the
quality of performance. We confine ourselves in the current paper to such a
channel (in particular a binary noiseless channel), just to focus on the most
interesting features of our present subject of investigation.

By forward error correction (FEC) we mean a method of error control which
concerns only the encoding part of the information transmission, not the decod-
ing part.

In order to achieve an initial suppression of the false identification probability
of the IT code based on the ITG code CITG of Proposition 2, we first put some
restrictions on the parameters q, k, and t which define CITG. By the definition
of a R-S code, we already know that these code parameters must satisfy 1 ≤ t <
k < q. Now let q = 2m,m ≥ 1, and let t and k be fixed. Denote the corresponding
three-layer concatenated code by CITG,m. For fixed t and k, and m → ∞, the
sequence {CITG,m} is not optimal for identification plus transmission in the
sense of Definition 1, as the four conditions of Proposition 3 are not all satisfied
(in particular condition (a) is violated). However, this code sequence still has
desirable properties, as we shall now demonstrate.

First, for the parameters βm and ρm (defined as in (2) and (3) with i = m),
we have

lim
m→∞

βm = β1 =
k + 1
k + 2

(5)

lim
m→∞

ρm =
t

k + 2
. (6)

This implies that, if the rate R = 1
n logS of the transmission code in Proposition

1 approaches the capacity C of channel W , the rate-pair (R,R′) of the IT-code
formed by CITG,m and this transmission code approaches the rate-pair(

k + 1
k + 2

C, t

k + 2
C
)
, (7)

which is suboptimal with respect to the theoretically achievable rate-pair (C, C).
By way of example, if t = 1, k = 2, (7) yields the pair (3

4C,
1
4C), and if t = 2, k = 3

then (7) yields (4
5C,

2
5C). Thus, when C > 0, the IT rate-pair (7) still provides a

doubly exponentially large identifier set size and an exponentially large message
set size.
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For the identifier set size N , derived from the binary constant-weight code
CITG,m defined above (with t and k fixed, 1 ≤ t < k < q = 2m), we obtain the
following expression:

N = N(m, t, k) = qkq
t

= 2mk2
mt

= 22m[g(m,k)+t]
, (8)

where

g(m, k) :=
logmk
m

→ 0 as m → ∞, k fixed. (9)

Hence, for k fixed,

N = 22m[t+o(1)] ! 22mt

as m → ∞, (10)

where o(1) → 0 as m → ∞. By the notation f(m) ! g(m), as m → ∞, we mean
that log log f(m) ∼ log log g(m).

We next analyze the probability of false identification of the IT code corre-
sponding to CITG,m and establish an upper bound on it.

First, though, we review the rule used at the output of the channel for the
identification of an arriving identifier, as discussed in [23], and this for an IT code
based on any binary constant-weight code CITG as defined in Proposition 1.

We assume that all codewords cIT ∈ CITG are used for identification, so that
to each identifier there is assigned one and only one codeword cIT . Suppose that
at the common output of the channel we want to decide whether or not identifier
a has been sent (and if so, how to recover the associated message). Let a copy of
the codeword cIT (a) ∈ CITG, assigned to identifier a, be stored for this purpose
at the output of the channel. Let codeword cIT (b) correspond to identifier b,
and suppose identifier b and message m are sent by the sender. Then one of
the M = MITG ones of cIT (b), namely the single bit corresponding to message
m (1 ≤ m ≤ M) is selected, and its position s (1 ≤ s ≤ S) is transmitted
via a transmission code C over W . Since W is assumed to be noiseless in our
case, this amounts to mapping the position s into a binary sequence of length
n = logS and transmitting this sequence over the binary noiseless channel W
using n channel operations. After receiving the sequence corresponding to the
position s at the channel output (or after decoding this sequence into s′ if W is
noisy, but here s = s′), the receiver declares identifier a if the codeword cIT (a)
stored has a one at the location s (i.e., if the symbol one selected from cIT (b)
covers any of the ones of cIT (a)). This event is called an identifier match.

Furthermore, let (a′, b′) stand for any worst possible identifier pair, i.e., a pair
such that the corresponding codewords cIT (a′) and cIT (b′) are the minimum
Hamming distance apart. Define for an identifier pair (a, b), with b = a, the
probability of false identification by

P (false, (a, b)) := P ({b declared}|{a arrived}).

Clearly, for identifier pair (a, b)

P (false, (a, b)) ≤ P (false, (a′, b′)),
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where (a′, b′) is any worst possible identifier pair. Therefore we define

P (false) := P (false, (a′, b′)),

which takes the same value for any worst possible identifier pair. Thus P (false)
is the maximum probability of false identification, where the maximum is taken
over all pairs of distinct codewords from CITG. If the channel W is noiseless
then, as was shown in [23],

P (false) =
KITG
MITG

, (11)

where KITG = K and MITG = M are the maximum number of coincident 1’s for
any pair of codewords (the worst possible correlation) and the Hamming weight,
respectively, of the binary constant-weight code.

Now let us return to the binary constant-weight code CITG,m discussed above,
constructed as in Proposition 2, with q = 2m and t and k fixed. With KITG =
K123 and MITG = M123, where K123 and M123 are given by the expressions
immediately following Proposition 2, we obtain

P (false) <
kqk + qt+1

qk+1
=
k

q
(1 +

1
kqk−t−1

). (12)

It follows that, if W is noiseless, q = 2m, and t and k are fixed with k − t > 1,
then

P (false) <
k

2m
(1 + o(1)), (13)

where o(1) → 0 as m → ∞. The upper bound in (13) provides indeed a con-
siderable reduction of the false identification probability, as compared to when
t and k are not fixed, but satisfy conditions (a) and (b) of Proposition 2, e.g., if
t = m and k = m+ 2. By way of example, if t = 1, k = 3, and m = 16, then the
upper bound in (12) yields

P (false) < 3 · 2−16 + 2−32 < 2−14, (14)

whereas the choice m = 16, t = 14, and k = 16 substituted in (12) yields only

P (false) < 2−12 + 2−32.

Notice that, if k and t are fixed, the choice k− t = 1 is also allowed. In this case
the upper bound in (12) takes the form

P (false) <
k + 1
q

. (15)

For q = 2m,m = 16, t = 1, k = 2 (15) yields

P (false) < 3 · 2−16,

which is actually smaller than the bound in (14).
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The false identification probability can be further drastically suppressed by
the usage of two kinds of non-algebraic forward error control, which will be
introduced shortly. Before doing so, we elaborate on the threshold n0 which was
put forward as a constraint on the wordlength n of our IT code.

In the context of the IT code considered here, composed, as explained by
Proposition 1 and Proposition 2, of a binary constant-weight code CITG =
(S,N,M,K) with S = qk+2, N = qkq

t

,M = qk+1,K < kqk + qt+1, and q = 2m,
and an (n, S, λ) transmission code C, there are various wordlengths to distinguish
between.

First, there is the blocklength n of the overall IT code, which is also the
blocklength of the transmission code C for sending the position of the selected
bit over channel W .

Secondly, there is the common length of each codeword of CITG which is given
by

S = qk+2 = 2m(k+2), (16)

and thirdly there is the parameter m = log q which represents the length of the
binary representation of q. The relationship between these three parameters is
given by (16) and

S = 2n, (17)

so that
n = logS = m(k + 2). (18)

Clearly, a threshold on n implies a threshold on S, and also on m, if k is given
as in our case, and vice-versa.

Practical service objectives may impose a constraint S0 on S, from which
a tolerance threshold n0 on n can be derived immediately as follows. If the
threshold S0 on S is specified, then define first the tolerance threshold imposed
on m by

m0 =
⌊

logS0

k + 2

⌋
, (19)

and next the corresponding tolerance threshold on n by

n0 = m0(k + 2), (20)

where �x� stands for the largest integer less than or equal to x.

Lemma 1. Let S0 be a given threshold on the length S of a codeword from CITG,
and let m0 and n0, defined by (19) and (20), be the corresponding thresholds on
m and n, respectively. Define q0 = 2m0 . Then the wordlength S of a CITG code
for which q = q0, denoted by S(q0), satisfies

S(q0) ≤ S0. (21)

Thus, the constraint S ≤ S0 is met for S(q0), where q0 is derived from S0.
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Proof: S(q0) = 2m0(k+2) ≤ 2logS0 = S0.
We are now ready to introduce two basic kinds of FEC, meant especially to
drastically suppress the false identification probability of the above-mentioned IT
codes. The price of using these is a drastic, though usually far from catastrophic,
drop in the code size in one of the two approaches. The same drop in code size
is still remarkable, but drastically less than in the previous case, for the other
considered approach. We refer to these two approaches as FEC version 1 and
FEC version 2. The first version corresponds to a serial scheme and the second
one to a parallel scheme of FEC.

The reason for introducing these FEC schemes is that, under the constraint
S ≤ S0, m ≤ m0, n ≤ n0, the probability of false identification might exceed λ2

if no FEC is applied. Hence, these thresholds are assumed to be given and fixed
in the ensuing discussion.

It turns out that even for FEC version 1 still appropriately huge code sizes
might be produced at a word length n ≤ n0 <∞ with respect to the code size of
the original IT code. The code size drop for the second approach, FEC version
2, is much smaller, but this latter version is more complex than the former one.

If the thresholds were to diverge to infinity (i.e., if n0 → ∞), then a similar
drop in code size would occur in both cases of FEC, which can be measured in
terms of second-order rate. Hence these new identification codes are no more
optimal, even asymptotically.

In the following discussion the IT code corresponding to the parameter m0

plays an important role, as the FEC versions to be described are derived from
it, and their performance will be measured relative to this original IT code.
Therefore, we describe it here once more in detail.

If m = m0, the CITG code from Proposition 2 is a binary constant-weight
code (S,N,M,K) based on q0 = 2m0 , so that S = S(q0) = 2m0(k+2) and N =
N(q0) = 2m0k2

m0t

, with 1 ≤ t < k < 2m0 . We denote this CITG code by C0
ITG.

Associated with C0
ITG there is an (n0, S(q0), λ) transmission code C0 for W with

n0 = m0(k + 2). The IT code formed by the juxtaposition of C0
ITG and C0 is

denoted by C0
IT . The maximum probability of false identification when using

C0
IT is denoted by P0(false), and when W is noiseless, we have, according to

(13)

P0(false) <
k

2m0
(1 + o(1)). (22)

For the code size of C0
IT , denoted by N0, we have from the above and (10)

N0 = N(q0) ! 22m0t

as m0 → ∞ (23)

for t and k fixed, 1 ≤ t < k < q0, and for the second-order rate of C0
IT , denoted

by R0, we have, under the same assumptions,

R0 =
log logN0

n0
∼ m0t

n0
=

m0t

m0(k + 2)
=

t

k + 2
(24)

in accordance with (7).
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Description of FEC Version 1 of C0
IT

Let the threshold m0 for m be fixed, in function of threshold S0 according to
(19). Define the threshold for n by n0 as in (20). Choose an integer ν ≥ 1,
typically ν = 2 or ν = 4, in order to define a ν-fold repetition code for conveying
the identifier towards the channel ν times. Define

mν =
⌊m0

ν

⌋
, qν = 2mν , and nν = (k + 2)mν . (25)

Consider the [qν , k, t] three-layer concatenated code of Proposition 2, denoted by
C1
ITG,ν , which is a (Sν , Nν ,Mν ,Kν) binary constant-weight code with Sν = qk+2

ν ,

Nν = q
k(qν )t

ν , and Mν = qk+1
ν . Recall that on the joint choice of qν , k and t the

following constraint is imposed: 1 ≤ t < k < qν . Whereas qν depends on the
choice of ν, the parameters t and k are kept constant. Clearly for ν ≥ 1

Sν = 2(k+2)mν ≤ 2(k+2)m0 ≤ S0,

so that the length Sν of each codeword of C1
ITG,ν satisfies the constraint Sν ≤ S0.

For ν = 1, C1
ITG,1 is the binary constant-weight code (S1, N1,M1,K1) based on

q1 = 2m1 , t and k, with m1 = m0. Now consider the IT code C1
IT,ν formed by the

juxtaposition of C1
ITG,ν and an (nν , Sν , λν) transmission code C

1

ν for channel W .
Suppose the identifier b and message w are to be sent. In FEC version 1 this is
done by applying the C1

IT,ν code ν times in a consecutive order. This means that
from the codeword c1IT,ν(b) ∈ C1

ITG,ν , assigned to identifier b, the w-th “one”
is selected, and its position, denoted by s(b, w), is encoded into a codeword
c1ν(s(b, w)) of length nν of C

1

ν . When W is noiseless and binary (as is our case)
this amounts to mapping s(b, w) into a binary sequence of length nν , which
will be received errorfree at the output of channel W , so that the position of the
single bit of c1IT,ν(b) which was selected is known by the receiver. This procedure
is repeated ν times. Thus the binary sequence of length nν , corresponding to the
binary representation of the position s(b, w) of the w-th bit of codeword c1IT,ν(b),
is sent ν times over W with a total block length of ν · nν ≤ n0. The combined
sequence, consisting of ν times the same binary sequence of length nν , is nothing
else than the codeword of a repetition code, for sending the same identifier ν
times. If no message content w is to be transmitted at all, we select a single
bit uniformly from the M weights of c1IT,ν(b) and transmit the position of this
randomly selected bit; we do these uniform drawings independently over all ν
successive codewords.

For decoding the identifier sent, we use the rule of an identifier match de-
scribed above, but now for each of the ν consecutive blocks. A copy of just one
of the N codewords of C1

ITG,ν is stored at the output of the channel, c1IT,ν(a)
say, if a is the identifier meant to be monitored at the output of the channel. We
declare the stored identifier as the one having been sent, whenever the single bit
received in all j codeword slots, 1 ≤ j ≤ ν, is covered within each codeword slot
by one of the weights of the stored codeword c1IT,ν(a). Otherwise we declare a
missed identification. If W is noiseless, and b = a, the receiver will identify the
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identifier which was sent correctly, and in each codeword slot the location of the
single bit received will be the same. However, even if W is noiseless, an identifier
match may also occur if another codeword c1IT,ν(b), b = a, different from the
stored codeword c1IT,ν(a) has been sent. Such event corresponds to false iden-
tification. If the ν binary codewords c1ν,j (conveying the positions of the single
bits of the ν binary codewords c1IT,ν,j) are decoded correctly, the entire message
content might be recovered. This is certainly the case for any noiseless channel.
For a noisy channel, error correction (or erasure) might need to be employed in
order to decode the incoming codewords c1ν,j correctly.

Let us next investigate what the drop in code size is of the IT code C0
IT

(with W noiseless), when it is replaced by a FEC version 1 with ν ≥ 2. We also
investigate what the change in second order rate and of the probability of false
identification is, when using FEC version 1, as compared to the original IT code
C0
IT , i.e. when using no FEC. We denote the code size of C1

ITG,ν by N1,ν . This
is the number of possible identifiers when using the IT code C1

IT,ν , consisting of

the juxtaposition of C1
ITG,ν with the transmission code C

1

ν . Since in FEC version
1 the same IT code C1

IT,ν is repeated ν times, the number of possible identifiers
(i.e. the code size) of a FEC version 1 of C0

IT is also N1,ν . For the second order
rate of this repetition code, denoted by R1,ν we have

R1,ν =
log logN1,ν

n0
(26)

since the length of the total transmission over W is n0 = νnν .
We denote the maximum probability of false identification when using C1

IT,ν

only once by P1,ν,1(false), and the same probability when using C1
IT,ν ν times

by P1,ν(false).

Theorem 3. Let m0 be fixed, q0 = 2m0 , ν ≥ 2, mν =
⌊
m0
ν

⌋
, qν = 2mν , k and t

fixed, 1 ≤ t < k < qν . Then, for FEC version 1, the code size N1,ν , the second-
order rate R1,ν , and the probability of false identification P1,ν(false) one has:

(i) N1,ν = 22mν [g(mν ,k)+t]
,

(27)
where g(mν , k) = logmνk

mν
→ 0 as mν → ∞; hence

N1,ν ! 22mν t

as mν → ∞ . (28)

(ii) R1,ν ∼
t

(k + 2)ν
∼ R0

ν
as mν → ∞, (29)

(iii) P1,ν(false) ≤ PUB1,ν , (30)

with
PUB1,ν ∼

(
PUB0

)ν
2m0(ν−1)+ν , (31)
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and
PUB0 =

k

2m0
. (32)

Proof: (i) Since N1,ν = 2mνk2
mν t

, (27) and (28) follow readily from (8) and
(10). (ii) By (26) and (27)

R1,ν =
mν [g(mν , k) + t]

νnν
.

Letting mν → ∞, we obtain

R1,ν ∼
mνt

νnν
=

mνt

νmν(k + 2)
=

t

ν(k + 2)
. (33)

Now compare (33) with (24). (iii) By independence

P1,ν(false) = (P1,ν,1(false))
ν .

By (13)

P1,ν,1(false) <
k

2mν
(1 + o(1)) <

k

2m0

(
2m0( ν−1

ν )+1
)

(1 + o(1)). (34)

Hence

P1,ν(false) <
(

k

2m0

)ν (
2m0(ν−1)+ν

)
(1 + o(1)).

Denoting the righthand side of this inequality by PUB1,ν , (30) and (31) follow from
(32) and letting mν → ∞.

Description of FEC Version 2 of C0
IT

Let the thresholds S0, m0, and n0 be the same as in FEC version 1, and let
q0 = 2m0 as before. Choose again an integer ν ≥ 1, this time to define a ν-fold
parallel code for conveying the identifier with ν codewords simultaneously over
the channel. Let the parameters t and k again be fixed, 1 ≤ t < k < q0.

Now consider the original C0
IT code, composed of C0

ITG and C0, defined prior
to (22). C0

ITG is a binary constant-weight code (S,N,M,K) with S = S(q0) and
N = N(q0) defined above. Next subdivide (partition) the N(q0) codewords, each
of length S(q0), into ν subcodes of equal size

N2,ν =
⌊
N(q0)
ν

⌋
. (35)

Denote these subcodes by C2
ITG,j , j = 1, . . . , ν.

Observe that each C2
ITG,j is again a binary constant-weight code with S =

S(q0), N = N2,ν, and the parameters M and K the same as for C0
ITG. It is

immaterial which codewords of C0
ITG are assigned to which subcode, and which

codewords are dropped by the rounding off in (35), as only the code size N2,ν

matters. Suppose that the identifier b and message m are to be sent. In FEC
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version 2 this is done by encoding identifier b ν times, each time into a different
codeword c2IT,j(b), where each c2IT,j(b) belongs to one and only one C2

ITG,j ,
j = 1, . . . , ν. Next select from each codeword c2IT,j(b), the w-th “one”, and
encode its position, denoted by sj(b, w) into a binary codeword c2j(sj(b, w)) of
length n0.

We assume the availability of ν parallel noiseless binary channels, denoted by
Wj , j = 1, . . . , ν. For each channel Wj there is an (n0, S(q0), 0) transmission
code C

2

j , with c2j(sj(b, w)) ∈ C
2

j . After n0 channel operations the codeword
c2j(sj(b, w)) is received errorfree at the output of Wj . From it the position sj(b, w)
of the single bit selected from c2IT,j(b) can be deduced. Assume that one receiver
observes the simultaneous outputs of all channels Wj , i.e., he observes the vector
(c21(s1(b, w)), . . . , c2ν(sν(b, w))), and thus knows the vector (s1(b, w), . . . , sν(b, w))
of positions.

For decoding the identifier sent, we use again the rule of an identifier match,
but now at the output of each channel Wj . If identifier a is meant to be monitored
by the common receiver, a copy of the corresponding codeword c2IT,j(a) ∈ C2

ITG,j

is stored at the output of channel Wj . The common receiver declares that iden-
tifier a was sent, whenever for each j = 1, . . . , ν, c2IT,j(a) has a “one” on position
sj(b, w). Otherwise he declares a missed identification. If b = a, the receiver
will identify b correctly, since each Wj is noiseless. However, even if all Wj ’s
are noiseless, an identifier match may occur at the output of a particular Wj if
another codeword c2IT,j(b), b = a, different from the stored codeword c2IT,j(a),
has been sent. If the latter event happens for all j = 1, . . . , ν, false identification
occurs.

We now investigate what the change in code size is, if the original IT code C0
IT

(W noiseless) is replaced by FEC version 2 with ν ≥ 2, and also what the possible
change is of the second order rate and the probability of false identification. With
N2,ν , defined in (35), being the common size of the subcodes C2

ITG,j , j = 1, . . . , ν,
the second order rate of FEC version 2, denoted by R2,ν , is given by

R2,ν =
log logN2,ν

n0
. (36)

We denote the maximum probability of false identification when using only one
parallel channel (i.e. when ν = 1, and then we are back in the situation of C0

ITG)
by P2,1(false), and the same probability when using FEC version 2 with ν ≥ 2
by P2,ν(false).

Theorem 4. Let m0 ≥ 1 be an integer, q0 = 2m0 , and let k and t be fixed,
1 ≤ k < t < q0. Let ν ≥ 2 be a fixed integer. Then, for FEC version 2, the
code size N2,ν , the second-order rate R2,ν , and the maximum probability of false
identification P2,ν(false) satisfy the following:

(i) N2,ν =
⌊

1
ν

22m0[g(m0,k)+t]
⌋
,

(37)
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where g(m0, k) := logm0k
m0

→ 0 as m0 → ∞; hence

N2,ν !
⌊

1
ν

22m0t

⌋
. (38)

Furthermore

(ii) R2,ν ∼
t

k + 2
∼ R0 as m0 → ∞, (39)

and

(iii) P2,ν(false) ≤ PUB2,ν , (40)

with

PUB2,ν ∼
(
PUB0

)ν
=

(
k

2m0

)ν
. (41)

Proof: (i) Since N(q0) = 2m0k2
m0t

, (37) and (38) follow from (8), (9), (10), and
(35). (ii) It can be easily verified that for ν fixed, and m0 greater than some
constant δ(ν),

22m0[g(m0,k)+t]−1
< N2,ν < 22m0[g(m0,k)+t]

, (42)

hence

lim
m0→∞

log logN2,ν

n0
= lim
m0→∞

m0[g(m0, k) + t]
m0(k + 2)

=
t

k + 2
. (43)

(iii) By the independence of the ν parallel channels,

P2,ν(false) = (P2,1(false))
ν
. (44)

By (13)

P2,1(false) <
k

2m0
(1 + o(1)) . (45)

Letting

PUB2,ν =
(

k

2m0

)ν
(1 + o(1)) , (46)

(40) and (41) follow from (44), (45), (46), and (32).

Remark 1: When comparing Theorem 3 and Theorem 4, we see that FEC
Version 2 shows better performance than FEC Version 1. First, for ν ≥ 2, N1,ν

(given by (27) and (28)) is much smaller than N2,ν (given by (37) and (38)). The
drop in size from N1,1 = N(q0) = N2,1 to N1,ν is quite drastic, but the reduction
in size from N2,1 to N2,ν is much less significant. This difference becomes even
clearer, when comparing the rates R1,ν (approximately given by (29)) and R2,ν

(approximately given by (39)).
The approximate value of R2,ν , when m0 is large, is ν times that of R1,ν ,

and, approximately, R2,ν = R2,1 = R0, i.e., there is no rate loss in using FEC
Version 2, provided m0 is large. Finally, the approximate upper bound (31) to
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P1,ν(false) is a factor 2m0(ν−1)+ν larger than the corresponding upper bound
(41) on P2,ν(false).

Example: Assume t = 1, k = 2, m0 = 16, so that q0 = 216 and n0 = 64.

Case (i). Let ν = 2, so that mν = 8.
For FEC Version 1 we obtain (cf. (27), (26), and (31)):

N1,ν = 216·28
= 2212

, R1,ν =
12
64

=
3
16
, PUB1,ν

.=
(

2
216

)2

· 218 = 2−12.

The more precise bound (15) yields

P1,ν(false) <
(

3
28

)2

=
9

216
< 2−12.

On the other hand, for FEC Version 2 we obtain (cf. (37), (36), and (41)):

N2,ν =
1
2
· 232·216

= 2221−1 > 2220
, R2,ν >

20
64

=
5
16
, PUB2,ν

.=
(

2
216

)2

= 2−30.

Applying (15) and (44) we get the bound

P2,ν(false) <
(

3
216

)2

,

which is between 2−29 and 2−28.

Case (ii). Let ν = 4, so that mν = 4.
For FEC Version 1 we then obtain by similar calculations:

N1,ν = 28·24
= 227

,

R1,ν =
7
64
,

PUB1,ν
.=
(

2
216

)4

· 252 = 2−8.

From (15) we get

P1,ν(false) <
(

3
24

)4

=
81
216

,

which is between 2−10 and 2−9.
For FEC Version 2 the corresponding results are:

N2,ν =
1
4
· 232·216

= 2221−2 > 2220
,

R2,ν >
20
64

=
5
16
,
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PUB2,ν
.=
(

2
216

)4

= 2−60.

When applying the bound (15) we obtain

P2,ν(false) <
(

3
216

)4

,

which is between 2−58 and 2−57.
The example shows that for each ν, the performance of FEC Version 2 (as

measured by the three quantities Ni,ν , Ri,ν , and PUBi,ν , i = 1, 2) is far better than
that of FEC Version 1. It also shows that the drop in size of N1,ν (as compared to
N1,1) is much bigger than the drop in size of N2,ν . Furthermore, as ν increases,
the performance of all three quantities N1,ν , R1,ν , and PUB1,ν gets worse, whereas
in the case of FEC version 2 the values of N2,ν and PUB2,ν only very slightly
decrease, but PUB2,ν drastically decreases. We conclude that from the point of
view of these three quantities FEC version 2 is far superior than FEC version 1,
but from the viewpoint of implementation FEC version 2 is more complex than
FEC version 1. Therefore, under certain circumstances, FEC version 1 might
still be appealing.

Remark 2: In both Theorem 3 and Theorem 4 we allow the thresholds m0 and
mν to tend to infinity. We allowed this also in (23) and (24). Here we should like
to clarify the meaning of this, as normally a threshold value should be finite and
possibly not too large. We recall that m0 is a threshold on m, and is related to
the thresholds S0 and n0 by (19) and (20), so that asm0 increases, also S0 and n0

increase. The asymptotic results of Theorems 1 and 2 only hold for n → ∞. By
imposing a constraint m0 on m we restrict the value of n to n ≤ n0 = m0(k+2).
The asymptotic statements in Theorems 3 and 4 are to be interpreted as provid-
ing good approximations to Ni,ν , Ri,ν , and PUBi,ν , i = 1, 2, for reasonably large,
but finite values ofm0. One determining term in measuring how good the approx-
imations are for Ni,ν and Ri,ν is the value of g(mν , k) = logmνk

mν
. For ν = k = 2,

t = 1, and m0 = 256, we find, by way of example, that g(m0, k) = 9
256 = 0.0352

and g(mν , k) = 8
128 = 0.0625. Hence for m0 ≥ 256, the approximations for Ni,ν

and Ri,ν given in Theorems 3 and 4 are close to the true value. Also, for such
value of m0 the difference between PUBi,ν , i = 1, 2, and its approximate value
is negligible as can be seen from (12) and (13). Even for m2 = 100, and thus
m0 = 200 and n0 = 800, these approximations are close.

Remark 3: As discussed in Remark 1 and shown by the example, from the
viewpoint of the quantities Ni,ν , Ri,ν , and PUBi,ν , FEC version 2 is obviously bet-
ter than FEC version 1, for the same value of ν, but FEC version 2 requires the
availability of ν parallel channels and is therefore more complex in implementa-
tion. FEC version 1 requires only repeated transmissions. FEC version 1 can be
viewed as a time-division approach and FEC version 2 as a frequency-division
approach. Both TDM (time-division multiplexing) and FDM (frequency-division
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multiplexing) are techniques for splitting a big channel in many little channels.
In TDM ν bit streams are multiplexed into one bit stream. This is done by
sending the data in successive frames. In FDM the available bandwidth is split
into ν equal parts. Thus, if the original channel has a usable bandwidth of W
HZ each subchannel has W/ν HZ available. In FEC version 2 the ν codewords
c2j(sj(b, w)), conveying the ν positions of the selected single bits, can be regarded
as being bunched along the frequency axis, thereby retaining the original binary
noiseless channel W . In FEC version 1 the same bandwidth is used for ν = 1
and ν ≥ 2. Recall that we only propose to use small values of ν, typically ν = 2
or ν = 4. For a discussion of bandwidth and the difference between TDM and
FDM see [8]. For a discussion of the tradeoff between bandwidth and rate see
[16]. We shall not go further into these questions here.

Another issue is the informationtheoretic interpretation of the introduction of
extra, parallel channels in FEC version 2. Obviously, the capacity of a system
of ν parallel channels (as allowed in FEC version 2), each of the same capacity
C, is equal to νC. Thus, both the transmission capacity and the identification
capacity of the IT code, when using ν parallel channels rather than one single
channel, becomes significantly larger. However, in FEC version 2 we do not use
the ν parallel channels to transmit at higher first-order or second-order rate, but
rather to send the same identifier ν times, each time over a different component
of the system of parallel channels, in order to reduce P (false), as much as in
FEC version 1 we send the same identifier ν times using ν successive frames. The
system of ν parallel channels is only an informationtheoretic way of modeling
what in a practical communication channel can be achieved with FDM.

Remark 4: In the description of FEC version 2 one could also assume the ν
parallel channels Wj to be noisy, in which case the (n0, S(q0), 0) transmission
code Cj would need to be replaced by an (n0, S(q0), λ) transmission code, and the
decoding at the output of channel Wj would be subject to an error λ. However,
if the transmission channel is noisy the probability of missed identification would
also have to be controlled. In this paper we confine ourselves to noiseless channels,
and focus on the suppression of P (false), as only characterizer of the quality of
performance, by FEC methods. The investigation of FEC, in combination with
a wordlength constraint, when the underlying transmission channel is noisy is
left as a problem for future study.

4 Such Identification Plus Transmission Codes Combined
with Multiple Access

We now wish to combine the procedures discussed in Section 3, where the posi-
tions of ν single bits are conveyed to the receiver, with the principle of multiple
access. We consider the model of multiple access communication, in which, out
of a huge population of potential sources, only a relatively small number of users
has a message to send at any given time over a common channel. This is e.g.
the case if each of the many potential users only occasionally needs to send a
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message, such as an alarm, which occurs at this source rather infrequently. In
this model, at any given time instant, a few sources are active sending a mes-
sage (or ν consecutive messages) simultaneously over the common channel. This
resembles the random access problem where at most M out of a total of T users
can be active in the sense of sending a message over a common channel at any
given time, as introduced in [20] and [7], and the M -active-out-of-T users colli-
sion channel without feedback, investigated in [17] and [1]. In that setup the size
of the population of potential users is a finite number T . We however are inter-
ested in the situation where the size of the potential user population is vast, not
precisely determined, and may grow in the future. Therefore, we like to resort to
the ideas of identification theory, from which we know (cf. [5], [24]) that a huge
number of identifiers can be made available.

Given an (n,N,M, λ1, λ2) IT code, one of the N possible identifiers is assigned
to each possible source from the outset. As discussed in Sections 1 and 2, this
number N can be shown to grow doubly exponentially in the block length n,
hence is not bounded as n tends to infinity.

It is well-known from [20], [7], [17], and [1] that, for a finite source population
and distinct protocol sequences assigned to distinct sources, error-free perfor-
mance for simultaneous transmission of messages over a common channel can
be guaranteed, provided not too many sources are simultaneously active. How-
ever, for a source population of unknown large size no one-to-one assignment
of distinct sequences to distinct sources is possible. But, as explained in [23],
in this case a single common control sequence, assigned to each potential us-
er in advance, can be used to control the access to the channel by a source
which is activated following a demand. When using a single common control se-
quence, messages which are sent simultaneously may be successfully separated,
but sources cannot anymore be identified, unless an IT code is used. We remark
that the problem of the simultaneous transmission of messages over a common
communication channel where the users sending these messages also need to be
identified at the receiver’s end, resembles much the problem raised (but no fur-
ther studied) in [14] of the simultaneous transmission of a collection of messages
(and their respective addresses) to their intended receivers.

We next recall some basic notions of asynchronous multiple access and the
notion of a common single control (or hop) sequence.

The time axis is assumed to be partitioned into slots whose duration corre-
sponds to the transmission time for one symbol. All users are assumed to know
the slot boundaries but are otherwise unsynchronized. When a user transmits
a symbol, he must transmit it exactly within a slot. This is also referred to as
asynchronous slotted multiple access.

If in a particular slot, none of the users is sending a symbol, then the channel
output in that slot is the silence symbol Λ. If exactly one user is sending a symbol
in a particular slot, then the channel output in that slot is this symbol. If two
or more users are sending symbols in a particular slot, then the channel output
in that slot is the erasure symbol ∆. Hence the terminology of a multiple access
erasure channel.
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A user sends a message using a frame of N� slots. A control sequence r0 is a
binary sequence (r01, . . . , r0N
) of length N� and weight n�. If source i wants to
send a codeword c�i of length n�, he sends the symbols of c�i in consecutive order
in those slots j for which r0j = 1.

We are interested in conveying the positions of ν selected single bits of the
original code C0

ITG when ν consecutive messages are sent, or of the ν selected bits
of C1

ITG,ν of FEC version 1, or of the selected single bits of C0
ITG,j, j = 1, . . . , ν

of FEC version 2, through a noiseless multiple access erasure channel, when a
common control sequence r0 is used both at the simultaneously active senders
and the receiver.

The positions to be sent are encoded by a multiple access code C̃0 controlled
by the single sequence s0, common to all sources. The code C̃0 is a binary
constant-weight cyclically permutable code of weight n� and length N�. Several
constructions of binary constant-weight cyclically permutable codes are given
in [1], where it is also shown how such codes provide a natural solution to the
problem of constructing protocol-sequence sets for the M -active-out-of-T users
collision channel without feedback.

In our situation of a common control sequence, the same kind of code C̃0 is
used as in [1]. In [10] and [23] it is shown how under certain conditions error-
free performance can be achieved for multiple access controlled by a single hop
sequence.

An important question is under which condition one might separate and de-
code without erasure a frame from a source arriving at instant t at the output
end of the message register of the receiver with its front. In [23] the concepts of
frame front, frame front coincidence, and frame match were introduced. It was
shown in [10] (cf. Lemma 7 of [23]) that, in the considered setup of asynchro-
nous multiple access with a common single control sequence r0, if neither frame
front coincidence nor overflow with respect to a certain threshold occurs at time
instant t, then the just arriving frame from some source u can be separated at
t and the frame decoded without error. Hence, codewords arriving from distinct
codewords along successive frame matches can be separated most of the time.

After a codeword is successfully separated and decoded, an identifier match
is carried out as described in Section 3. If the codeword is decoded successfully
and the identification has been done correctly, the message block content, just
transmitted by the position of a single symbol “one” of a codeword from C0

ITG,
is recovered together with the identifier in this case.

The idea to use for multiple access a common single control sequence for all
network nodes involved was already proposed by Abramson in [2] for the Spread
Aloha principle, prior to the papers by the first author on least length single
sequence hopping [9,10]. For more on the Spread Aloha principle see [3], and
for the use of single sequence hopping in deriving a direct sequence version of
CDMA see [18].

The idea of the above multiple access codes combined with identification codes
is to keep appropriately many silences between consecutive codewords when
encoding the position of the bit of CITG to be sent through the channel. This
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scheme can also be applied for C1
ITG,ν (FEC version 1) and for any of the encoder

outputs of C2
ITG,j , j = 1, . . . , ν (assuming that the latter are being bunched e.g.

along the frequency axis) as discussed in Remark 3. The use of such multiple
access coding scheme for FEC version 2 (where ν consecutive frames are sent)
has already been explained in [23].

It is important to note that, as in the above procedure we finally also decode
the identifier anytime there is an identification match (either correctly or falsely),
it does not matter at all that, for single sequence multiple access as such, just
separation is possible. As a matter of fact, the present use of single sequence
multiple access (combined with an IT code) is a school example of a case where
mere separation by the control sequence makes sense.

We finally turn to the concept of least length single sequence multiple access,
introduced in [10] and mentioned in [23]. The control sequence r0 is said to be
of least length N ′ if N ′ is the smallest value of N� so that successful separation
and decoding of an arriving frame is still possible. Least length control sequences
are of course of practical importance as the time delay between the occurrence
of a demand at a source and of the response to this at the decoded output is
least in this case. But the problem of estimating the least possible sequence
length in our case is also an interesting information-theoretic question. In the
yet unpublished preprint [10], upper and lower bounds are obtained on the least
possible sequence length N ′.

The specific feature of the derivation of the lower bound in [10] is that, while
an equation can be derived that is explicit with respect to the least sequence
length N ′ for multiple access with distinct control sequences for the users, the
corresponding equation for a single common control sequence includes N ′ only
implicitly.

A lower bound on the solution of the underlying extremal set problem [19]
in the case of distinct control sequences per user has been derived by Bassalygo
and Pinsker [7]. However, an extension of the approach of [7] is necessary to
solve the extremal set problem also for a single common control sequence. This
extension is included in [10].

The upper bound on the solution of the underlying extremal set problem
provided in [10] relies on a well-known result in [1].

5 Some Properties Worth Further Practical
Investigations

The topic of identification via a channel is obviously of fundamental interest
for understanding the properties, capabilities, and new design possibilities of
communication systems meant to convey huge size identification codes in an
affordable way via a multiple access channel.

The use of huge codes might make much sense, even if the size of the identifier
set is far from being fully utilized in an actual application. However, the code
construction at the place of the source should be appropriately simple, and



Huge Size Codes for Identification 245

should offer essential advantages with respect to well-known alternatives of both
channel coding and identification.

Anyhow, when there is a plethora of identifiers available, these might be of
design interest, even when the collection of available identifiers is limited to the
more or less downsized identifier sets of FEC versions 1 and 2 derived from as-
ymptotically optimal identification code sequences. Both of these versions might
still make sense if the drop in the size of the original C0

IDG is large, provided of
course the key features of the service offered this way are sufficiently appealing
with respect to conventional practical solutions.

A typical task we have in mind is a remote alarm service embedded into
a conventional cellular mobile wireless network, occupying only an irrelevant
fraction of the total bandwidth of the conventional telephone and short message
services of that network (see Fig. 4).

Fig. 4. Remote alarm service embedded into a cellular network

Assume that occasional alarms from any of a lot of sensor-transmitter pairs,
spread over some geographical area, should be conveyed from base stations to
some source center (SC) for evaluation and taking actions.

If the sensor-transmitter pairs are either mobiles (Mbi, Mbj) or might be
moved (as the user is wandering), the actual positions of all sensor-transmitter
pairs should rely upon either the Global Positioning System itself or some ap-
propriate local positioning derived from this. The hexagon in Fig. 4 is the ab-
straction of the wireless cell of our actual interest. BS stands for the base station
used, and SC for the remote service center taking actions each time an alarm is
perceived from any of the mobiles within the considered wireless cell.

A vast amount of mobiles might be served coming from a very large service
domain (SD) around BS, sojourning just within the wireless cell, provided all
mobiles in SD can be distinguished by its single identifier (or by any of the
identifiers within a large identifier set, assigned to it for a more secure design).
We denote by RTS the total rate of the telecommunication services which is to
be supported reliably by any of the wireless cells (not including the remote alarm
utility). It is crucial for the economy of the telecommunication services that the
total data rate of these should only be reduced by a negligible amount by the
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embedding of the otherwise independent remote alarm service. This is so if the
total rate (RAS) of the remote alarm service is negligible with respect to RTS.

A broad range of tasks of practical interest might be considered this way,
from less stringent to extreme requirements concerning complexity and cost at
the place of the user.

A very human example of much interest within such emergency networks
might be a prospective, really broadly accessible, remote alarm service for ailing
or aged people or for those who are of much need to be monitored when traveling.
However, an embedded remote alarm service in this case might make sense only
if it is affordable by its public or by a private investor from the outset, even if the
initial client population is small locally (within a certain geographical area) with
respect to that finally expected. Obviously, the identifier set available should not
prevent smooth further expansion, and even a flexible combination of identifiers
placed conventionally into the heading of the message content (as in Fig. 1)
and identifiers conveyed via a huge identifier code (as in Fig. 2) should not be
excluded. The latter might offer the freedom to accept new clients by the remote
alarm service seemingly without any limitation.

It is obviously relevant that the need for network control must be as small as
possible. The use of the same single cyclically permutable sequence, assigned to
all network nodes involved, might be of much interest in this respect.

In any case, most clients should be able to use the same single identifier over
a geographical domain which is huge as compared to the diameter of a cell, and
just a little fraction of the client population, being simultaneously present within
the entire service domain, should log in for a codeword of the local identification
code when entering the boundary of this domain. Obviously, the diameter of the
said domain might be drastically increased, if a plethora of identifiers is available
for the clients meant for identifying sensor-transmitter pairs.

There might be clients who want their identifier to be practically indiscov-
erable by a malevolent intruder. The service center might want to provide the
same strict security, not necessarily steadily but just temporarily, anytime some
of its clients seem to be endangered. In this case an appealing solution might be
to assign to the clients in question not just a single identifier but a vast amount
of identifiers. A distinct identifier should then be drawn randomly from this set,
each time a true alarm or a signal for testing the connection is activated. In
this case, an encrypted message should also be conveyed to the service center,
including the identifier to be used next time at a subsequent occasion. Such kind
of security tasks obviously need the hugest possible size of identification codes.

The client at the sensor-transmitter pair in question, or any other registered
client not necessarily within the mobile cellular network, might want to get a
positive acknowledgement about the perception of the alarm and eventually also
about what actions have been taken at the service center. This option might be
satisfied, even via a one-way remote alarm service, if all the registered parties
in question have made their mobile numbers previously available to the service
center.
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These are essential features which should be considered both for each sensor-
transmitter pair and for all products placed at the service center for the exclusive
use of the client, in addition to the operational and amortization costs of the
network and the service center itself.

It might be expected already from the basic properties and possibilities of
huge size ID codes, derived from asymptotically optimal sequences of such codes
as shown in this paper, that prospective public remote alarm services, relying
either entirely or just in part on such huge codes, are worth further detailed
scrutiny by competent practical designers. In particular this might be so if there
is a plethora of identifiers available and all multiple access channels of possible
interest are controlled by copies of the very same single sequence at all network
nodes involved. Network control might be drastically simplified in this case.
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15. T.S. Han and S. Verdú, Approximation theory of output statistics, IEEE Trans.
Inform. Theory, Vol. 39, 752-772, 1993.

16. S. Lin and D.J. Costello, Error Control Coding, New Jersey, Prentice-Hall, 1983.
17. J.L. Massey and P. Mathys, The collision channel without feedback, IEEE Trans.

Inform. Theory, Vol. 31, 192-204, 1985.
18. L. Pap, Performance analysis of DS unslotted packet radio networks with giv-

en auto- and crosscorrelation sidelobes, Proc. IEEE 3rd Internat. Symp. Spread
Spectrum Techniques and Applications, Oulu, Finland, 343-345, 1994.

19. V. T.Sós, An additive problem in different structures, (a survey), Proc. 2nd In-
ternat. Conf. Graph Theory, Combinatorics, Algorithms, and Applications, SIAM,
1991.

20. B.S. Tsybakov and N.B. Likhanov, Packet communication on a channel with feed-
back, Probl. Inform. Transm., Vol. 19, No. 2, 69-84, 1983.

21. E.C. van der Meulen and S. Csibi, Identification coding for least length single
sequence hopping, Abstracts, 1996 IEEE Inform. Theory Workshop, Dan-Carmel,
Haifa, 67, 1996.

22. E.C. van der Meulen and S. Csibi, Elementary forward error control for identifica-
tion codes, Proc. 1997 IEEE Intern. Symp. Inform. Theory, Ulm, 160, 1997.

23. E.C. van der Meulen and S. Csibi, Error probabilities for identification coding
and least length single sequence hopping, Numbers, Information and Complexity,
special volume in honour of R. Ahlswede on occasion of his 60th birthday, edited
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Codes with the Identifiable Parent Property

and the Multiple-Access Channel

R. Ahlswede and N. Cai

1 Introduction

We begin with

I. The identifiable parent property and some first results about it
If C is a q–ary code of length n and an and bn are two codewords, then cn is called
a descendant of an and bn if ct ∈ {at, bt} for t = 1, . . . , n. We are interested in
codes C with the property that, given any descendant cn, one can always identify
at least one of the ‘parent’ codewords in C. We study bounds on F (n, q), the
maximal cardinality of a code C with this property, which we call the identifiable
parent property. Such codes play a role in schemes that protect against piracy of
software.

They have been introduced by Hollmann, van Lint, Linnartz and Tolhuizen
[9]. We repeat first their concepts, basic examples and results.

Consider a code C of length n over an alphabet Q with |Q| = q (i.e., C ⊂ Qn).
For any two words an, bn in Qn we define the set of descendants D(an, bn) by

D(an, bn) := {xn ∈ Qn|xt ∈ {at, bt}, t = 1, 2, . . . , n}. (1.1)

Note that among the descendants of an and bn we also find an and bn them-
selves. For a code C we define the descendant code C∗ by

C∗ :=
⋃

an∈C,bn∈C
D(an, bn). (1.2)

For example, if C is the binary repetition code, then C∗ = Fn2 . Similarly, if C
is the ternary Hamming code of length 4, then C∗ = F 4

3 , since it is obvious that
all words in a ball of radius 1 around a codeword are descendants of some pair
containing that codeword.

If cn ∈ C∗ is an element of D(an, bn), with an ∈ C, bn ∈ C, then we call an

and bn parents of cn. In general, an element of C∗ has several pairs of parents.
A trivial example are words of C themselves. We say that C has the “identifiable
parent property” (IPP) if, for every descendant in C∗, at least one of the parents
can be identified. In other words, for each cn ∈ C∗ there is a codeword π(cn) in
C such that each parent pair of cn must contain π(c).

Example: Consider the ternary Hamming code C of length 4, which has size 9.
Since every pair of distinct codewords has distance 3, any descendant cn in C∗
has distance ≤ 1 to exactly one of the parents in a parent pair. There cannot be
two codewords with distance 1 to cn, so the unique codeword with distance ≤ 1
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c© Springer-Verlag Berlin Heidelberg 2006
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to cn is the identifiable parent. For the other parent there are then three choices
if cn /∈ C (and of course eight choices if cn ∈ C).

We are interested in the maximal size of a code with the identifiable parent
property. We define

F (n, q) := max{|C| | C ⊆ Qn, C has IPP, |Q| = q}.

Trivially, a code of cardinality 2 has IPP. If q = 2, a code of cardinality ≥ 3 does
not have IPP. To see this, consider three binary words u1, u2, u3. For i = 1, 2, 3,
the i–th coordinate of cn is determined by a majority vote over the corresponding
coordinates of the three given words. Then cn is clearly a descendant of any pair
taken from the three words uj. So from now on we assume q ≥ 3.

As trivial cases we have F (1, q) = q, F (2, q) = q. (If xt, t = 1, 2, is a symbol
that occurs twice as t–th coordinate, then (x1, x2) has no identifiable parent.)

Theorem HLLT 1. F (3, q) ≤ 3q − 1
For certain classes of codes, it is easy to see that IPP holds. We start with
equidistant codes.

Theorem HLLT 2. If C is an equidistant code of length n over an alphabet of
size q and with distance d, then C has the identifiable parent property if d is odd
or if d is even and n < 3

2d.

Theorem HLLT 3. Let q be a prime power. If q ≥ n − 1 then a (short-
ened, extended, or doubly extended) Reed–Solomon code over Fq with parameters[
n,
⌈
n
4

⌉
, n−

⌈
n
4

⌉
+ 1

]
has IPP.

Corollary. If q ≥ n− 1 and q is a prime power, then F (n, q) ≥ q	n
4 
.

Theorem HLLT 4. We have F (n, q) ≤ 3q	n
3 
.

Theorem HLLT 5. There is a constant c such that F (n, q) ≥ c
(
q
4

)n
3 .

From the calculations it follows that we could take c = 0.4. For large q, Theorem
5 is better than the Corollary.

We expand here the model in the following direction.

II. Men and women model
Here we consider two sets of codewords U ,V ⊂ Qn referred to as sets of men
and of women. Naturally we define the descendant code C∗(U ,V) by

C∗(U ,V) =
⋃

u∈U ,v∈V
D(u, v).

If cn ∈ C∗(U ,V) is an element of D(u, v), then we call u and v parents of cn.
We say now that (U ,V) has the identifiable parent property if for every de-

scendant in C∗ at least one of the parents can be identified. This means that for
every cn ∈ C∗ there is a codeword π(cn) in U ∪ V such that each parent pair
{u, v} of cn must contain π(cn).
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III. Semicodes for MAC
The previous model suggests to look at the structure in terms of multiple–access
channels (MAC) defined by a stochastic matrix W : X ×Y → Z. Then the IPP
naturally leads to the new concept of semi codes with a new Coding Theorem
determining the optimal rate C̄semi for the average error concept (Theorem 1).
The proof is by no means easy.

It has three basic ingredients: a wringing technique of [3], the blowing up
method of [6] and the identity for entropies of [10] in the form of [7]. We analyze
this model in Section 2. In Section 3 we mention directions of further research
on identifiability.

2 Semicodes for the MAC

Let W be a stochastic matrix X ×Y → Z. We call a system
(
{ui}M1

i=1, {vj}
M2
j=1,

{Ei}M1
i=1, {Dj}M2

j=1

)
an (n,M1,M2, λ)–semi–code of MAC Wn, if ui ∈ Xn for

i = 1, . . . ,M1, vj ∈ Yn for j = 1, . . . ,M2, Ei ∩ Ei′ = ∅ for i = i′, Dj ∩ Dj′ = ∅
for j = j′, Ei ∩ Dj = ∅ for all i, j and

1
M1

1
M2

M1∑
i=1

M2∑
j=1

Wn(Ei ∪Dj |ui, vj) > 1 − λ. (2.1)

Denote by C̄semi(λ) the maximal real number such that, for all δ > 0 and
sufficiently large n there exists an (n,M1,M2, λ)–semi–code with 1

n logM1M2 >
C̄semi(λ) − δ. We shall determine C̄semi(λ) and show that it is independent of
λ ∈ (0, 1). The main issue is the (strong) converse theorem and our main idea
is very similar to that in [3]. The following result (Lemma 4 of [3]) will play an
important role.

Lemma A. Let P and Q be probability distributions on Xn such that for a
positive constant c

P (xn) ≤ (1 + c)Q(xn) for all xn ∈ X , (2.2)

then for any 0 < γ < c, 0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, . . . , n}, where
0 ≤ k ≤ c

γ such that for some x̄t1 , . . . , x̄tk

P (xt|x̄t1 , . . . , x̄tk) ≤ max
(
(1 + γ)Q(xt|x̄t1 , . . . , x̄tk), ε

)
(2.3)

for all xt ∈ X and all t = 1, 2, . . . , n and

P (x̄t1 , . . . , x̄tk) ≥ εk. (2.4)

To apply it, we modify its consequence (Corollary 2 in [3]) slightly

Corollary. Let Un ⊂ Xn with |Un| = M1, Vn ⊂ Yn with |Vn| = M2, A ⊂ Un×Vn
with |A| ≥ (1−λ∗)M1M2 for some λ∗ ∈ (0, 1). Then for any 0 < γ < c � λ∗

1−λ∗ ,
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0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, . . . , n} where k ≤ λ∗
γ(1−λ∗) and some

(x̄t1 , ȳt1), . . . , (x̄tk , ȳtk) such that for Ā �
{
(xn, yn) ∈ A : xt� = x̄t� yt� = ȳt� , for

 = 1, . . . , k
}

(a) |Ā| ≥ εk|A|,
and

(b)
(
(1 + γ)Pr(X̄t = x)Pr(Ȳt = y) − γ − |X ||Y|ε

)
,

≤ Pr(X̄t = x, Ȳt = y) ≤ max
(
(1 + γ)Pr(X̄t = x)Pr(Ȳ = y), ε

)
for all x ∈ X , y ∈ Y, 1 ≤ t ≤ n,
where (X̄n, Ȳ n) is a pair of RV’s with uniform distribution on Ā.

Proof: The corollary is essentially the same as Corollary 2 of [3] and can be
shown in the same way. But we give the proof because it is short.

Let P and Q be defined by P (xn, yn) = 1
|A| if (xn, yn) ∈ A and Q(xn, yn) =

P1(xn)P2(yn) for (xn, yn) ∈ Xn×Yn, where P1 and P2 are marginal distributions
of P , respectively. Then P (xn, yn) ≤ 1

1−λ∗Q(xn, yn) and therefore one can apply
Lemma A to c = 1

1−λ∗ − 1 = λ∗
1−λ∗ to obtain (a) and the second inequality of

(b), which implies

Pr(X̄t = x, Ȳt = y) = 1 −
∑

(x′.y′) �=(x,y)

Pr(X̄t = x′, Ȳt = y′)

≥ 1 −
∑

(x′,y′) �=(x,y)

max
(
(1 + γ)Pr(X̄t = x′)Pr(Ȳt = y′), ε

)
≥ 1 − |X ||Y|ε− (1 + γ)(1 − Pr(X̄t = x)Pr(Ȳt = y)

)
= LHS of (b). �

Another main tool here is the Blowing Up Lemma of [5]. Let dH be Hamming
distance and for all B ⊂ Z ′n, Γ kB �

{
zn : there is a bn ∈ Bn with dH(zn, bn) ≤

k
}
, where Z ′ is a finite set. Then

Lemma AGK. (Blowing Up) For any finite sets X ′ and Z ′ and sequence
{εn}∞n=1 with εn → 0, there exist a sequence of positive integers {n}∞n=1 with
n/n → 0 and a sequence {ηn}∞n=1 with η → 1 such that for every stochastic
matrix V : X ′ → Z ′ and every n, xn ∈ X ′n, B ⊂ Z ′n
Wn(B|xn) ≥ exp{−nεn} implies Wn(Γ �nB|xn) ≥ ηn.

Remark: One can easily see that for a stochastic matrix W : X × Y → Z and
any yn ∈ Yn, the Blowing Up Lemma is still true for the channel Wn(·|·, yn) �
n∏
t=1

W (·|·, yt). We shall actually employ this version of the Blowing Up Lemma.

Theorem 1. For all λ ∈ (0, 1),

C̄semi(λ) = max
X,Y

max
{
I(X ∧ Z) +H(Y ), I(Y ∧ Z) +H(X)

}
, (2.5)
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where the first maximum is taken over all independent pairs of RV’s (X,Y ) with
values in X × Y, and Z is the corresponding output variable.

Proof

Converse: Let
(
{ui}M1

i=1, {vj}
M2
j=1, {Ei}

M1
i=1, {Dj}

M2
j=1

)
be an (n,M1,M2, λ)–semi–

code. Then (2.1) implies that

1
M1

1
M2

M1∑
i=1

M2∑
j=1

Wn(Ei|ui, vj) >
1 − λ

2
(2.6)

or
1
M1

1
M2

M∑
i=1

M∑
j=1

Wn(Dj |ui, vj) >
1 − λ

2
, (2.7)

must hold. W.l.o.g. assume (2.6) holds and therefore there is a subcode A ⊂
{ui : 1 ≤ i ≤M1} × {vj : 1 ≤ j ≤ M2} such that

|A| > 1 − λ− 2µ
2(1 − µ)

M1M2, (2.8)

and for all (ui, vj) ∈ A
Wn(Ei|ui, vj) > µ, (2.9)

where µ is any positive constant less than 1−λ
2 .

We apply the Corollary to A with λ∗ � 1 − 1−λ−2µ
2(1−µ) = 1+λ

2(1−µ) , ε = n−1 and

γ = n−
1
2 and then get t1, . . . , tk, (x̄t1 , ȳt1), . . . , (x̄tk , ȳtk), Ā and (X̄n, Ȳ n) in the

Corollary with

k ≤ λ∗

γ(1 − λ∗)
=

1 + λ

1 − λ− 2µ
n

1
2 (2.10)

and by (2.8) and (2.10)

|Ā| ≥ εk|A|≥(1−λ∗)M1M2ε
k≥ 1 − λ− 2µ

2(1 − µ)
M1M2 exp

{
− 1 + λ

1 − λ− 2µ
n

1
2 logn

}
.

(2.11)
Therefore

H(X̄n, Ȳ n) = log |Ā| ≥ logM1M2 + log
1 − λ− 2µ
2(1 − µ)

− 1 − λ

1 − λ− 2µ
n

1
2 logn.

(2.12)
Let (Xt, Yt, Zt) be the triple of RV’s, for t = 1, . . . , n, with distribution Pr(Xt =
x, Yt = y, Zt = z) = Pr(X̄t = x)Pr(Ȳt = y)W (z|x, y), and let Z̄n be the output
of the channel Wn for the input (X̄n, Ȳ n). Then by (b) of the corollary and the
uniform continuity of information quantities,

|
(
I(Xt ∧ Zt) +H(Yt)

)
−
(
I(X̄t ∧ Z̄t) +H(Ȳt)

)
|< αn, (2.13)

for all t and some sequence (αn)∞n=1 with αn → 0 as n → ∞.
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Recalling Ā ⊂ A, we have (2.9) for all (ui, vj) ∈ Ā. Thus by applying the
Blowing Up Lemma to (ui, vj) ∈ Ā, we obtain, for all (ui, vj) ∈ Ā

Wn(Γ �nEi|ui, vj) ≥ ηn and ηn → 1,
n
n

→ 0 as n → ∞ (2.14)

(c.f. the Remark after the Blowing Up Lemma).
Notice that zn ∈ Γ �nEi iff there is a z′n ∈ Ei with dH(zn, z′n) ≤ n. We define

“the decoding list” of zn as L(zn) � {i : zn ∈ Γ �nEi}. Then

|L(zn)| ≤
�n∑
m=0

(
n

m

)
(|Z| − 1)m ≤ exp{nβn}, (say) (2.15)

with βn → 0 as n → ∞. Introduce a new RV J by setting J = 0 if X̄n ∈ L(Z̄n)
and J = 1 else. Then

H(X̄n|Z̄n) = H(X̄nJ |Z̄n) = H(X̄n|JZ̄n) +H(J |Z̄n) ≤ H(X̄n|JZ̄n) +H(J)
≤ Pr(J = 0)H(X̄n|J = 0, Z̄n) + Pr(J = 1)H(Xn|J = 1) + log 2
≤ Pr(J = 0)H(X̄n|J = 0, Z̄n) + (1 − ηn)n log |X | + log 2 (by (2.14))
≤ nβn + (1 − ηn)n log |X | + log 2 (by (2.15)). (2.16)

Next we employ a technique of [10] which appears in 3.3 of [7].
Write for all t ∈ {1, 2, . . . , n}

H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄n) −H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)

= H(Ȳ tZ̄t+1, . . . , Z̄n|X̄n) −H(Ȳ t−1Z̄t, . . . , Z̄n|X̄n), (2.17)

and obtain the following, by adding up both sides of (2.17) from 1 to n.
n∑
t=1

(
H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄n) −H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)

)
= H(Ȳ n|X̄n) −H(Z̄n|X̄n), (2.18)

In order to show
n∑
t=1

(
H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄

n) −H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)
)
≤

n∑
t=1

(
H(Ȳt) −H(Z̄t|X̄t)

)
(2.19)

we have to prove for all t

I(Z̄t ∧ X̄t−1X̄t+1, . . . , X̄nȲ
t−1Z̄t+1, . . . , Z̄n|X̄t) ≤ I(Ȳt ∧ X̄nȲ t−1Z̄t+1, . . . , Z̄n).

It is sufficient to show

I(Z̄t ∧ X̄t−1X̄t+1, . . . , X̄nȲ
t−1Z̄t+1, . . . , Z̄n|X̄t)

≤ I(Ȳt ∧ X̄t−1X̄t+1, . . . , X̄nȲ
t−1Z̄t+1, . . . , Z̄n|X̄t). (2.20)
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Since H(Z̄t|X̄tȲt) = H(Z̄t|X̄tȲtX̄t−1X̄t+1, . . . , X̄nȲ
t−1Z̄t+1, . . . , Z̄n),

I(Z̄t ∧ X̄t−1X̄t+1, . . . , X̄nȲ
t−1Z̄t+1, . . . , Z̄n|X̄tȲt) = 0. (2.21)

By adding (2.21) to LHS of (2.20), one obtains I(ȲtZ̄t ∧ X̄t−1X̄t+1, . . . ,
X̄nȲ

t−1Z̄t+1, . . . , Z̄n|X̄t), which implies (2.20) and therefore (2.19) holds.
Finally, (2.12), (2.13), (2.16), (2.18) and (2.19) together yield

1
n

logM1M2 ≤ 1
n
H(X̄nȲ n) − 1

n
log

1 − λ− 2µ
2(1 − µ)

+
1 − λ

1 − λ− 2µ
n−

1
2 logn

≤ 1
n

(
H(X̄nȲ n) −H(X̄n|Z̄n)

)
+ βn + (1 − ηn) log |X |

+
1
n

log 2 − 1
n

log
1 − λ− 2µ
2(1 − µ)

+
1 − λ

1 − λ− 2µ
n−

1
2 logn

=
1
n

(
I(X̄n ∧ Z̄n) +H(Ȳ n|X̄n)

)
+ θn

=
1
n

(
H(Z̄n) +H(Ȳ n|X̄n) −H(Z̄n|X̄n)

)
+ θn

=
1
n

[
H(Z̄n) +

n∑
t=1

(
H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄n) −H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)

)]
+ θn

≤ 1
n

n∑
t=1

(
H(Z̄t) +H(Ȳt) −H(Z̄t|X̄t)

)
+ θn

=
1
n

n∑
t=1

(
I(X̄t ∧ Z̄t) +H(Ȳt)

)
+ θn

≤ 1
n

n∑
t=1

(
I(Xt ∧ Zt) +H(Yt)

)
+ αn + θn, (2.22)

where θn � βn+(1−ηn) log |X |+ 1
n log 2− 1

n log 1−λ−2µ
2(1−µ) + 1−λ

1−λ−2µn
− 1

2 logn → 0
as n → ∞.

Thus we conclude our proof of the converse part by setting (XY Z) as the
triple achieving maxt

(
I(Xt ∧ Zt) +H(Yt)

)
and requiring n → ∞ in (2.22).

Direct Part: The proof of the direct part can be done in the now standard way.
It was actually first done in [1]. W.l.o.g. assume RHS of (2.5) is I(X∧Z)+H(Y )
and (X,Y, Z) is in the range of the maximum value. Then by letting {vj : 1 ≤
j ≤ M1} = T nY , Di = T nZ|X,δ(ui)�

⋃
i′ �=i

T nZ|X,δ(ui′) (δ is suitable) Ej = ∅ and

by independently randomly selecting ui, i = 1, 2, . . . , �2n(I(X∧Z)−δ′)� on T nX one
can get the desired code. We omit the details. �
Remarks

1. Inspection of our results shows that we answered a basic question for the
interference channel. We found the capacity region if one of the two channels
is noiseless. Until now experts could not tell us whether this is known as a
special case of complicated characterizations using several auxiliary RV’s.
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3 Further Results and Perspectives

IV. Screening design of experiments
Motivated by the original parent concept with no distinction between men and
women we look at the special MAC with equal input alphabets X = Y = Q and
symmetric transmission probabilities

W (z|x, y) = W (z|y, x) for all z ∈ Z and x, y ∈ Q

and at the situation where the codes U and V are equal. This communication
situation came up for the first time in the theory of screening design of experi-
ments (see the survey [11]), but now we look at the semicodes analogue to the
above with Ei = Di for i = 1, . . . ,M = M1 = M2 and obtain the analogue to
Theorem 1.

V. Semicodes for AVMAC
Next we tighten our models so that they give insight into the original problem.
We replace the MAC by the AVMAC, the arbitrarily varying MAC, defined by a
set of stochastic matrices W =

{
w(·|·, ·, s) : s ∈ S

}
whereW (·|·, ·, s) : X×Y � Z

and s ∈ S.
We proved in [4] that its capacity region R(W) has the property:
R(W) = ∅ if and only if one of the following three conditions holds

(i) W is (X ,Y)–symmetrizable, that is for a stochastic σ : X × Y → S∑
s

W (z|x, y, x)σ(s|x′, y′) =
∑
s

W (z|x′, y′, s)σ(s|x, y)

for all x, x′ ∈ X , y, y′ ∈ Y and z ∈ Z.
(ii) W is X–symmetrizable, that is for a stochastic σ1 : X → S∑

s

W (z|x, y, s)σ1(s|x′) =
∑
s

W (z|x′, y, s)σ1(s|x)

for all x, x′ ∈ X , y ∈ U and z ∈ Z.
(iii) W is Y–symmetrizable, that is for a stochastic σ2 : Y → S∑

s

W (z|x, y, s)σ2(s, y′) =
∑
s

W (z|x, y′, s)σ2(s|y)

for all x ∈ X , y, y′ ∈ Y and z ∈ Z.

VI. Robust screening design of experiments
We can establish the analogue for the one code-set (U = V) situation and of
course also the capacity formula.

VIII. For certain termites females can give birth to males without mating and
to females after mating. This gives another structure of relatedness, which can
be studied with respect to the identifiability property.
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II
Transmission, Identification and Common

Randomness Capacities for Wire-Tape Channels

with Secure Feedback from the Decoder

R. Ahlswede and N. Cai

Abstract. We analyze wire-tape channels with secure feedback from the
legitimate receiver. We present a lower bound on the transmission capacity
(Theorem 1), which we conjecture to be tight and which is proved to be
tight (Corollary 1) for Wyner’s original (degraded) wire-tape channel and
also for the reversely degraded wire-tape channel for which the legitimate
receiver gets a degraded version from the enemy (Corollary 2).

Somewhat surprisingly we completely determine the capacities of se-
cure common randomness (Theorem 2) and secure identification (Theo-
rem 3 and Corollary 3). Unlike for the DMC, these quantities are different
here, because identification is linked to non-secure common randomness.

1 Introduction

The main results are mentioned in the abstract.
After having given standard concepts in Section 2 and known results and

techniques for the wire-tape channel in Section 3, we state and prove Theorem
1 in Section 4. Our code construction relies upon a lemma for balanced coloring
from [2], which has proved already useful for secrecy problems in [3].

The transmission capacities for the two kinds of degraded wire-tape channels are
derived in Section 5. Particularly interesting is an example of a reversely degraded
channel,where the channelW ′

1 : X → Z for thewiretapper is noiseless (for instance
with binary alphabets) and the channel W ′

2 : Z → Y for the legal receiver is a
noisy binary symmetric channel with crossover probability p ∈ (0, 1/2). Here the
wiretapper is in a better position than the legal user and therefore the capacity is
zero, if there is no feedback. However, by our Corollary the capacity is positive,
because the feedback serves as a secure key shared by sender and receiver.

In Section 6 a discussion based on the construction for transmission in Sec-
tion 4 and known results and constructions for identification [8], [9], [15], and
common randomness [9], [7], and all other references builds up the intuition for
our solutions of the capacity problems for common randomness and identification
in Section 7 and 8.

2 Notation and Definitions

Throughout the paper U , X , Y and Z are finite sets and their elements are
written as corresponding lower letters e.g. u, x, y, and z. The letters U , X , Y ,

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 258–275, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Transmission, Identification and Common Randomness Capacities 259

Z etc. will be used for random variables with values in the corresponding sets,
U , . . . . T nX , T nY |X(xn), T nXY Z , etc. are sets of n-typical, conditional typical and
joint typical sequences, and sets of δ-typical, conditional typical and joint typical
sequences are written as T nX,δ, T nY |X,δ(xn), T nXY Z,δ, etc.

Then a (discrete memoryless) wire-tape channel is specified by a stochastic
matrix W : X → Y×Z, where X serves as input alphabet, Y as output alphabet
of the legal receiver and Z as output alphabet of a wiretapper. The channel works
as follows: the legal receiver receives an output sequence yn and the wiretapper
receives an output sequence zn with probability

Wn(ynzn|xn) =
n∏
t=1

W (ytzt|xt).

In the case of transmission the sender’s goal is to send to the receiver a message
U uniformly distributed on an as large as possible set of messages with vanishing
probability of error such that the wiretapper almost knows nothing about the
message. Randomization at the sender side is allowed. The wiretapper, who
knows the coding scheme, but not the message, tries to learn about the message
as much as possible.

For given λ, µ > 0, a (λ, µ)-code of length n with a set of messages M is
a system {(Qm : Dm) : m ∈ M}, where the Qm’s for m ∈ M are probabili-
ty distributions on Xn, and the Dm’s are pairwise disjoint subsets of Yn, such
that

|M|−1
∑
m∈M

∑
xn∈Xn

Qm(xn)
∑
zn∈Zn

Wn(Dm, zn|xn) > 1 − λ, (2.1)

and
1
n
I(U ;Zn) < µ, (2.2)

if Zn is the random output sequence generated by the message U through the
channel. The transmission capacity of the wire-tape channel is the maximal non-
negative number Cwt such that for M, λ, µ, ε > 0 and all sufficiently large length
n, there exists a (λ, µ)-code with rate 1

n log |M| > Cwt−ε. The security criterion
(2.2) is strengthened in [11] to

I(U ;Z) < µ. (2.3)

In the current paper we assume the output yt at time t is completely and im-
mediately feedback to the sender via a secure noiseless channel such that the
wiretapper has no knowledge about the feedback (except his own output zn).
Then for λ, µ > 0, a (λ, µ)-code of length n for the wire-tape channel with secure
feedback is a system {(Q,Dm) : m ∈ M} where Dm, m ∈ M, are pairwise dis-
joint subsets of Yn as before and Q is a stochastic matrix Q : M×Yn−1 → Xn
with

Q(xn|m, yn−1) =
n∏
t=1

Q(xt|m, yt−1)
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for xn ∈ X , yn−1 ∈ Yn−1, and m ∈ M, such that

|M|−1
∑
m∈M

∑
xn∈X

∑
zn∈Zn

∑
yn∈Dm

Q(xn|m, yn−1)Wn(yn, zn|xn) > 1 − λ (2.4)

and (2.2) holds. The transmission capacity is defined analogously and denoted
by Cwtf . In Theorem 1 in Section 4 we shall prove our (direct) coding theorem
with the stronger security criterion (2.3).

3 Previous and Auxiliary Results

Our code construction is based on a coding lemma and a code for wire-tape
channel without feedback. A balanced coloring lemma originally was introduced
by R. Ahlswede [2] and we need its following variation.

Lemma 1. For all δ, η > 0, sufficiently large n, all n-type PXY and all xn ∈ T nX ,
there exists a γ-coloring c : T nY |X(xn) → {0, 1, 2, . . . , γ− 1} of T nY |X(xn) such that
for all joint n-type PXY Z with marginal distribution PXY and γ−1|T nY |XZ(xn, zn)|
> 2nη, xn, zn ∈ T nXZ ,

|c−1(k)| ≤ γ−1|T nY |XZ(xn, zn)|(1 + δ), (3.1)

for k = 0, 1, . . . , γ − 1, where c−1 is the inverse image of c.

Proof: Let us randomly and independently color yn ∈ T nY |X(xn) with γ colors
and uniform distribution over T nY |X(xn). Let for k = 0, 1, . . . , γ − 1

Sk(yn) =

{
1 if yn is colored by k

0 else.
(3.2)

Then for a joint type PXZY and zn ∈ T nZ|X(xn), by Chernoff bound,

Pr

 ∑
yn∈T n

Y |XZ(xn,zn)

Sk(yn) > γ−1|T nY |XZ(xn, yn)|(1 + δ)


≤ e−

δ
2 γ

−1|T n
Y |XZ(xn,zn)|(1+δ)

∏
yn∈T n

Y |XZ
(xn,zn)

E e
δ
2Sk(yn)

= c−
δ
2γ

−1|T n
Y |XZ(xn,zn)|(1+δ)

[
(1 − γ−1) + γ−1e

δ
2

]|T n
Y |XZ (xn,zn)|

= e−
δ
2 γ

−1|T n
Y |XZ(xn,zn)|(1+δ)

[
1 + (e

δ
2 − 1)γ−1

]|T n
Y |XZ(xn,zn)|

≤ e−
δ
2 γ

−1|T n
Y |XZ(xn,zn)|(1+δ)

[
1 + γ−1(

δ

2
+
δ2

8
e)
]|T n

Y |XZ(xn,zn)|
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≤ expe

{
− δ

2
γ−1|T nY |XZ(xn, zn)|(1 + δ) + γ−1

(
δ

2
+
δ2

8
e

)
|T nY |XZ(xn, zn)|

}

= expe

{
− δ

2
γ−1|T nY |XZ(xn, zn)|

(
1 − e

4

)
δ

}
≤ e−

eδ2
24 γ

−1|T n
Y |XZ (xn,zn))|

≤ e−
eδ2
24 2nη

, (3.3)

if γ−1|T nY |XZ(xn, zn)| > 2nη and δ
2 ≤ 1.

Here, to obtain the 2nd and 3rd inequalities, we use for x ∈ [0, 1] the inequalities
ex ≤ 1 + x+ e

2x
2 and 1 + x ≤ ex respectively.

(3.1) follows from (3.3) because the numbers of sequences zn and n-types in-
crease exponentially and polynomially respectively as the length increases. �

To prove (the direct part of) the coding theorem for the wire-tape channel (with-
out feedback) [11] Csiszár and Körner used a special code, Ahlswede’s partition
of typical input sequences into sets of code words, obtained by iterative maximal
coding [1]. An easier proof appears in [2], part II, as consequence of the “link”.
We shall use its following improvement obtained with a Balanced Coloring Lem-
ma of [2] and presented in [10].

For a given wire-tape channel such that for an input random variableX and its
output random variables Y and Z for the legal user and wiretapper respectively

I(X ;Y ) − I(X ;Z) > 0 (3.4)

all λ′, µ′ > 0 0 < ε′ < I(X ;Y ) − I(X ;Z) and sufficiently large n, there exists a
set of codewords

{um,� : m = 0, 1, 2, . . . ,M − 1,  = 0, 1, 2, . . . , L− 1}

in T nX having the following properties.

I(X ;Y ) − I(X ;Z) − ε′ <
1
n

logM ≤ I(X ;Y ) − I(X ;Z) − ε′

2
(3.5)

I(X ;Z) +
ε′

8
≤ 1
n

logL < I(X ;Z) +
ε′

4
. (3.6)

For a set of properly chosen decoding sets {Dm,�},

{(um,�,Dm,�) : m = 0, 1, 2, . . . ,M − 1,  = 0, 1, 2, . . . , L− 1}
is a λ-code for the legal user.

Let V, Z̃ be random variables taking values in M×Zn, where M = {0, 1, . . . ,
M − 1}, with probability for (m, zn) ∈ M×Zn

Pr{V, Z̃) = (m, zn)) =
L−1∑
�=0

L−1PnZ|X(zn|um,�).
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Then
I(V ; Z̃) < µ′. (3.7)

4 The Coding Theorem for Transmission and Its Proof

Let Q be the set of quadruples of random variables (U,X, Y, Z) taking values in
U × X × Y × Z for a finite set U with probability

Pr((U,X, Y, Z) = (u, x, y, z)) = PUX(ux)W (yz|x) (4.1)

for (u, x, y, z) ∈ U × X × Y × Z.
Then

Theorem 1. The capacity of a wire-tape channel with feedback satisfies

Cwtf ≥ max
(U,X,Y,Z)∈Q

min[|I(U ;Y ) − I(U ;Z)|+ +H(Y |U,Z), I(U ;Y )]. (4.2)

Proof: For a (U,X, Y, Z) ∈ Q, to show the achievability, one may introduce an
auxiliary channel PX|U and construct a code for the channel

W ′(y, z|u) =
∑
x

PX|U (x|u)W (y, z|x).

Then it is sufficient to show that |I(X ;Y )−I(X ;Z)|++H(Y |XZ) is achievable.
Let us fix λ, µ, ε > 0 and construct a (λ, µ)-code with rate

|I(X ;Y ) − I(X,Z)|+ +H(Y |XZ) − ε. (4.3)

To this end, let λ′, µ′, ε′ be positive small real numbers specified later.
Let U = {um,� : m = 0, 1, 2, . . . ,M − 1,  = 0, 1, 2, . . . , L− 1} be the codebook

if in the previous section for a sufficiently large n (3.4) holds i.e., I(X ;Y ) −
I(X ;Z) > 0.

In the case that (3.4) does not hold we choose M = 1 and take a codebook of
an arbitrary λ′-code for the legal user, with rate I(X ;Y ) − ε′ < R � 1

n logL ≤
I(X ;Y ) − ε′

2 as our codebook:

U = {u0,� :  = 0, 1, 2, . . . , L− 1}.

Our code consists of N blocks of length n and sends a message (U ′1, U
′
2U
′′
2 , . . . ,

U ′NU
′′
N) uniformly distributed on M′ × (M′ ×M′′)N−1, where

M′ = {0, 1, 2, . . . ,M − 1},M′′ = {0, 1, . . . , L′′ − 1}, (4.4)

and L′′ = min{L, 2n(H(Y |XZ)− 3
4 )}.

In particular M = 1, M′ is a dummy message set. Then the rate of the
messages is

R∗ =
1
n

logM +
1
n

logL′′ − 1
nN

logL′′ ≥ 1
n

logM +
1
n

logL′′ − 1
N

log |Y|.
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That is by (3.5), (3.6)

R∗ ≥



I(X ;Y )−I(X ;Z)−ε′+min
[
I(X ;Z)+ ε′

8 , H(Y |XZ) − ε
4

]
− 1
N log |Y|

if I(X ;Y ) − I(X ;Z(> 0

min
[
I(X ;Y ) − ε′

2 , H(Y |XZ) − ε
4

]
− 1
N log |Y|

else.
(4.5)

By choosing ε′ < ε
2 and N > 2ε−1 log |Y| in (4.5) we have

R∗ > min[|I(X ;Y ) − I(X ;Z)|+ +H(Y |XZ), I(X ;Y )] − ε (4.6)

our desired rate.
In each block, we use a codebook

U = {um,� : m = 0, 1, . . . ,M − 1,  = 0, 1, 2, . . . , L− 1}

defined as above. Suppose the sender wants to send a message (m′1,m
′
2m

′′
2 , . . . ,

m′Nm
′′
N ) to the receiver. Then our code consists of the following components.

1. In the first block the sender randomly chooses a um′
1,�

from the codebook
with uniform distribution on {um′

1
, j : j = 0, 1, . . . , L − 1} and sends the

codeword to the receiver. Then by choosing a proper decoder the receiver
can decode um′

1,�
and therefore m′1 correctly with probability 1− λ′.

2. From the first to the N − 1st blocks, for all um,� ∈ U , color all T n
Ȳ |X̄(um,�) ⊂

T nY |X,δ1(um,�) with L′′ colors such that for a suitably small δ2 > 0 all n-joint
type PX̄Ȳ Z with PX̄ = PX and∑

yz

|PȲ Z̄X̄(y, z|x) − PY Z|X(yz|x)| < δ2. (4.7)

T n
Ȳ |X̄Z̄(um,�, zn) is properly colored in the sense of Lemma 1.

3. For j = 1, 2, . . . , N − 1 after the sender receives output yn of the jth block,
he gives up if yn /∈ T nY |X,δ1(u(j)), where u(j) is the input sequence in Xn sent
by the sender in the jth block. Then the probability for giving up at the jth
block is exponentially small in n. In the case yn ∈ T nY |X,δ1(u(j)), yn receives
a coloring cu(j)(yn) ∈ {0, 1, . . . , L′′−1} in the coloring for T n

Ȳ |X̄(u(j)), where
PX̄Ȳ is the joint type of (u(j), Y n).

3.1. In the case L ≤ 2[H(Y |XZ)− 3
4 ] i.e., L′′ = L, the sender sends

Um′
j+1m

′′
j+1

⊕ cm(j)(yn) � u(j+1) in the codebook U in the j+1st block,
where ⊕ is the addition modulo L′′.

3.2. In the case L > 2n[H(Y |XZ)− 3
4 ], without loss of generality, we assume

L′′|L. Then the sender partitions {0, 1, . . . , L − 1} into L′′ segments of
equal size. He randomly chooses an ′′j+1 in the m′′j+1⊕cu(j)(yn) segment
with equal probability and sends um′

j+1,�
′′
j+1

in the codebook in the j+1st
block.
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4. For j = 1, 2, . . . , N in the jth block the receiver decode separately by using
a proper decoder and obtains a ū(j) in the jth block. Thus ū(j) = u(j)
with probability λ′ for a given j. Let λ′ < M−1λ, then ū(j) = u(j) with
probability larger than 1 − λ for all j. The receiver declares m′1 = m̄′1 if
ū(1) = um̄′

1,�
for some . The receiver declares m′jm

′′
j = m̄′jm̄

′′
j for m̄′′j =

j # cū(j−1)(yn) if in the j − 1st block he receives yn and ū(j) = um̄′
j�j

in
the case L′′ = L and ū(j) = um̄′

j,�
′
j

for an ′j in the jth segment in the case
L′′ < L, for j = 2, 3, . . . , N . Obviously

(m̄′1, m̄
′
2m̄

′′
2 , . . . , m̄

′
Nm̄

′′
N ) = (m′1mm

′
2m

′′
2 , . . . ,m

′
Nm

′′
N )

if ū(j) = u(j) for all j.

We have seen that the probability of error is smaller than λ and it is sufficient
for us to verify the security criterion.

Denote by X̃j, Ỹj and Z̃j , the random input and outputs in the jth block
generated by the code and the random message, (U ′1, U

′
2U
′′
2 , . . . , U

′
NU

′′
N ) respec-

tively, for j = 1, 2, . . . , N . Notice here X̃j, Ỹj , and Z̃j are random sequences of
length n. Let Kj be the coloring of the random output sequences of the legal re-
ceiver in the jth block. Write U ′N = (U ′1, U

′
2, . . . , U

′
N), U ′′N = (U ′′1 , U

′′
2 , . . . , U

′′
N)

(where U ′1 is a dummy constant), X̃N = (X̃1, . . . , X̃N ), Ỹ N = (Ỹ1, . . . , ỸN )
and Z̃N = (Z̃1, . . . , Z̃N). Then we are concerned about an upper bound to
I(U ′NU ′′N ; Z̃N).

At first we bound I(U ′N ; Z̃N ) with (3.7). Denote Z̃ j̄ = (Z̃1, Z̃2,
. . . , Z̃j−1, Z̃j+1, . . . , Z̃N ).

Then by symmetry, independent of Z̃ j̄ and U ′j−1, given U ′j = m, the input of
the channel in the jth block is uniformly distributed on the sub-codebook

{um,� :  = 0, 1, . . . , L− 1}.

For j = 1 it immediately follows from the step 1 of the coding scheme. For j > 1,
it is sufficient for us to show that PU ′′

j ⊕Kj−1|U ′j−1Z̃ j̄ is uniform. Indeed, for all ,

u′j−1, and z j̄

Pr{U ′′j ⊕Kj−1 = |U ′j−1 = u′j−1, Z̃ j̄ = z j̄}

=
L′′−1∑
m′′=0

L′′−1Pr{Kj−1 = #m′′|U j−1 = u′j−1 ,̃Z j̄ = Z j̄} = L′′−1.

This means that for all j and (V, Z̃) in (3.7) we have

H(U ′j |U ′j−1Z̃N ) = H(U ′j|Z̃j , U ′j−1Z j̄) = H(U |Z̃)

and therefore by (3.7)
I(U ′j;U

′j−1Z̃N ) < µ′

since U ′j and V have the same distribution.
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Consequently

I(U ′N ;ZN ) =
N∑
j=1

I(Uj ;ZN |U j−1) ≤
N∑
j=1

I(Uj ;U ′j−1ZN ) ≤ Nµ′. (4.8)

Next we bound I(U ′′j ; Z̃N |U ′NU ′′j−1). At first we observe that by our coding
scheme U ′′j is independent of U ′NU ′′j−1Z̃i for all i < j and therefore

I(U ′′j ; Z̃i|U ′NU ′′j−1Z̃i−1) = 0, or

I(U ′′j ; Z̃N |U ′NU ′′j−1) =
j−1∑
i=1

I(U ′′j ; Z̃i|U ′NU ′′j−1Z̃i−1)

+ I(U ′′j ; Z̃j|U ′NU ′′j−1Z̃j−1) + I(U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j)

= I(U ′′j ; Z̃j |U ′NU ′′j−1Z̃j−1) + I(U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j), (4.9)

where Z̃Nj+1 = (Z̃j+1, . . . , Z̃N).
Moreover by our coding scheme under the condition given U ′NU ′′j−1Z̃j−1

U ′′j ⇔ U ′′j ⊕Kj−1 ⇔ Z̃j

form a Markov chain i.e., by the data processing inequality.

I(U ′′j ; Z̃j |U ′′NU ′′j−1Zj−1) ≤ I(U ′′j ;U ′′j ⊕Kj−1|U ′NU ′′j−1Zj−1)

= I(U ′′j ;Kj−1|U ′NU ′′j−1Zj−1) ≤ I(U ′NU ′′jZj−1;Kj−1). (4.10)

However, because U ′NU ′′jZ̃j−1 ⇔ X̃j−1Z̃j−1 ⇔ Kj−1 forms a Markov chain,
(4.10) implies

I(U ′′j ; Z̃j|U ′NU ′′jZj−1) ≤ I(X̃j−1Z̃j−1;Kj−1). (4.11)

For j − 1

Wj−1 =

{
0 if Ỹj−1 ∈ T nY |X,δ1(X̃j−1)
1 else,

then recalling that the output of legal user is colored by Lemma 1 in the j − 1st
block, by AEP we have

Pr{Kj−1 = k|X̃j−1 = xn, Z̃j−1 = jnWj−1 = 0} ≤ L′′−1(1 + δ).

Thus

H(Kj−1|X̃j−1Z̃j−1) ≥ (1 − 2−nθ)H(Kj−1|X̃j−1Z̃j−1Wj−1 = 0)

≥ (1 − 2−nθ)[logL′′ − log(1 + δ)],
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for a θ > 0 as Pr(Wj = 0) > 1− 2−nθ. Thus for a µ′′ > 0 with µ′′ → 0 as δ → 0,

I(X̃j−1Z̃j−1;Kj−1) = H(Kj−1) − logL′′ + µ′′ ≤ µ′′, (4.12)

for sufficiently large n. Similarly by the coding scheme under the condition given
U ′N

U ′′jZj ⇔ Kj ⇔ ZNj+1

forms a Markov chain and therefore

I(U ′′j ;ZNj+1|U ′′NU ′′j−1) ≤ I(U ′′jZj ; Z̃Nj+1|U ′N ) ≤ I(U ′′jZj;Kj |U ′N ) ≤ I(U ′NU ′′jZ̃j;Kj).

(4.13)
However, by the coding scheme U ′NU ′′jZ̃j ⇔ X̃jZ̃j ⇔ Kj forms a Markov chain
and so we can continue to bound (4.13) as

I(U ′′j ;ZNj+1|U ′NU ′′j−1Zj) ≤ I(X̃jZ̃j ;Kj). (4.14)

By replacing j − 1 by j in (4.12) and applying it to (4.14) we have

I(U ′′j ;ZNj+1|U ′NU ′′j−1Zj) ≤ µ′′. (4.15)

Finally, we combine (4.8), (4.9), (4.10), (4.11), and (4.15), to obtain

I(U ′NU ′′N ; Z̃N )

= I(U ′N ; Z̃N) + I(U ′′N ; Z̃N |U ′N )

≤ Nµ′ +
N∑
j=2

I(U ′′j ; Z̃N |U ′NU ′′j−1)

= Nµ′ +
N∑
j=2

[I(U ′′j ; Z̃j|U ′NU ′′j−1Z̃j−1) + I(U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j)]

≤ Nµ′ +
N∑
j=2

[I(X̃j−1Z̃j−1;Kj−1) + I(U ′′j ; Z̃Nj+1|U ′NU ′′j−1Z̃j)]

≤ Nµ′ + 2(N − 1)µ′′ < µ,

for sufficiently small µ′ and µ′′. This completes our proof.

5 Capacity of Two Special Families of Wire-Tape
Channel

In this section we apply Theorem 1 to show the following upper bound of ca-
pacity, which is believed not to be tight in general, but is tight for wire-tape
channels with certain Markovities.
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Let Q′ be the set of triples of random variables (X,Y, Z) with joint distribution
PXY Z(x, y, z) = PX(x)W (y, z|x) for x ∈ X , y ∈ Y, and z ∈ Z.

Then

Lemma 2. For all wire-tape channels

Cwtf ≤ max
(X,Y,Z)∈Q′

min[H(Y |Z), I(X ;Y )]. (5.1)

Proof: For a given (λ, µ)-code for the wire-tape channel, let Xn, Y n, Zn be
the input and outputs generated by uniformly distributed messages U through
the code. Then in the same way to show the converse coding theorem of a (two
terminal) noisy channel with feedback, one obtains that

Cwtf ≤ 1
n

n∑
t=1

I(Xt;Yt) + ε′ (5.2)

where ε′ → 0 as λ → 0.
On the other hand, by the security condition and Fano’s inequality we have

Cwtf =
1
n
H(U) ≤ 1

n
H(U |Zn) + µ

≤ 1
n
H(U |Zn) − 1

n
H(H |Y n) + λ log |X | + 1

n
h(λ) + µ

≤ 1
n
H(U |Zn) − 1

n
H(U |Y nZn) + λ log |X | + 1

n
h(λ) + µ

=
1
n
I(U ;Y n|Zn) + ε′′ ≤ 1

n
H(Y n|Zn) + ε′′

=
1
n

n∑
t=1

H(Yt|ZnY t−1) + ε′′ ≤ 1
n

n∑
t=1

H(Yt|Zt) + ε′′, (5.3)

where h(λ) = −λ logλ− (1 − λ) log(1 − λ) and ε′′ = λ log |X | + 1
nh(λ) + µ → 0

as λ, µ → 0.
Let (UXY Z) be a quadruple of random variables with distribution

PUXY Z(t, z, y, z) =
1
n

n∑
t=1

PXtYtZt(x, y, z)

for t ∈ {1, 2, . . . , n}, x ∈ X , y ∈ Y, z ∈ Z. Then (XY Z) ∈ Q′ and by (5.2) and
(5.3) for ε = max(ε′, ε′′)

Cwtf ≤ min[H(Y |ZU), I(X ;Y |U)] + ε ≤ min[H(Y |Z), I(X ;Y )] + ε,

where ε → 0 as λ, µ → 0. That is, (5.1).

Corollary 1. For a wire-tape channel W such that there exist W1 : X → Y, and
W2 : Y → Z with

W (y, z|x) = W1(y|x)W2(z|y), (5.4)
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for all x ∈ X , y ∈ Y, and z ∈ Z Cwtf = max(X,Y,Z)∈Q′ ,min[H(Y |Z), I(X ;Y )].

Proof: By Markov condition (5.4), we have that for all (X,Y, Z) ∈ Q′

I(X ;Y ) − I(X,Z) ≥ 0 (5.5)

and
I(X ;Z|Y ) = 0. (5.6)

Thus

|I(X ;Y ) − I(X ;Z)|+ +H(Y |XZ) = H(X |Z) −H(X |Y ) +H(Y |XZ)
= H(XY |Z) −H(X |Y )
= H(Y |Z) +H(X |Y Z) −H(X |Y )
= H(Y |Z) + I(X ;Z|Y )
= H(Y |Z).

Then corollary follows from Theorem 1 and Lemma 2.

Corollary 2. For a wire-tape channel such that there exist W ′
1 : X → Z and

W ′
2 : Z → Y with

W (y, z|x) = W ′
1(z|x)W ′

2(y|z) (5.7)

for x ∈ X , y ∈ Y, and z ∈ Z

Cwtf = max
(X,Y,Z)∈Q′

,min[H(Y |Z), I(X ;Y )].

Proof: The Markov condition (5.7) implies that

I(X ;Y ) − I(X ;Z) ≤ 0 (5.8)

and
H(Y |XZ) = H(Y |Z), (5.9)

which yield

|I(X ;Y ) − I(X ;Z)|+ +H(Y |XZ) = H(Y |XZ) = H(Y |Z). (5.10)

Thus the corollary follows from Theorem 1 and Lemma 2.

Example: An interesting example is a special channel for which W ′
1 is a noiseless

channel and W ′
2 is a noisy channel in Corollary 2 e.g., W1 is a noiseless binary

channel, W ′′
2 is a binary symmetric channel with crossover probability p ∈

(
0, 1

2

)
.

For this channel the wiretapper is in a better position than the legal user. So
the capacity is zero without feedback. The feedback makes the capacity positive
by our Corollary 2 as it serves as a secure key shared by sender and receiver.
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6 Discussion: Transmission, Building Common
Randomness and Identification

As goals of communications are considered transmission i.e., sending a given
message from a set of messages, building common randomness i.e., to provide a
random resource shared by users, and identification i.e., identifying whether an
event of interest to a particular user occurs ([3], [4], [5], [13]).

Roughly saying in a given communication system, the capacity of transmission
is upper bounded by the capacity of common randomness, since common ran-
domness shared by a sender and receiver can be built by transmission whereas the
capacity of identification is lower bounded by capacity of common randomness,
if the former is positive, which is shown by a scheme in [5] to build identification
codes by common randomness. That is,

capacity of transmission ≤ capacity of common randomness
≤ capacity of identification. (6.1)

However, in different communication systems equalities in (6.1) may or may not
hold. In this section we illustrate the variety in two-terminal channels and wire-
tape channels. More examples in more complicated communication systems can
be found e.g. in [3], [12], [15].

First of all, obviously the first inequality in (6.1) is always an equality for a
two terminal channel without feedback, because all information obtained by the
receiver is from the transmission via the channel. Moreover, it has been shown
in [4] that the second inequality is an equality and therefore the three quantities
in (6.1) are actually the same if the channel is discrete memoryless. A channel
with rapidly increasing alphabet (as the length of codes grows) for which the
capacity of identification is strictly larger than capacity of common randomness
was described in [6]. It was shown in [8] that under a certain condition the ca-
pacity of common randomness (which is equal to the capacity of transmission)
for Gaussian channels is finite whereas the capacity of identification is infinite in
the same communication system. We notice that Gaussian channels have con-
tinuous, or infinite alphabets. It is natural to expect that for a discrete channel
whose input alphabet “reasonably” increases the last two quantities, or conse-
quently the three quantities in (6.1) are equal. This was shown in [14] for all
channels whose input alphabets exponentially increase as the lengths of codes
linearly increase.

The situation of two terminal channels is different when feedback is present.
In this case the capacity of identification, which is equal to the capacity of com-
mon randomness, is strictly larger than the capacity of transmission for simplest
channels, namely discrete memoryless channels [5]. The reason is clear. On one
hand, it is well known, feedback does not increase the capacity of transmission
for discrete memoryless channels. On the other hand, the feedback provides a
random resource, shared by sender and receiver, the random output, whose rate,
roughly speaking, is input entropy. Obviously it increases common randomness
between sender and receiver and therefore capacity of identification.
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Next we turn to wire-tape channels without feedback. More precisely, we
mean secure common randomness shared by sender and receiver, about which
the wiretapper has (almost) no knowledge. By the same reason as for two termi-
nal channels without feedback, the capacity of (secure) common randomness is
not larger than the capacity of transmission over the wire-tape channel. In fact it
is shown in [3], that it may not be larger than the capacity of transmission even
in the case where a public forward channel with unbounded capacity is avail-
able to the sender and receiver. This intuitively is not surprising. R. Ahlswede
and Z. Zhang observed in [7] that to keep the message to be identified in se-
cret a secure common randomness with positive rate is sufficient and the major
part of common randomness between the legitimate communicator applied in the
identification code in [5] can be publically sent.

Based on this observation they show that the capacity of identification is
strictly larger than the capacity of secure common randomness. A more detailed
analysis in [9] shows that the amount of secure common randomness needed
only depends on the probability of second error and security criterion and is
independent of the rate of messages. For fixed criterion of error and security, a
constant amount – or zero-rate – of secure common randomness is sufficient, if
provided with sufficiently large public common randomness.

Let us return to our main topic wire-tape channels with secure feedback
and investigate (6.1) in this communication system. We immediately find that
the observation about wire-tape channels without feedback is still valid when
feedback is present, because there is nothing in the observation which links to
the existence of feedback. This means that the capacity of identification must be
the capacity of “public” common randomness between sender and receiver i.e.,
the maximum rate of common randomness shared by the sender and the receiver,
neglecting whether or how much the wiretapper knows about it once a positive
amount of secure common randomness is provided. But now the public common
randomness is the maximum output entropy for the channel W1 : X → Y defined
by

W1(y|x) =
∑
z∈Z

W (y, z|x) for all x ∈ X , y ∈ Y, (6.2)

or in other words max
(X,Y,Z)∈Q′

H(Y ), for Q′ as defined in Section 5. So we conclude

that in this case the capacity of identification is either zero or max
(X,Y,Z)∈Q′

, H(Y ).

The only problem left is to find suitable conditions for the positivity of the
capacity. We shall discuss this later.

To see the relation of the first pair of quantities in (6.1), we take a look at
our main result

Theorem 1. The information theoretical meaning of mutual information in
(4.2) is obvious. The capacity of transmission with security criterion can not
exceed that without it. So we expect this term could be removed in the formula
of capacity of common randomness. To investigate the remaining term in (4.2),
let us recall our coding scheme in Section 4.
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From the first block to the second last block, the transmission in each block
has two tasks, sending a secret message m′j (in the jth block) with a rate ∼
|I(U ;Y ) − I(U ;Z)|; and generating a secure common randomness with a rate
∼ H(Y |UZ), which will be used as a private key to send message m′′j+1 in the
next block. This gives us a secure common randomness with rate ∼ H(Y |UZ).
The reason for the fact that U occurs in the “condition” is that the key for the
j + 1st block has to be independent of the message sent in the jth block. For
secure common randomness itself this is not necessary. So we expect that the
capacity of common randomness is max

(X,Y,Z)∈Q′
H(Y |Z), which actually is shown

in the next section.
But before this we have a remaining problem, namely the positivity of the

capacity of identification, which should be discussed. First we notice that to have
positive capacity of identification, the capacity of the channel W1 in (6.2), where
we do not count wiretapper’s role, has to be positive. By counting wiretapper’s
role, we look for an input random variable X , the conditional entropy H(Y |Z)
for output random variable Y and Z has to be positive, because otherwise the
wiretapper would know everything known by the legal receiver. We shall show
that the two necessary conditions together are sufficient for the positivity.

7 The Secure Common Randomness Capacity in the
Presence of Secure Feedback

Let Jn = {0, 1, . . . , Jn−1} be a finite set (whose size depends on n), λ, µ > 0. An
(n, Jn, λ, µ)-common randomness for the wire-tape channel with secure feedback
is a pair of random variables (Kn, Ln) defined on the same domain Jn with the
following properties.

There exists a random variable U taking value in a finite set U and three
functions θn : U × Yn−1 → Xn, ϕ : U × Yn → Jn, and Ψ : Yn → Jn such that
for all u ∈ U and yn−1 ∈ Yn−1

θn(u, yn−1) = (θ1(u), θ2(u, y1), . . . , θn(u, yn−1)), (7.1)
Kn = ϕ(U, Y n) (7.2)

and Ln = Ψ(Y n), (7.3)

where Y n and Zn are output random variables for the legal receiver and the
wiretapper, respectively, generated by random variable U , encoding function θn,
and the channel W .

I.e.

Pr((Y n, Zn) = (yn, zn)) =
∑
u∈U

Pr(U = u)W (y1, z1|θ1(u))
n∏
t=2

W (yt, zt|θt(u, yt−1)).

(7.4)

Pr(Kn = Ln) < λ, (7.5)
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1
n
H(Kn|Zn) >

1
n

log Jn − µ. (7.6)

1
n log Jn is called rate of the code and the capacity of the (secure) common
randomness, denoted by Cwtf−cr, is defined as the maximum achievable rate in
the standard way.

Theorem 2
Cwtf−cr = max

(X,Y,Z)∈Q′
H(Y |Z), (7.7)

in particular, the RHS of (7.7) is achievable if (7.6) is replaced by a stronger
condition

H(Kn|Zn) > log Jn − µ. (7.8)

Proof: The proofs to both, direct and converse parts, are straightforward. They
immediately follow from the proofs for Theorem 1 and Lemma 2, respectively.

Let (X ′, Y, Z) ∈ Q′ achieve the maximum at RHS (7.7). Apply Lemma 1
to color sets of typical remaining sequences T nY ′ ⊂ T nY,δ 1, then it follows from
the proof of Theorem 1 (the part to show (4.11)) that for any fixed µ > 0 and
sufficiently large n

H(K̃|Zn) > log Jn − µ,

where K̃ is the random Jn-coloring obtained from Lemma 1.
Choose Kn = Ln = K̃, then the proof of the direct part is done. To show the
converse part we apply Fano’s inequality to (7.5). Then

1
n

log Jn ≤ 1
n
H(Kn|Zn) + µ

≤ 1
n
H(Kn|Zn) −

1
n
H(Kn|Y n) + µ+

1
n
λ log Jn +

1
n
h(λ)

≤ 1
n
H(Kn|Zn) −

1
n
H(Kn|Y n, Zn) + µ+

1
n
λ log Jn +

1
n
h(λ)

≤ 1
n
I(Kn;Y n|Zn) + µ+

1
n
λ log Jn +

1
n
h(λ)

≤ 1
n
H(Y n|Zn) + µ+

1
n
λ log Jn +

1
n
h(λ).

Now the converse follows as in the proof for Lemma 2.

8 The Secure Identification Capacity in the Presence of
Secure Feedback

In this section let us take a look at the coding theorem for identification codes.
First we have to formally define the codes and capacity. An (n, |M|, λ1, λ2, µ)-
1 More precisely, let X0 = {x0}, xn = (x0, x0, . . . , x0), and (X, X ′, Y, Z) be ran-

dom variables with joint distribution Pr((X, X ′, Y, Z) = (xn, x′n, yn, zn)) =
PX′Y Z(x′n, yn, zn) for all x′n, yn, zn and coloring for the “conditional” typical se-
quences T n

Y |X(xn) = T n
Y .
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identification code for a wire-tape channel with secure feedback is a system
{Q,Dm : m ∈ M} such that Q : M× Y n−1 → Xn is a stochastic matrix with

Q(xn|m, yn−1) = Q1(x1|m)
n∏
t=2

Qt(xt|m, yt−1)

for m ∈ M, yn−1 ∈ Yn−1, for all m ∈ M

∑
xn∈Xn

∑
yn∈Dm

Qn(x1|m)
n∏
t=2

Qt(xt|m, yt−1)W1(yt|xt) > 1 − λ1,

for m,m′ ∈ M with m = m′

∑
xn∈Xn

∑
yn∈D′

m

Q1(x1|m)
n∏
t=2

Qt(xt|m, yt−1)W1(yt|xt) < λ2,

and for all m,m′ ∈ M, m = m′ and V ⊂ Zn

∑
xn∈Xn

∑
yn∈Yn

Q1(x1|m′)
n∏
t=2

Qt(xt|m′, yt−1)W (yn,V|xn)

+
∑
xn∈Xn

∑
yn∈Yn

Q1(x1|m)
n∏
t=2

Qt(xt|m, yt−1)W (yn,Vc|xn) > 1 − µ.

Then capacity of identification is defined in the standard way and denoted by
Cwtf−id.
Cwtf−id is upper bounded by the RHS of (8.1), follows from the converse

of the coding theorem of identification with feedback for channel W1 [5]. In the
case that II holds, one can construct a code achieving H(Y ) asymptotically from
the code in [7] by replacing the ordinary code for W1 by a uniform partition of
output sequences for the legal receiver and a code for the wire-tape channel
without feedback by a code for the same channel but with feedback.

Furthermore the two conditions in III

Theorem 3. The following statements are equivalent.

I Cwtf−id = max
(X,Y,Z)∈Q′

H(Y ) (8.1)

II Cwtf > 0
III There exists an (X,Y, Z) ∈ Q′ such that

H(Y |Z) > 0

and the channel W1 has positive capacity.

Proof: The converse of the coding theorem i.e., Cwtf−id is upper bounded by
the right hand side of (8.1) follows from the converse of coding theorem of
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identification with feedback for channel W1 [4]. In the case that II holds, one
can construct a code achieving H(Y ) asymptotically from the code in [6] by
replacing the ordinary code for W1 by a uniform partition of output sequences
for the legal receiver and a code for the wiretape channel without feedback by a
code for the same channel but with feedback.

Furthermore the two conditions in III obviously are necessary for positivity of
Cwtf−id. The only thing left to be proved is that III implies II. Let (Xi, Yi, Zi) ∈
Q′ for i = 0, 1 such that H(Y0|Z0) > 0 and I(X1, Y1) > 0. By Theorem 1, it is
sufficient for us to find (U,X, Y, Z) ∈ Q such that I(U ;Y ) > 0 and H(Y |UZ) >
0. Obviously we are done, if I(X0;Y0) > 0 or H(Y1|U1, Z1) > 0. Otherwise
we have to construct a quadruple of random variables (U,X, Y, Z) ∈ Q from
(X0, Y0, Z0) and (X1, Y1, Z1) such that H(Y |UZ) > 0 and I(U ;Y ) > 0. To this
end, let U = X ∪{u0}, (where u0 is a special letter not in X ), and for all u ∈ U ,
x ∈ X , y ∈ Y and z ∈ Z, let (U,X, Y, Z) be a quadruple of random variables
such that

PUXY Z(u, x, y, z) =


1
2PX0Y0Z0(x, y, z) if u = u0

1
2PX1Y1Z1(x, y, z) if u ∈ X and u = x

0 otherwise.

Then (U,X, Y, Z) ∈ Q, PY Z|U (y|u0) = PY0Z0(yz) for all y ∈ Y and z ∈ Z.
P0(u0) = 1

2 and therefore

H(Y |UZ) =
∑
u∈U

PU (u)H(Y |U = uZ) ≥ 1
2
H(Y |U = u0Z) =

1
2
H(Y0|Z0) > 0.

On the other hand for

S =

{
0 if U = u0

1 otherwise,

for all u ∈ X , y ∈ Y

PUY |S(u, y|S = 1) = PX1Y1(u, y)

and Ps(1) = 1
2 and consequently

I(U ;Y ) = I(US;Y ) ≥ I(U ;Y |S) ≥ Ps(1)I(U ;Y |S = 1) =
1
2
I(X1;Y1) > 0.

That is, (U,X, Y, Z) is as desired. We conclude with the

Corollary 3

Cwtf−id =

 max
(X,Y,Z)∈Q′

H(Y |Z)

0

and Cwtf−id = 0 iff for all (X,Y, Z) ∈ Q′ H(Y |Z) = 0 or the capacity of W1 is
zero.
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Proof: That for all (X,Y, Z) ∈ Q′, H(Y |Z) = 0 implies that the wiretapper
knows what the receiver receives with probability one no matter how the sender
chooses the input and that the capacity of W1 is zero means the sender may not
change the output distributions at the terminal for the legal receiver. So in both
cases Cwtf−id = 0. Thus the corollary follows from Theorem 3.
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A Simplified Method for Computing the Key

Equivocation for Additive-Like Instantaneous
Block Encipherers

Z. Zhang

Abstract. We study the problem of computing the key equivocation
rate for secrecy systems with additive-like instantaneous block (ALIB)
encipherers. In general it is difficult to compute the exact value of the key
equivocation rate for a secrecy system (f, C) with ALIB encipherer when
the block length n becomes large. In this paper, we propose a simplified
method for computing the key equivocation rate for two classes of secrecy
systems with ALIB encipherers. 1) The function f is additive-like and
the block encipherer C is the set of all n-length key words (sequences)
of type P . 2) The function f is additive and the block encipherer C
is a linear (n, m) code in the n-dimensional vector space GF(q)n. The
method has a potential use for more classes of secrecy systems.

1 Introduction

The secrecy systems with additive-like instantaneous block (ALIB) encipherers
was investigated by Ahlswede and Dueck[1]. The model of ALIB encipherers
was given in detail there. We consider the same model in this paper. The only
difference is that we consider the key equivocation criterion rather than error
probability criterion. The key equivocation criterion was studied by Blom [2][3]
for some other secrecy systems.

For readers’ convenience, we briefly review the model of ALIB encipherers and
the key observation of Ahlswede and Dueck[1]. Let X ,K,Y be finite sets with

|X | = |K| = |Y|

where the number of elements in a set X is denoted by |X |. Without loss of
generality, we assume that X = K = Y. Let (Xi)∞i=1 be a message source, where
all the Xi, i = 1, 2, · · · are independent replicas of a random variable X with
values in X . The probability distribution of Xn = (X1, · · ·, Xn) is given by

Pr(Xn = xn) =
∏n

i=1
Pr(X = xi)

for all xn = (x1, · · ·, xn) ∈ Xn. Let f : X×K → Y be a function, where f(x, ·)
is bijective for each x ∈ X and f(·, k) is bijective for each k ∈ K . The function
fn : Xn×Kn → Yn denotes the n-fold product of f .

An (n,R) ALIB encipherer is a subset C ⊂ Kn with |C| ≤ 2nR. Given a pair
(f, C), we define a secrecy system which works as follows. A key word kn is gen-
erated by a random key generator Kn according to the uniform distribution on

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 276–284, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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C. Using fn and kn, the sender encrypts the output xn of the message source
to the cryptogram yn = fn(xn, kn) and sends it to the receiver over a noiseless
channel. The receiver uses the same key word kn and f−1 to decrypt the message
xn = (f−1)n(yn, kn), where the key word kn is given to the receiver separately
over a secure channel. The cryptanalyst intercepts the cryptogram yn and at-
tempts to decrypt xn. Since the cryptanalyst does not know the actual key word
kn being used, he has to search for a correct key word by using his knowledge
of the system. Suppose that the random key Kn and the source output Xn

are mutual independent. Let Y n = fn(Xn,Kn). Then the average uncertainty
about the key when the cryptanalyst intercepts a cryptogram is the conditional
entropy H(Kn|Y n). The quantity H(Kn|Y n)/n which is called key equivocation
rate is used as a security criterion for the secrecy system (f, C). By the definition
of the secrecy system, the joint probability distribution of Xn,Kn, Y n is

Pr(Xn = xn,Kn = kn, Y n = yn) = Pr(Xn = xn)Pr(Kn = kn)δ(yn, fn(xn, kn))

where

δ(yn, fn(xn, kn)) =
{

1 yn = fn(xn, kn)
0 otherwise

Then the conditional probability

Pr(Y n = yn|Kn = kn) =
∑
xn

Pr(Xn = xn)δ(yn, fn(xn, kn))forkn ∈ C

Define a discrete memoryless channel with transmission probability matrix
W = (Wy|k, k ∈ K, y ∈ Y), where

Wy|k =
∑
x

Pr(X = x)δ(y, f(x, k))

Then the transmission probabilities for n-words kn, yn are

Wn
yn|kn =

∏n

i=1
Wyi|ki

=
∏n

i=1

∑
xi

Pr(Xi = xi)δ(yi, f(xi, ki))

=
∑
x1

· · ·
∑
xn

∏n

i=1
Pr(Xi = xi)δ(yi, f(xi, ki))

=
∑
xn Pr(Xn = xn)δ(yn, fn(xn, kn))

The key observation of Ahlswede and Dueck [1] is that an (n,R) ALIB encipherer
C ⊂ Kn can be regarded as an (n,R) code for the memoryless channel W .
Furthermore, the random cryptogram Y n is the output of the channel Wn when
the input is the random key Kn.

The paper is organized as follows. In section 2, we derive some properties of
the key equivocation for the secrecy system (f, C) which will be used in section
3. In section 3, we present the computational method of the key equivocation
for the secrecy system (f, C) which is applied to two specific cases. Case 1): C is
the set of all sequences of type P in Kn. Case 2): f is additive and C is a linear
subspace (linear code) of the n-dimensional vector space GF (q)n over the finite
field GF (q).
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2 Properties of the Key Equivocation

Lemma 1. For arbitrary secrecy system (f, C), we have

H(Kn|Y n) = H(Xn|Y n) ≤ H(Xn)

Proof. By the properties of conditional entropies, we have

H(Xn,Kn|Y n) = H(Kn|Y n) +H(Xn|Y n,Kn)
= H(Xn|Y n) +H(Kn|Xn, Y n)

The definition of the function fn implies that any one of the random variables
Xn,Kn, Y n is a function of the remaining two others. Then H(Xn|Y n,Kn) =
H(Kn|Xn, Y n) = 0.

The lemma is proved.

Lemma 2. For arbitrary secrecy system (f, C), we have

H(Kn|Y n) = H(Xn) + log |C| −H(Y n)

Proof. By the properties of entropies, we have

H(Kn|Y n) = H(Kn) +H(Y n|Kn) −H(Y n)

The definition of the function fn and the independence of Xn and Kn imply
the equality

H(Y n|Kn) = H(Xn|Kn) = H(Xn)

Then H(Kn|Y n) = H(Kn) +H(Xn) −H(Y n).
The lemma is proved by inserting H(Kn) = log |C| into the last equality.

Lemma 3. Let T : Kn → Kn be a 1 to 1 transformation.
Denote TC = {Tkn; kn ∈ C}. Suppose that (f, C) satisfies the following
conditions:

1) TC = C ;
2) fn(xn, kn) = Tfn(xn, T−1kn) or
3) fn(xn, kn) = Tfn(T−1xn, T−1kn) and Pr(Xn = xn) = Pr(Xn = T−1xn) for
xn ∈ Xn, kn ∈ C.
Then, we have

Pr(Y n = yn) = Pr(Y n = Tyn)

Proof. Pr (Y n = yn) =
∑

kn∈C
|C|−1

∑
xn

Pr(Xn = xn)δ(yn, fn(xn, kn))

Pr(Y n = Tyn) =
∑

kn∈C
|C|−1

∑
xn

Pr(Xn = xn)δ(Tyn, fn(xn, kn))
From conditions 2) and 1), we have

Pr(Y n = Tyn) =
∑
T−1kn∈C |C|−1

∑
xn Pr(Xn = xn)δ(Tyn, T fn(xn, T−1kn))

= Pr(Y n = yn)

The proof is similar for conditions 3) and 1).
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3 Computation of the Key Equivocation

Theorem 1. Let T = {T1, T2, · · ·, TN} be a transformation group. If for every
T ∈ T , (f, C) satisfies the conditions of Lemma 3, then Yn can be partitioned to
equivalent classes which are denoted by Yi, i = 1, 2, ,M . Furthermore, we have

H(Kn|Y n) = nH(X) + log |C| +
M∑
i=1

|Yi|Pr(Y n = yni )log Pr(Y n = yni )

where yni is a fixed element of Yi.

Proof. yn and y
′n are said to be equivalent if there exists a transformation

T ∈ T such that y
′n = Tyn. Since T is a group, TT ′ ∈ T if T, T ′ ∈ T . Hence,

the above definition of equivalence of yn and y
′n is an equivalent relation. Then

Yn can be partitioned to equivalent classes Yi, i = 1, · · ·,M . From Lemma 3,
Pr(Y n = yn)=constant for all yn ∈ Yi(1 ≤ i ≤ M). Therefore,

H(Y n) = −
∑
yn Pr(Y n = yn)log Pr(Y n = yn)

= −
∑M
i=1

∑
yn

i ∈Yi
Pr(Y n = yni )log Pr(Y n = yni )

= −
∑M
i=1 |Yi|Pr(Y n = yni )log Pr(Y n = yni )

Thus, Theorem 1 is proved by Lemma 2 and H(Xn) = nH(X).
We apply Theorem 1 to compute the key equivocation rate of the secrecy

system (f, C) for two specific cases.
Case 1) The secrecy system (f, C) is defined as in section 1.

X = Y = K = {a1, a2, · · ·, ar}. C = T nP (set of all sequences of type P in Kn)
or C =

⋃
p
T nP (union of T nP with different types of P ), where P is a probability

distribution on K. Let τ : (1, 2, · · ·, n) → (τ(1), τ(2), · · ·, τ(n)) be a permutation
and SYM be the symmetric group of all permutations. For every τ ∈SYM,
we define a transformation Tτ : Kn → Kn. by Tτk

n = Tτ (k1, k2, · · ·, kn)=
(kτ(1), kτ(2), · · ·, kτ(n)).

It is easy to verify that T = {Tτ ; τ ∈SYM } is a transformation group
satisfying the condition of Theorem 1 (i.e. for every Tτ ∈ T , (f, C) satisfies
the conditions 3) and 1) of Lemma 3). Then we may use Theorem 1 to com-
pute the key equivocation of the secrecy system (f, C). The equivalent classes
Yi, i = 1, 2, · · ·,M ≤ (n + 1)r−1 are all different types of sequences in Yn. we
have the following result.

Theorem 2. For the secrecy system (f, C) given in the case 1), if P=(P1, · · ·, Pr)
is a probability distribution onK and C=T nP , satisfying limn→∞Ps=limn→∞

N(as)
n =

Πs, 0 < Πs < 1 for 1 ≤ s ≤ r.
then

lim
n→∞

1
n
H(Kn|Y n) = H(X) +H(Π) −H(Q)
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where N(as) is the number of as occurred in the sequence kn∈T nP , Π=(Π1, · · ·, Πr)
and Q=(Q1, · · ·, Qr) are probability distributions on K and Y respectively, with

Qt =
r∑
s=1

ΠsWat|as
, 1 ≤ t ≤ r (1)

W = (Wat|as
)1≤s,t≤r is the memoryless channel induced by the secrecy system

(f, C).

Proof. Since 1
n log |T nP | = H(P )+ o(1), by Theorem 1 and Lemma 2, it suffices

to prove

lim
n→∞

1
n
H(Y n) = H(Q)

Let P (i), i = 1, 2, · · ·,M be all different types of sequences in Yn, and yni ∈ T nP (i).
Then, we have

1
n
H(Y n) = − 1

n

∑M
i=1 |T nP (i)|Pr(Y n = yni ) log Pr(Y n = yni )

= − 1
n

∑M
i=1 Pr(Y n ∈ T nP (i)) log Pr(Y n ∈ T nP (i))

+ 1
n

∑M
i=1 Pr(Y n ∈ T nP (i)) log |T nP (i)|

=
∑M
i=1 Pr(Y n ∈ T nP (i))H(P (i)) + o(1) (2)

We intend to use Lemma 2.12 in the book of Csisár and Körner[4]. The Lemma
is stated in our notation as follows.

Lemma 4 CK. There exists a sequences εn → 0 depending only on |K| and |Y|
so that for every stochastic matrix W : K → Y,

Wn(T n[W ]δn
(kn)|kn) ≥ 1 − εn for every kn ∈ Kn,

where δn → 0 and δn
√
n → ∞ , as n → ∞, T n[W ]δ

(kn) is the union of the sets
T nV (kn) for those conditional types V given kn of sequences in Yn which satisfy

|Vat|as
− Wat|as

| ≤ δ for every as ∈ K and at ∈ Y, and Vat|as
= 0 when

Wat|as
= 0.

(A sequence yn ∈ Yn is said to have conditional type V given kn, if N(as, at) =
N(as)Vat|as

for every as ∈ K and at ∈ Y, where N(as, at) is the number of
(as, at) occurred in the sequence (kn, yn), V is a stochastic matrix V : K → Y.
The set of sequences yn ∈ Yn having conditional type V given kn is denoted by
T nV (kn).)

Now we use Lemma CK for the transmission probability matrix W = (Wy|k, k ∈
K, y ∈ Y) and kn ∈ T nP , We obtain

Wn(
⋃
V
T nV (kn)|kn) ≥ 1 − εn for every kn ∈ T nP (3)
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where the union of the sets T nV (kn) is for those conditional types V given kn of
sequences in Yn which satisfy |Vat|as

−Wat|as
| ≤ δn for every as ∈ K and at ∈ Y

and Vat|as
= 0 whenever Wat|as

= 0; δn and εn are given in Lemma CK.
Clearly, for any fixed conditional type V and kn ∈ T nP , T

n
V (kn) ⊂ T nQ(V ), where

Q(V ) = (Q(V )1, · · ·, Q(V )r)

is a probability distribution on Y with Q(V )t =
∑r
s=1 PsVat|as

, 1 ≤ t ≤ r. Let
Q(W ) = (Q(W )1, · · ·, Q(W )r) be the probability distribution on Y defined by

Q(W )t =
r∑
s=1

PsWat|as
, 1 ≤ t ≤ r.

Then from (3), we obtain

Wn(
⋃
V
T nQ(V )|kn) ≥ 1 − εn for every kn ∈ T nP , (4)

where the union of the sets T nQ(V ) is for those conditional types V given kn of
sequences in Yn which satisfy

max
1≤t≤r

|Q(V )t −Q(W )t| ≤ δn.

Since for any two conditional types V given kn and V ′ given k
′n, either T nQ(V ) =

T nQ(V ′) or T nQ(V ) ∩ T nQ(V ′) = Ø (empty set ), hence only different T nQ(V ) need be

contained in the union
⋃
V
T nQ(V ). Then from (4), we obtain∑

i∈S1

Wn(T nP (i)|kn) ≥ 1 − εn for every kn ∈ T nP (5)

where
S1 = {i; max

1≤t≤r
|P (i)t −Q(W )t| ≤ δn}.

By the definition of Y n and (5) we have∑
i∈S1

Pr(Y n ∈ T nP (i)) =
∑
i∈S1

∑
kn∈Tn

P
|T nP |−1Wn(T nP (i)|kn)

=
∑
kn∈Tn

P
|T nP |−1

∑
i∈S1

(T nP (i)|kn) ≥ 1 − εn.

Denote S2 = {1, 2, · · ·,M}−S1, then
∑

i∈S2
Pr(Y n ∈ T nP (i)) < εn. Since P → Π ,

as n → ∞, so Q(W ) → Q as n → ∞, further, by δn → 0, we obtain H(P (i)) =
H(Q)+o(1), for i ∈ S1. On the other hand, by εn → 0,

∑
i∈S2

Pr(Y n ∈ P (i)) =

o(1), Combining all results given above, we conclude from (2) that

limn→∞ 1
nH(Y n) = limn→∞

∑
i∈S1

Pr(Y n ∈ T nP (i))H(P (i) + o(1)
= H(Q).

Theorem 2 is proved.
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For the binary additive case, i.e., K = X = Y = GF (2) (binary field), f(x, k) =
x + k, C = T nP , where P = (P0, P1) = (n0/n, n1/n) is the frequency of the
elements 0 and 1 occurred in the sequence kn = (k1, k2, · · ·, kn). In this case, the
channel W = (Wy|k, k ∈ K, y ∈ Y) defined in section 1 is a binary symmetric
channel with crossover probability Pr(X = 1) = ε.

Corollary 1. For the binary additive secrecy system (f, C) given above, if
limn→∞ n1/n = r1(0 < r1 < 1), then

lim
n→∞

(1/n)H(Kn|Y n) = h(ε) + h(r1) − h(r1(1 − ε) + ε(1 − r1))

where h(ε) = −ε log ε− (1 − ε) log(1 − ε) is the binary entropy function.

Remark. Though Corollary 1 is a special case of Theorem 2, we can prove
it by a more elementary method. The key ideas are as follows. Similar to (2),
H(Y n)/n can be expressed as 1

nH(Y n) =
∫ 1

0
h(u)dFn(u) + o(1), where Fn(u) is

the distribution function of 1
nWH(Y n),WH(Y n) is the hamming weight of Y n.

Through simple calculation, we obtain

Fn(u) = Pr((WH(Y n))/n) ≤ u) =
∑
i;i≤nu Pr(Y n ∈ T nP (i))

=
∑
i;i≤nu

∑min(i,n1)
j=max(0,i−n0) b(j, n1, 1 − ε)b(i− j, n0, ε)

=
∑min(�nu�,n0)
m=0

∑min(�nu�−m,n1)
j=0 b(j, n1, 1 − ε)b(m,n0, ε)

where

b(j, n1, (1 − ε)) =
(
n1

j

)
(1 − ε)jεn1−j

is the probability of the binomial distribution.
Using De Moivre-Laplace limit theorem, we obtain

lim
n→∞

Fn(u) =
0 u < r1(1 − ε) + (1 − r1)ε
1 u > r1(1 − ε) + (1 − r1)ε

Then, we have limn→∞(1/n)H(Y n) = limn→∞
∫ 1

0
h(u)dFn(u)+ o(1) = h(r1(1−

ε) + (1 − r1)ε).
Case 2) K = GF (q)(finite field with q elements), f(x, k) = x + k.C is an m-

dimensional linear subspace of GF (q)n((n,m) linear code). For any α ∈ GF (q)n,
we define a transformation Tα : Kn → Kn by Tαk

n = kn+α. It is easy to verify
that T = {Tα;α ∈ C} is a transformation group satisfying the condition of
Theorem 1 (i.e., for every T ∈ T , (f, C) satisfies the conditions 2) and 1) of
Lemma 3). Then, we may use Theorem 1 to compute the key equivocation of
the secrecy system (f, C). The equivalent classes Yi, i = 1, 2, · · ·,M = qn−m, are
all cosets of the linear code C.

Denote GF (q) = {a1, a2, · · ·, aq}, P = (P1, P2, · · ·, Pq) is a probability distri-
bution on GF (q) with Pt = Pr(X = at), 1 ≤ t ≤ q. Let C = {kn1 , kn2 , · · ·, knN}
(N = qm) be a linear (n,m) code, Yi, i = 1, 2, · · ·,M = qn−m be all cosets
of C, where Yi = C + yni , y

n
i is the coset leader of Yi(1 ≤ i ≤ M). Then
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H(X) = H(P ), 1
n log |C| = 1

n log qm = m
n log q. Since when kn runs through

the code C, xn = kn + yni runs through the coset Yi. Thus

Pr(Y n = yni ) =
∑
kn∈C q

−mWn
yn

i |kn =
∑
xn∈Yi

q−mPr(Xn = xn)

=
∑J
j=1 q

−mTij
∏q

t=1
P
nQ(j)t

t

where Q(j) = (Q(j)1, · · ·, Q(j)q), j = 1, · · ·, J are all different types of sequences
in GF (q)n, Tij , j = 1, · · ·, J is the type distribution of the coset Yi, i.e., Tij
is the number of xn in Yi which are belong to T nQ(j). Analogous to (2), we
have

(1/n)H(Y n) = −(1/n)
∑M

i=1
Pr(Y n ∈ Yi) log Pr(Y n ∈ Yi) + (m/n) log q.

Then, we obtain the following result.

Theorem 3. For the secrecy system (f, C) given in case 2), the key equivocation
rate

(1/n)H(Kn|Y n) = H(P ) + (1/n)
M∑
i=1

Pr(Y n ∈ Yi) log Pr(Y n ∈ Yi)

where Pr(Y n ∈ Yi) =
∑J
j=1 Tij

∏q

t=1
P
nQ(j)t

t

An observation from Theorem 3 is that if the equivalent class entropy rate is
smaller, then the key equivocation rate (1/n)H(Kn|Y n) is greater. We can im-
prove the secrecy system (f, C) by choosing C to be a linear cyclic (n,m) code. Let
τj be a cyclic permutation, i.e. τj(1, · · ·, n) = (j, · · ·, n, 1, · · ·, j − 1)(1 ≤ j ≤ n).
Define Tτj by Tτjk

n = Tτj (k1, · · ·, kn) = (kj , · · ·, kn, k1, · · ·, kj−1). It is easy to
check that T = {Tα, Tτj , TαTτj ;α ∈ C, 1 ≤ j ≤ n} is a transformation group (no-
tice that TτjTαk

n = Tτj(kn + α) = Tτjk
n + Tτjα = TβTτjk

n, where β = Tτjα).
Since Tα satisfies the conditions 2) and 1) of Lemma 3 and Tτj satisfies the
conditions 3) and 1) of Lemma 3, hence Theorem 1 is also valid for the (f, C)
and T just given. The equivalent classes are union of some cosets of C, i.e.⋃n

j=1
(C + Tτjy

n
i ).
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Secrecy Systems for Identification Via Channels

with Additive-Like Instantaneous Block
Encipherer

R. Ahlswede, N. Cai, and Z. Zhang�

Abstract. In this paper we propose a model of secrecy systems for
identification via channels with ALIB encipherers and find the smallest
asymptotic key rate of the ALIB encipherers needed for the requirement
of security.

1 Introduction

Attention: This is the only paper in the collection which works with the opti-
mistic capacity, which is the optimal rate achivable with arbitrary small error
probability again and again as the blocklength goes to infinity.

The criticism of this concept made in [B34] has been supplemented by a new
aspect:

in cryptology enemies strongest time in wire-taping must be taken
into consideration!

The model of identification via channels was introduced by R. Ahlswede and
G. Dueck [1] based on the following cases. The receivers of channels only are
interested in whether a specified message was sent but not in which message was
sent and the senders do not know in which message the receivers are interested.
Sometimes the sender requires that the message sent can be identified only by
legitimate receivers of the channel but not by any one else (e.g. wiretapper).
For example, a company produces N kinds of products which are labelled by
j = 1, 2, · · · , N . The company wants to sell a kind of products only to the
members of the company’s association. For other customers it even does not
want them to know what it is going to sell. In this case the company can use
a secrecy system for identification via channels with additive-like instantaneous
block (ALIB) encipherers, i.e. the sender encrypts the message (identification
code) with a private key sending it via the channel and sends the same key only
to the members of the company’s association through a secure channel. The
secrecy system with ALIB encipherers was investigated by R. Ahlswede and
G. Dueck [2], but their model needs to be adapted to satisfy the requirement
of identification via channels. In this paper we consider the model of secrecy
systems for identification via channels with ALIB encipherers and investigate the

� Zhang’s research was supported by the ZiF research group “General Theory of In-
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smallest asymptotic key rate of the ALIB encipherers needed for the requirement
of security.

In Section 2, we review the necessary background of identification via chan-
nels. Our model is described in Section 3. Our result for symmetric channels is
proved in Section 4.

2 Background

Let X ,K,Y,Z be finite sets. For simplicity, we assume that X = K = Y = Z =
GF (q)(q ≥ 2). Let W = {Wn}∞n=1 be a memoryless channel with transmission
matrix (w(z|x);x ∈ X , z ∈ Z).

Definition 1. A randomized (n,Nn, µn, λn) identification (Id) code for the chan-
nel Wn is a system {(Qi, Di); 1 ≤ i ≤ Nn}, where Qi is a probability distribution
(PD) of the random codeword Xn(i) generated by a randomized encoder ϕn(i), i.e.
Qi(xn) = Pr{Xn(i) = xn}, xn ∈ Xn, Di ⊂ Zn is a decoding set.

Denote by Zn(i) the output ofWn when the input isXn(i) andQiWn the PD of
Zn(i). Set µ(i)

n = QiW
n(Dci ) = Pr{Zn(i) ∈ Zn −Di} and λ(j,i)

n = QjW
n(Di) =

Pr{Zn(j) ∈ Di}(j = i). µn = max
1≤i≤Nn

µ
(i)
n and λn = max

1≤j,i≤Nn,j �=i
λ

(j,i)
n are

called the error probability of the first and second kind for the Id code, respectively,
1
n log logNn = rn is called the rate of the Id code.

Definition 2. Rate R is (µ, λ)–achievable if there exists a sequence of (n,Nn,
µn, λn) Id codes for the channel Wn (1 ≤ n < ∞) satisfying the following
conditions.
1) lim

n→∞
µn ≤ µ, 2) lim

n→∞
λn ≤ λ, 3) lim inf

n→∞
rn ≥ R.

The (µ, λ)–Id capacity for the channel W is defined by D(µ, λ|W ) = sup(R|R is
(µ, λ)−achievable).

Theorem 1. ([1]) Let W = {Wn}∞n=1 be an arbitrary channel. If there exists a
number ε satisfying 0 ≤ ε ≤ µ and 0 ≤ ε ≤ λ, then it holds that D(µ, λ|W ) ≥
C(ε|W ), where C(ε|W ) denotes the ε–channel capacity of the channel W which
is defined as follows.

Definition 3. Rate R is ε–achievable if there exists a sequence of (n,Mn, εn)
codes for the channel Wn(1 ≤ n ≤ ∞) satisfying the following conditions.
1) lim

n→∞
εn ≤ ε, 2) lim inf

n→∞
1
n logMn ≥ R.

The ε-channel capacity for the channel W is defined by

C(ε|W ) = sup(R|R is ε−achievable).

Theorem 1 is proved by using the following lemma.

Lemma 1. ([1]) Let M be an arbitrary finite set of size M =| M |. Choose
constants τ and κ satisfying 0 < τ ≤ 1

3 and 0 < κ < 1 and κ log( 1
τ−1) ≥ log 2+1,

where the natural logarithms are used. Define N = �eτM/Me�. Then, there exist
N subsets A1, A2, · · · , AN of M satisfying | Ai |= �τM�
(1 ≤ i ≤ N) and | Ai ∩Aj |< κ�τM�(i = j).
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Using Lemma 1 the ID-code for proving Theorem 1 can be constructed as follows.
Let γ > 0 be an arbitrarily small constant and set R = C(ε|W ) − γ. By De-

finition 3 R is ε–achievable as a rate of the transmission code. Therefore, there
exists a sequence of (n,Mn, εn) codes for the channel Wn(1 ≤ n < ∞) satisfying
the following conditions:

1) lim
n→∞

εn ≤ ε, 2) lim inf
n→

1
n logMn ≥ R, where εn denotes the maximum de-

coding error probability of the code. Denote the (n,Mn, εn) code by Cn =
{c1, c2, · · · , cMn}
(ci ∈ Xn) and let Ei be the decoding region corresponding to ci(1 ≤ i ≤ Mn).
Now we apply Lemma 1 by setting M = {1, 2, · · · ,Mn}, M = Mn, τ = τn =

1
(n+3) , κ = κn = 2

log(n+2) and N = Nn = �eτnMn/Mne�. Since all conditions of
Lemma 1 are satisfied, there exist Nn subsets A1, A2, · · · , ANn of M satisfying
|Aj | = �τnMn�(1 ≤ j ≤ Nn) and | Aj ∩ Ak |< κn�τnMn�(j = k). Define the
subsets Sj (1 ≤ j ≤ Nn) of Cn by Sj =

⋃
i∈Aj

{ci} and let Qj denote the uniform

distribution over Sj . Define Dj =
⋃
i∈Aj

Ei as the decoding set corresponding to

Qj. It is shown that the constructed Id code {(Qj , Dj); 1 ≤ j ≤ Nn} can be used
to prove Theorem 1.

Theorem 1 gives the direct theorem on the Id coding problem. We need the
converse theorem also. Since the converse theorem is essentially related to the
channel resolvability problem, we can introduce the channel resolvability instead.

Let W = {Wn}∞n=1 be an arbitrary channel with input and output alphabets
X and Y respectively. Let Y = {Y n}∞n=1 be the output from the channel W
corresponding to a given inputX = {Xn}∞n=1. We transform the uniform random
number UMn of size Mn into another input X̃ = {X̃n}∞n=1. That is, X̃n =
fn(UMn), fn : {1, 2, · · · ,Mn} → Xn.

Denote by Ỹ = {Ỹ n}∞n=1 the output from the channelW with an input X̃ . The
problem of how we can choose the size Mn of the uniform random number UMn

and the transform fn such that the variational distance between Y = {Y n}∞n=1

and Ỹ = {Ỹ n}∞n=1 satisfies lim
n→∞

d(Y n, Ỹ n) = 0 is sometimes called the channel
resolvability problem. In this problem, the criterion of approximation can be
slightly generalized to lim

n→∞
d(Y n, Ỹ n) ≤ δ, where δ is an arbitrary constant

satisfying 0 ≤ δ < 2.

Definition 4. Rate R is δ–achievable for an input X = {Xn}∞n=1 if there exists
a sequence of transforms X̃n = fn(UMn)(1 ≤ n <∞) satisfying

lim
n→∞

d(Y n, Ỹ n) ≤ δ and lim
n→∞

1
n

logMn ≤ R,

where Y n and Ỹ n denote the channel outputs corresponding to Xn and X̃n,
respectively. The channel δ–resolvability for an input X is defined by

SX(δ|W ) = inf(R|R is δ–achievable for an input X).
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Theorem 2. ([3]) Let W be an arbitrary channel with time structure and X an
arbitrary input variable. Then, it holds that SX(δ|W ) ≤ I(X ;Y ) for all δ ≥ 0,
where Y denotes the channel output variable corresponding to X and I(X ;Y )
represents the sup-mutual information rate defined by

I(X ;Y ) = p− lim
n→∞

1
n log W

n(Y n|Xn)
PY n (Y n)

= inf
(
α
∣∣∣ lim
n→∞

PrXnY n

{
1
n log W

n(Y n|Xn)
PY n (Y n) > α

}
= 0

)
. (1)

3 Model

In this section we propose a model of the secrecy systems for identification via
channels with ALIB encipherers. We keep the notations and assumptions given
in Section 2 for reviewing the background of identification via channels.

Let {(Qi, Di) : 1 ≤ i ≤ Nn} be the (n,Nn, µn, λn) Id code constructed as in
the proof of Theorem 1 for the channel W . Recall that an (n,R) ALIB encipherer
is a subset C ⊂ Kn with | C |< enR. Let f : X × K → Y be a function, where
f(x, ·) is bijective for each x ∈ X and f(·, k) is bijective for each k ∈ K. fn : Xn×
Kn → Yn denotes the n–fold product of f . Given a pair (f, C) we define a secrecy
system which works as follows. If the sender wants to send a message i(1 ≤ i ≤
Nn), he sends the random codeword Xn(i) generated by the randomized encoder
ϕn(i). Before he transmits Xn(i) he uses a random key generator Kn to generate
kn according to the uniform distribution on C. Then the sender encrypts Xn(i)
into the random cryptogram Y n(i) = fn(Xn(i),Kn) and sends it to the receiver
over the channel Wn. Suppose that Xn(i) and Kn are mutually independent.
The used key kn is sent to the receiver over a secure channel. Denote by Z̃n(i) the
output of the channel Wn when the input is the cryptogram Y n(i). In general,
the receiver cannot use the same key kn to recover the received codeword Zn(i)
from the received cryptogram Z̃n(i) since the channel Wn is noisy. In order
to solve this problem, we assume that f(x, k) = x + k, where + operates in
GF (q). Then we have Y n(i) = Xn(i) + Kn. Further, we need to assume that
the channel Wn is memoryless with symmetric transmission matrix, more
specifically, the output and input of the channel Wn have the following relation:
Z̃n(i) = Y n(i)+En, where En = (E1, E2, · · · , En) is a sequence of independent
random variables with the same PD on GF (q). Combining the two assumptions,
we obtain Z̃n(i) = Xn(i) + Kn + En = Zn(i) + Kn or Zn(i) = Z̃n(i) − Kn.
Hence the receiver can get Zn(i) from Z̃n(i) by using the same key kn and
decides that the message i(1 ≤ i ≤ Nn) is sent if Zn(i) ∈ Di. Since the PD
of Zn(i) is QiWn and QiW

n(Dci ) ≤ µn, QjWn(Di) ≤ λn(j = i), the receiver
can identify the message i with error probabilities of the first kind and second
kind not greater than µn and λn, respectively. Another customer intercepts the
channel output Z̃n(i) and attempts to identify a message j(1 ≤ j ≤ Nn) being
sent. Since the customer does not know the actual key kn being used, he has to
use Z̃n(i) and his knowledge of the system for deciding that the message j is
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sent. We need a security condition under which the customer can not decide for
any fixed message j(1 ≤ j ≤ Nn) being sent with small error probability. Such
a condition was given by R. Ahlswede and Z. Zhang [4] for investigating the
problem of identification via a wiretap channel. This condition is also suitable
for our model. The condition is stated as follows.

Security Condition. For any pair of messages (i, j)(1 ≤ i = j ≤ Nn) and
D ⊂ Zn, it holds that Q̃iWn(Dc) + Q̃jW

n(D) > 1− δn and lim
n→∞

δn = 0, where

Q̃i and Q̃iW
n denote the PD of Y n(i) and Z̃n(i) respectively.

From the identity Q̃iW
n(Dc) + Q̃iW

n(D) = 1 for any i(1 ≤ i ≤ Nn) and any
D ⊂ Z and the Security Condition, we obtain Q̃jWn(D) > 1−Q̃iWn(Dc)−δn =
Q̃iW

n(D) − δn for any pair (i, j)(1 ≤ i = j ≤ Nn). Therefore, the Security
Condition means that Q̃iWn and Q̃jW

n are almost the same for any pair (i, j)
with i = j. Hence the customer can not decide on any fixed message j(1 ≤ j ≤
Nn) being sent with small error probability.

We are interested in the following problem. What is the largest rate R of the
ALIB encipherer C so that the distributions Q̃iWn(i = 1, 2, · · · , Nn) satisfy the
Security Condition.

4 Main Result

For the model of a secrecy system described in Section 3 we obtain the following
main result.

Theorem 3. 1) Assume for the alphabets X = K = Y = Z = GF (q)(q ≥
2) and that W = {Wn}∞n=1 is a memoryless symmetric channel with the
transmission matrix (w(z|x) > 0;x ∈ X , z ∈ Z).

2) Assume that the function f(x, k) = x+k, where + operates in the finite field
GF (q).

3) Suppose that the random key Kn has uniform distribution on the ALIB en-
cipherer C ⊂ Kn and is mutually independent with each random codeword
Xn(i)(1 ≤ i ≤ Nn).

Then, the secrecy system for identification via the channel W with ALIB enci-
pherers possesses the following properties.

1) The secrecy system can transmit Nn messages i = 1, 2, · · · , Nn with

lim inf
n→∞

1
n

log logNn ≥ log q +
∑
z∈Z

w(z|x) logw(z|x) − γ,

where γ > 0 is an arbitrarily small number and x ∈ X is fixed, the legitimate
receiver can identify the message i(1 ≤ i ≤ Nn) with arbitrarily small error
probability.
2) The smallest asymptotic key rate R of the ALIB encipherer C is R =
−

∑
z∈Z

w(z|x)logw(z|x) (x∈X is fixed) for the distributions Q̃iWn(i=1, 2, · · · , Nn)

satisfying the Security Condition. Hence, the other customer can not judge any
fixed message j(1 ≤ j ≤ Nn) being sent from Q̃iW

n with small error probability.
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Proof. 1) By assumption 1), the channel capacity of the channel W is C(W ) =
C(0|W ) = log q+

∑
z∈Z

w(z|x) logw(z|x). Using Theorem 1 with ε = 0, we obtain

that the (µ, λ)–Id capacity of the channel W, D(µ, λ|W ) ≥ C(W ) for µ ≥ 0,
λ ≥ 0. Hence, there exists a sequence of (n,Nn, µn, λn) Id codes for the channel
Wn(1 ≤ n < ∞) satisfying the conditions: 1) lim

n→∞
µn = 0; 2) lim

n→∞
λn = 0; 3)

lim inf
n→∞

rn ≥ C(W ) − γ. Using the Id codes in the secrecy system, the property

1) holds.
2) By assumption 2), the random cryptogram Y n(i) = Xn(i) + Kn, where the
random key Kn has uniform distribution on an ALIB encipherer C ⊂ Kn. R.
Ahlswede and G. Dueck [2] have pointed out that Y n(i) and Kn can be regarded
as the output and input of the channel denoted by V = {V n}∞n=1. In the case
of identification, the channel V is a general channel rather than a memoryless
channel. By assumption 3), the transmission probability of the channel V n can
be defined as V nyn|kn =

∑
xn

Qi(xn)δ(yn, xn + kn), where

δ(yn, xn + kn) =

{
1, if yn = xn + kn,

0, otherwise.

In order to prove property 2), we want to apply Theorem 2 for the general
channel V . First, we consider the input Un of the channel V n which has uniform
distribution on the ALIB encipherer C = Kn. It is evident that the PD of the
output Y n(i) corresponding to the input Un is the uniform distribution on Yn,
i.e. Q̃i(yn) = Pr{Y n(i) = yn} = q−n for any yn ∈ Y and any i(1 ≤ i ≤ Nn).
By the assumption 1), it is also evident that the PD of the output Z̃n(i) of the
channel Wn corresponding to the input Y n(i) is the uniform distribution on Zn,
i.e. Q̃iWn(zn) = q−n for any zn ∈ Zn and any i(1 ≤ i ≤ Nn). Hence Q̃iWn(1 =
1, 2, · · · , Nn) satisfy the Security Condition. But the key rate of C = Kn equals
log q, it can be reduced. Then, applying Theorem 2 for the input U = {Un}∞n=1

and δ = 0, we obtain SU (0|V ) ≤ I(U, Y (i)), where Y (i) = {Y n(i)}∞n=1. We
use formula (1) to compute I(U, Y (i)). We have seen that Pr{Y n(i) = yn} =
PY n(i)(yn) = q−n for any yn ∈ Yn and V nyn|kn =

∑
xn

Qi(xn)δ(yn, xn + kn) =∑
xn∈Si

| Si |−1 δ(yn, xn + kn) for kn ∈ Kn, where | Si |= τnMn, τn = 1
(n+3) ,

lim inf
n→∞

1
n logMn ≥ C(W ) − γ. Then, the joint distribution of Un and Y n(i)

Pr{Un=kn, Y n(i)=yn}=
{
q−n | Si |−1, for yn∈Si + kn = {xn + kn;xn ∈ Si}

0, otherwise.

Hence,
1
n

log
V n(Y n(i)|Un)
PY n(i)(Y n(i))

=
1
n

log
|Si|−1

q−n
= log q − 1

n
log |Si|

= log q − 1
n

logMn +
1
n

log(n+ 3)
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with probability one. Therefore, by formula (1):

I(U ;Y (i)) ≤ log q − C(W ) + γ = −
∑
z∈Z

w(z|x) logw(z|x) + γ.

Since γ is an arbitrarily small number, so I(U, Y (i)) = H({w(z|x); z ∈ Z}),
where H(·) is the entropy function. Then, we obtain SU (0|V ) ≤ H({w(z|x); z ∈
Z}). By the definition 4, there exists a sequence of transforms Kn=fn(UMn)(1 ≤
n < ∞) satisfying lim

n→∞
d(Y n(i), Ỹ n(i)) = 0 and lim inf

n→∞
1
n logMn ≤ H({w(z|x);

z ∈ Z}) + γ, where Y n(i) and Ỹ n(i) denote the outputs of channel V corre-
sponding to the inputs Un and Kn respectively.

In other words, there exists a sequence of (n,R) ALIB encipherers C with
R ≤ H({w(z|x); z ∈ Z}) + γ, such that if the random key Kn generates the key
kn according to the uniform distribution on C, then the random cryptogram
Ỹ n(i) = Xn(i) +Kn satisfies lim

n→∞
d(Y n(i), Ỹ n(i)) = 0.

In the following, in order to avoid confusion, the PDs of Y n(i) and Ỹ n(i) are
denoted by QY n(i) and Q̃i, respectively, denote Z̃n(i) the output of the channel
Wn corresponding to the input Ỹ n(i). Now, we prove that the PD of Z̃n(i),
Q̃iW

n(i = 1, 2, · · · , Nn) satisfies the Security Condition. In fact, QY n(i)W
n is

the uniform distribution on Zn and QY n(i)W
n(D)+QY n(i)W

n(Dc) = 1 for any
D ⊂ Zn. On the other hand,

d(QY n(i)W
n, Q̃iW

n) =
∑

zn∈Zn

| QY n(i)W
n(zn) − Q̃iW

n(zn) |

≤
∑

zn∈Zn

∑
yn∈Yn

| QY n(i)(yn) − Q̃i(yn) | Wn
zn|yn

= d(QY n(i), Q̃i).

Consequently, lim
n→∞

d(QY n(i)W
n, Q̃iW

n) = 0. Evidently, for any i(1 ≤ i ≤ Nn),

| QY n(i)W
n(Dc) − Q̃iW

n(Dc) |≤ d(QY n(i)W
n, Q̃iW

n),

then,
Q̃iW

n(Dc) ≥ QY n(i)W
n(Dc) − d(QY n(i)W

n, Q̃iW
n).

Similarly, for any j(j = i),

QjW
n(D) ≥ QY n(j)W

n(D) − d(QY n(j)W
n, Q̃jW

n).

Combine these two inequalities and set

δn = 2[d(QY n(i)W
n, Q̃iW

n) + d(QY n(j)W
n, Q̃jW

n)].

We obtain Q̃iW
n(Dc) + Q̃jW

n(D) > 1 − δn and lim
n→∞

δn = 0. Our proof is
complete.
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Large Families of Pseudorandom Sequences of k

Symbols and Their Complexity – Part I

R. Ahlswede, C. Mauduit, and A. Sárközy�

Dedicated to the memory of Levon Khachatrian

1 Introduction

In earlier papers we introduced the measures of pseudorandomness of finite bi-
nary sequences [13], introduced the notion of f–complexity of families of binary
sequences, constructed large families of binary sequences with strong PR (=
pseudorandom) properties [6], [12], and we showed that one of the earlier con-
structions can be modified to obtain families with high f–complexity [4]. In
another paper [14] we extended the study of pseudorandomness from binary se-
quences to sequences on k symbols (“letters”). In [14] we also constructed one
“good” pseudorandom sequence of a given length on k symbols. However, in
the applications we need not only a few good sequences but large families of
them, and in certain applications (cryptography) the complexity of the family
of these sequences is more important than its size. In this paper our goal is to
construct “many” “good” PR sequences on k symbols, to extend the notion of
f–complexity to the k symbol case and to study this extended f–complexity
concept.

2 A Special Case

First we will study the special case when k, the number of symbols (the “size
of the alphabet”) is a power of 2: k = 2r. We will show that in this case any
“good” PR binary sequence

EN = (e1, e2, . . . , eN) ∈ {−1,+1}N (2.1)

defines a sequence on k symbols with “nearly as good” PR properties so that
the constructions given in the binary case can be used in the k = 2r symbol case
nearly as effectively.

First we have to recall several definitions from earlier papers. If EN is a binary
sequence of the form (2.1), then write

U(EN ; t, a, b) =
t−1∑
j=0

ea+jb

� Research partially supported by the Hungarian National Foundation for Scientific
Research, Grant No. T043623.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 293–307, 2006.
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and, for D = (d1, . . . , d�) with non–negative integers d1 < · · · < d�

V (EN ,M,D) =
M∑
n=1

en+d1en+d2 . . . en+d�
.

Then the well–distribution measure of EN is defined by

W (EN ) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b, t ∈ N and 1 ≤ a ≤ a+ (t− 1)b ≤ N ,
while the correlation measure of order  of EN is defined by

C�(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣∣∣∣∣
M∑
n=1

eN+d1en+d2 . . . en+d�

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, d2, . . . , d�) and M such that
M + d� ≤ N . Then the sequence EN is considered as a “good” PR sequence if
both these measures W (EN ) and C�(EN ) (at least for small ) are “small” in
terms of N (in particular, both are o(N) as N → ∞). Indeed, it is shown in [5],
[10] that for a “truly random” EN ∈ {−1,+1} both W (EN ) and, for fixed ,
C�(EN ) are around N1/2 with “near 1” probability.

In [13] a third measure was introduced, which will be needed here: the com-
bined (well–distribution–correlation) PR measure of order  is defined by

Q�(EN ) = max
a,b,t,D

∣∣∣∣∣∣
t∑
j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+d�

∣∣∣∣∣∣
= max
a,b,t,D

|Z(a, b, t,D)| (2.2)

where

Z(a, b, t,D) =
t∑
j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+d�

is defined for all a, b, t,D = (d1, d2, . . . , d�) such that all the subscripts a +
jb + di belong to {1, 2, . . . , N} (and the maximum in (2.2) is taken over D’s of
dimension ).

In [14] we extended these definitions to the case of k symbols. It is not at all
clear how to do this extension and, indeed, in [14] we introduced two different
ways of extension which are nearly equivalent. Here we will present only one of
them which is more suitable for our purpose.
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Let k ∈ N, k ≥ 2, and let A = {a1, a2, . . . , ak} be a finite set (“alphabet”)
of k symbols (“letters”) and consider a sequence EN = (e1, e2, . . . , eN ) ∈ AN of
these symbols. Write

x(EN , a,M, u, v) = |{j : 0 ≤ j ≤M − 1, eu+jv = a}|

and for W = (ai1 , . . . , ai�) ∈ A� and D = (d1, . . . , d�) with non–negative integers
d1 < · · · < d�,

g(EN ,W,M,D) = |{n : 1 ≤ n ≤ M, (en+d1 , . . . , en+d�
) = W}|.

Then the f–well–distribution (“f” for “frequency”) measure of EN is defined
as

δ(EN ) = max
a,M,u,v

∣∣∣∣x(EN , a,M, u, v) − M

k

∣∣∣∣
where the maximum is taken over all a ∈ A and u, v,M with u+(M −1)v ≤ N ,
while the f–correlation measure of order  of EN is defined by

γ�(EN ) = max
W,M,D

∣∣∣∣g(EN ,W,M,D) − M

k�

∣∣∣∣
where the maximum is taken over all W ∈ A�, and D = (d1, . . . , d�) and M such
that M + d� ≤ N .

We showed in [14] that in the special case k = 2, A = {−1,+1} the f–
measures δ(EN ), γ�(EN ) are between two constant multiples of the binary mea-
sures W (EN ), resp. C�(EN ), so that, indeed, the f–measures can be considered
as extensions of the binary measures.

Now let EN be the binary sequence in (2.1), and to this binary sequence assign
a sequence ϕ(EN ) whose elements are the 2n letters in the alphabet {−1,+1}r,
and whose length is [N/r]:

ϕ(EN ) =
(
(e1, . . . , er), (er+1, . . . , e2r), . . . , (e([N/r]−1)r+1, . . . , e[N/r]r)

)
.

We will show that if EN is a “good” PR binary sequence, then ϕ(EN ) is also a
“good” PR sequence on the k = 2r letters in the alphabet {−1,+1}r. Indeed,
this follows from the inequalities in the following theorem:

Theorem 1. If EN and ϕ(EN ) are defined as above, then we have

δ
(
ϕ(EN )

)
≤ 1

2r

r∑
s=1

(
r

s

)
Qs(EN ) (2.3)
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and, for  ∈ N

γ�
(
ϕ(EN )

)
≤ 1

2r�

r∑
s=1

�∑
q=1

(
r

s

)(


q

)
Qqs(EN ). (2.4)

Proof of Theorem 1. Clearly, for all a = (ε1, . . . , εr) ∈ {−1,+1}r, M , u and
v we have

x
(
ϕ(EN ), a,M, u, v

)
=

∣∣{j : 0 ≤ j ≤ M − 1, (e(u+jv−1)r+1, . . . , e(u+jv)r) = (ε1, . . . , εr)
}∣∣

=
M−1∑
j=0

r∏
i=1

e(u+jv−1)r+iεi + 1
2

=
M

2r
+

1
2r

r∑
s=1

∑
1≤i1<···<is≤r

εi1 . . . εis

M−1∑
j=0

e(u+jv−1)r+i1 . . . e(u+jv−1)r+is

whence ∣∣∣∣x(ϕ(EN ), a,M, u, v
)
− M

k

∣∣∣∣ =
∣∣∣∣x(ϕ(EN ), a,M, u, v

)
− M

2r

∣∣∣∣
≤ 1

2r

r∑
s=1

∑
1≤i1<···<is≤r

∣∣∣∣∣∣
M−1∑
j=0

e(u−1)r+jvr+i1 . . . e(u−1)r+jvr+is

∣∣∣∣∣∣
=

1
2r

r∑
s=1

∑
1≤i1<···<is≤r

∣∣Z((u − 1)r, vr,M − 1, (i1, . . . , is)
)∣∣

≤ 1
2r

r∑
s=1

∑
1≤i1<···<is≤r

Qs(EN ) =
1
2r

r∑
s=1

(
r

s

)
Qs(EN ) (2.5)

which proves (2.3).
Now let A = {−1,+1}r, w = (ai1 , . . . , ai�) ∈ A�, aij = (ε(j)1 , . . . , ε

(j)
r ) and

D = (d1, . . . , d�). Then we have

g
(
ϕ(EN ),W,M,D)

=
∣∣{n : 1 ≤ n ≤M,

(
(e(n+d1−1)r+1, . . . , e(n+d1)r), . . . , (e(n+d�−1)r+1, . . . , e(n+d�)r)

)
=

(
(ε(1)1 , . . . , ε(1)r ), . . . , (ε(�)1 , . . . , ε(�)r )

)}∣∣ =
M∑
n=1

r∏
i=1

�∏
j=1

e(n+dj−1)+iε
(j)
i + 1

2

=
M

2r�
+

1
2r�

r∑
s=1

�∑
q=1

∑
1 ≤ i1 < · · · < is ≤ r
1 ≤ j1 < · · · < jq ≤ �

(
s∏
µ=1

q∏
ν=1

ε
(jν)
iµ

)(
M∑
n=1

s∏
µ=1

q∏
ν=1

e(n+djν−1)r+iµ

)
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so that, as in (2.5),∣∣∣∣g(ϕ(EN ),W,M,D
)
−M

2r�

∣∣∣∣ =
∣∣∣∣g(ϕ(EN ),W,M,D

)
− M

k�

∣∣∣∣
≤ 1

2r

r∑
s=1

�∑
q=1

∑
1 ≤ i1 < · · · < is ≤ r
1 ≤ j1 < · · · < jq ≤ �

∣∣Z(0, r,M − 1, (dj1r + i1, dj1r + i2, . . . , djqr + is)
)∣∣

≤ 1
2r�

r∑
s=1

�∑
q=1

∑
1 ≤ i1 < · · · < is ≤ r
1 ≤ j1 < · · · < jq ≤ �

Qqs(EN ) =
1

2r�

r∑
s=1

�∑
q=1

(
r

s

)(


q

)
Qqs(EN )

whence (2.4) follows and this completes the proof of Theorem 1.
Finally, we will make some comments on the applicability of the construc-

tion described at the beginning of this section. First, we remark that in certain
applications this simple construction can be used even in the case when k, the
number of the given symbols, is not a power of 2; the price paid is a slight
data expansion. E.g., consider the following problem in cryptography: assume
that a plaintext is given which uses, say, k = 80 characters, and we want to
encrypt it by using a PR sequence of letters taken from an alphabet of appro-
priate size as key. Then we consider the smallest power of 2 ≥ the number of
characters: 27 > 80 (> 26). Next to each of the characters we assign one of the
27 blocks of bits of length 7 taken from {0, 1}7, and we replace each character
in the plaintext by the corresponding block from {0, 1}7, so that the plaintext
is mapped into a sequence a1, a2, . . . , aM whose elements belong to {0, 1}7. Now
by using the algorithm described above with r = 7, we construct a PR sequence
b1, b2, . . . , bM of letters from the alphabet A = {0, 1}7 (whose size is power of 2:
|A| = 27). Then we obtain the ciphertext c1, c2, . . . , cM by taking ci ∈ {0, 1}7 as
the residue of ai + bi modulo 27 (and to decipher c1, c2, . . . , cM , we subtract bi
from ci modulo 27).

A further remark on the limits of the applicability of this method: this al-
gorithm can be applied only if N is “much greater”, than k = 2r. Indeed, N
must grow at least as fast as a large power of k, otherwise the inequalities in
Theorem 1 become trivial or say very little.

3 A Construction in the General Case

We will construct a large family of sequences on k symbols with a given length
which has good PR properties (for any k ∈ N, k ≥ 2). This construction will
be the generalization of the construction given in [6] in the special case k = 2
(however, it is much more difficult to control the general case presented here).

We will need four definitions.

Definition 1. A multiset is said to be a k–set if each element occurs with mul-
tiplicity less than k.
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(So that a 2–set is a set whose elements are distinct, each occurring only once;
in this case we will also call the set “simple set”.)

Definition 2. If k ∈ N, k ≥ 2, m ∈ N, A and B are multisets whose elements
belong to Zm 1 (= the ring of the residue classes modulo m) and A+B represents
every element of Zm with multiplicity divisible by k, i.e., for all c ∈ Zm, the
number of solutions of

a+ b = c, a ∈ A, b ∈ B (3.1)

(the elements of A,B counted with their multiplicity) is divisible by k (includ-
ing the case when there are no solutions), then the sum A + B is said to have
property Pk.

Definition 3. If k, h, ,m ∈ N, k ≥ 2 and h,  ≤ m, then (h, ,m) is said to
be a k–admissible triple if there is no simple set A ⊂ Zm and k–set B with
elements from Zm such that |A| = h, |B| =  (multiple elements counted with
their multiplicity), and A + B possesses property Pk.

Definition 4. If k, h, ,m ∈ N, k ≥ 2 and h,  ≤ m, then (h, ,m) is said to
be a (k, k)–admissible triple if there are no k–sets A,B with elements from Zm
such that |A| = h, |B| =  (multiple elements counted with their multiplicity),
and A + B possesses property Pk.

Note that in the special case k = 2 property P2 is the property P introduced in
[6], while both 2–admissibility and (2,2)–admissibility are the admissibility used
there.

Theorem 2. Assume that k ∈ N, k ≥ 2, p is a prime number, χ is a (multi-
plicative) character modulo p of order k (so that k|(p − 1)), f(x) ∈ Fp[x] (Fp
being the field of the residue classes modulo p) has degree h(> 0), f(x) has no
multiple zero in F̄p (= the algebraic closure of Ep), and define the sequence
Ep = {e1, . . . , ep} on the k letter alphabet of the k–th (complex) roots of unity
by

en =

{
χ
(
f(n)

)
for

(
f(n), p

)
= 1

+1 for p | f(n).

Then

(i) we have
δ(Ep) < 11hp1/2 log p, (3.2)

(ii) if  ∈ N is such that the triple (r, t, p) is k–admissible for all 1 ≤ r ≤ h,
1 ≤ t ≤ (k − 1), then

γ�(Ep) < 10hkp1/2 log p. (3.3)

1 In classical notation this is Z/m Z and Zp stands for p–adic integers, but in this
paper they don’t occur and no confusion can happen.
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Proof of Theorem 2. The proof of both (i) and (ii) will be based on

Lemma 1. Assume that p is a prime number, χ is a non–principal character
modulo p of order k, f(x) ∈ Fp[x] has degree h and a factorization
f(x) = b(x− x1)r1 . . . (x− xs)rs (where xi = xj for i = j) in F̄p with

(k, r1, . . . , rs) = 1. (3.4)

Let X,Y be real numbers with 0 < Y ≤ p. Then∣∣∣∣∣∣
∑

x<n≤X+Y

χ
(
f(n)

)∣∣∣∣∣∣ < 9sp1/2 log p ≤ 9hp1/2 log p. (3.5)

Proof of Lemma 1. With h in the upper bound in (3.5), this is Theorem 2 in
[13] where we derived it from A. Weil’s theorem [17] (see also Lemma 1 and its
proof in [6]). To see that (3.5) also holds in the slightly sharper form with the
factor s in place of h, all we have to observe is that in the proof of Theorem 2
in [13], at a certain point (p. 374, line 6 from below) we bounded s by h from
above; skipping this step we obtain (3.5) in the sharper form. (We are indebted
to Igor Shparlinski for this observation.)

We will need Lemma 1 in the following slightly modified form:

Lemma 2. The assertion of Lemma 1 also holds if assumption (3.4) is replaced
by

(k, r1, . . . , rs) < k (3.6)

(i.e., there is an ri with k � ri).

Note that this lemma is sharper than Lemma 3 in [14] since now x1, . . . , xs ∈ Fp
is not assumed.

Proof of Lemma 2. Write δ = (k, r1, . . . , rs) so that

δ < k (3.7)

by (3.6), and define the character χ1 by χ1 = χδ; then by (3.7), χ1 is a non–
principal character. Write the polynomial ϕ(x) = b−1f(x) = (x − x1)r1 . . . (x −
xs)rs ∈ Fp[x] as the product of powers of distinct irreducible polynomials over
Fp: ϕ(x) =

(
π1(x)

)u1
. . .

(
πt(x)

)ut . Since irreducible polynomials cannot have
multiple zeros, and distinct irreducible polynomials are coprime and thus cannot
have a common zero, thus it follows that the exponents u1, . . . , ut are amongst
the exponents r1, . . . , rs whence, by the definition of δ, we have δ | (u1, . . . , ut).
Then writing ψ(x) =

(
π(x)

)u1/δ
. . .

(
π(x)

)ut/δ, clearly we have ψ(x) ∈ Fp[x] and

f(x) = bϕ(x) = b
(
ψ(x)

)δ
.
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It follows that∣∣∣∣∣∣
∑

X<n≤X+Y

χ
(
f(n)

)∣∣∣∣∣∣ = |χ(b)|

∣∣∣∣∣∣
∑

X<n≤X+Y

(
χ
(
ψ(n)

))δ∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
X<n≤X+Y

χ1

(
ψ(n)

)∣∣∣∣∣∣ .
(3.8)

To estimate this sum, we will apply Lemma 1. Indeed, χ1 is of order k/δ, and
clearly ψ(x) has the factorization ψ(x) = (x−x1)r1/δ . . . (x−xs)rs/δ in F̄p. Thus
replacing χ and f(x) in Lemma 1 by χ1 and ψ(x), condition (3.4) becomes

(
k

δ
,
r1
δ
, . . . ,

rs
δ

)
= 1

which holds trivially by the definition of δ. Thus, indeed, Lemma 1 can be applied
to estimate the last sum in (3.8), and applying it, we obtain the desired upper
bound.

(i) If a is a k–th root of unity, then writing

S(a,m) =
1
k

k∑
t=1

(
āχ(m)

)t
, (3.9)

clearly we have

S(a,m) =

{
1, if χ(m) = a

0, if χ(m) = a.
(3.10)

If a is a k–th roof of unity, u, v,M ∈ N and

1 ≤ u ≤ u+ (M − 1)v ≤ p, (3.11)

then we have

x(Ep, a,M, u, v) =
∑

0≤j≤M−1

eu+jv=a

1 (3.12)

where ∣∣∣∣∣∣∣∣∣∣
∑

0≤j≤M−1

eu+jv=a

1 −
∑

0≤j≤M−1

χ(f(u+jv))=a

1

∣∣∣∣∣∣∣∣∣∣
≤

∑
0≤j≤M−1

p|f(u+jv)

1. (3.13)
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By (3.9) and (3.10),∑
0≤j≤M−1

χ(f(u+jv))=a

1 =
M−1∑
j=0

S
(
a, f(u+ jv)

)
=
M−1∑
j=0

1
k

k∑
t=1

(
āχ

(
f(u+ jv)

))t

=
1
k

∑
0≤j≤M−1

(f(u+jv),p)=1

1 +
1
k

k−1∑
t=1

āt
M−1∑
j=0

χt
(
f(u+ jv)

)

=
M

k
− 1
k

∑
0≤j≤M−1

p|f(u+jv)

1 +
1
k

k−1∑
t=1

āt
M−1∑
j=0

χt
(
f(u+ jv)

)

whence∣∣∣∣∣∣∣∣∣∣
∑

0≤j≤M−1

χ(f(u+jv))=a

1 − M

k

∣∣∣∣∣∣∣∣∣∣
≤ 1
k

k−1∑
t=1

∣∣∣∣∣∣
M−1∑
j=0

χt
(
f(u+ jv)

)∣∣∣∣∣∣ +
1
k

∑
0≤j≤M−1

p|f(u+jv)

1. (3.14)

Writing g(x) = f(u+ xv), it follows from (3.12), (3.13) and (3.14) that∣∣∣∣x(Ep, a,M, u, v) − M

k

∣∣∣∣ ≤ 1
k

k−1∑
t=1

∣∣∣∣∣∣
M−1∑
j=0

χt
(
g(j)

)∣∣∣∣∣∣ + 2
∑

0≤j≤M−1

p|g(j)

1. (3.15)

The case M = 1 is trivial, thus we may assume that M > 1. Then by
v ≥ 1 and (3.11) we have 1 ≤ v < p so that (v, p) = 1. It follows that the
polynomials f(x), g(x) ∈ Fp[x] have the same degree, and since f(x) does
not have multiple zeros, g(x) does not have multiple zeros either. Moreover,
χ1 = χt is also a character modulo p, and for 1 ≤ t ≤ k− 1 the character χ1

is different from the principal character χ0. Thus by Lemma 1 we have∣∣∣∣∣∣
M−1∑
j=0

χt
(
g(j)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
M−1∑
j=0

χ1

(
g(j)

)∣∣∣∣∣∣ < 9hp1/2 log p for 1 ≤ t ≤ k − 1. (3.16)

Since f and g are of the same degree thus∑
0≤j≤M−1

p|g(j)

1 ≤
∑

0≤j<p

p|g(j)

1 ≤ h. (3.17)

It follows from (3.15), (3.16) and (3.17) that∣∣∣∣x(Ep, a,M, u, v) − M

k

∣∣∣∣ ≤ k − 1
k

· 9hp1/2 log p + 2h < 11hp1/2 log p

which completes the proof of (3.2).
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(ii) In order to prove (3.3), assume that  ∈ N,  ≤ N , b1, . . . , b� are k–th roots
of unity, w = (b1, . . . , b�), D = (d1, . . . , d�), 0 ≤ d1 < · · · < d�, M ∈ N and
M + d� ≤ N . Then

g(En, w,M,D) =
∣∣{n : 1 ≤ n ≤ M, (en+d1 , . . . , en+d�

) = w
}∣∣

=
∣∣{n : 1 ≤ n ≤ M, en+d1 = b1, . . . , en+d�

= b�
}∣∣. (3.18)

Here we have

en+d1 = χ
(
f(n+ d1)

)
, . . . , en+d�

= χ
(
f(n+ d�)

)
(3.19)

except for the values of n such that

f(n+ di) ≡ 0 (mod p) for some 1 ≤ i ≤ . (3.20)

For fixed i, this congruence may have at most h solutions, and i may assume
at most  values. Thus the total number of solutions of (3.20) is ≤ h. If n
is not a solution of (3.20), then (3.19) holds, so that by (3.10), for all these
n we have

�∏
i=1

S
(
bi, f(n+ di)

)
=

{
1 if en+d1 = b1, . . . , en+d�

= b�

0 otherwise.
(3.21)

For the exceptional values of n satisfying (3.20) (whose number is ≤ h)
again by (3.10) we have

�∏
i=1

S
(
bi, f(n+ di)

)
= 0 or 1. (3.22)

It follows from (3.18), (3.21) and (3.22) that∣∣∣∣∣g(EN , w,M,D) −
M∑
n=1

�∏
i=1

S
(
bi, f(n + di)

)∣∣∣∣∣ ≤ h (3.23)

where we have

M∑
n=1

�∏
i=1

S
(
bi, f(n+ di)

)
=

M∑
n=1

�∏
i=1

1
k

k∑
ti=1

(
b̄iχ

(
f(n+ di)

)ti
=

1
k�

k∑
t1=1

· · ·
k∑
t�=1

bt11 . . . bt��

M∑
n=1

χ
((
f(n+ d1)t1 . . .

(
f(n+ d�)

)t�)
=
M

k�
+

1
k�

∑
· · ·

∑
0≤t1,...,t�≤k−1

(t1,...,t�) �=(0,...,0)

bt11 . . . bt��

M∑
n=1

χ
((
f(n + d1)

)t1
. . .

(
f(n+ d�)

)t�).
(3.24)
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It follows from (3.23) and (3.24) that∣∣∣∣g(EN , w,M,D) − M

k�

∣∣∣∣
≤ 1
k�

∑
· · ·

∑
0≤t1,...,t�≤k−1

(t1,...,t�) �=(0,...,0)

∣∣∣∣∣
M∑
n=1

χ
((
f(n+ d1)

)t1
. . .

(
f(n+ d�)

)t�)∣∣∣∣∣ + h. (3.25)

Write f(x) = Bf1(x) where B ∈ Zp and f1(x) ∈ Zp[x] is a unitary polyno-
mial, and set G(x) = f1(x + d1)t1 . . . f1(x + d�)t� . Then the innermost sum
in (3.25) can be rewritten in the following way:∣∣∣∣∣

M∑
n=1

χ
((
f(n+ d1)

)t1
. . .

(
f(n+ d�)

)t�)∣∣∣∣∣
=

∣∣χ(Bt1+···+t�)
∣∣ ∣∣∣∣∣
M∑
n=1

χ
(
G(n)

)∣∣∣∣∣ ≤
∣∣∣∣∣
M∑
n=1

χ
(
G(n)

)∣∣∣∣∣ . (3.26)

It suffices to show:

Lemma 3. If k, f, h,  are defined as in Theorem 2, then G(x) has at least
one zero (in F̄p) whose multiplicity is not divisible by k.

Indeed, assuming that Lemma 3 has been proved, the proof of (3.3) can be
completed in the following way: by Lemma 3, we may apply Lemma 2 with
G(x) in place of f(x) (since then (3.6) holds by Lemma 3). The degree of
G(x) is clearly

ht1 + · · · + ht� ≤ h(k − 1) < hk,

thus applying Lemma 2 we obtain∣∣∣∣∣
M∑
n=1

χ
(
G(n)

)∣∣∣∣∣ < 9hkp1/2 log p.

Each of the innermost sums in (3.25) can be estimated in this way. Thus it
follows from (3.25) that∣∣∣∣g(EN , w, M, D) − M

k�

∣∣∣∣ ≤ 1

k�

∑
· · ·

∑
0≤t1,...,t�≤k−1

(t1,...,t�) �=(0,...,0)

9�hkp1/2 log p + h� < 10�hkp1/2 log p

for all w,M,D which proves (3.3). Thus it remains to prove the lemma:

Proof of Lemma 3: We will say that the polynomials ϕ(x), ψ(x) ∈ Fp[x]
are equivalent: ϕ ∼ ψ if there is an a ∈ Fp such that ψ(x) = ϕ(x + a).
Clearly, this is an equivalence relation.
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Write f1(x) as the product of irreducible polynomials over Fp. It follows
from our assumption on f(x) that these irreducible factors are distinct. Let
us group these factors so that in each group the equivalent irreducible factors
are collected. Consider a typical group ϕ(x + a1), . . . , ϕ(x+ ar).

Then writing G(x) as the product of irreducible polynomials over Fp, all
the polynomials ϕ(x+ ai + dj) with 1 ≤ i ≤ r, 1 ≤ j ≤  occur amongst the
factors, and for fixed i, j such a factor occurs tj times. All these polynomials
are equivalent, and no other irreducible factor belonging to this equivalence
class will occur amongst the irreducible factors of G(x).

Since irreducible polynomials have no multiple zeros and distinct irre-
ducible polynomials cannot have a common zero, the conclusion of Lemma 3
fails, i.e., the multiplicity of each of the zeros of G(x) is divisible by k, if and
only if in each group, formed by equivalent irreducible factors ϕ(x+ai+dj) of
G(x) each taken tj times, every polynomial of form ϕ(x+ c) with c ∈ Fp oc-
curs with multiplicity divisible by k, i.e., the number of representation of c in
the form ai+dj, counting this representation with multiplicity tj , is divisible
by k. In other words, if we write A = {a1, . . . , ar} and B denotes the k–set
whose elements are d1, . . . , d�, each dj taken with multiplicity tj ≤ k − 1,
for each group A + B must possess property Pk. Now consider any of these
groups (by deg f > 0 there is at least one such group). Since A+B possesses
property Pk, (|A|, |B|, p) is not a k–admissible triple. Here we clearly have

|A| = r ≤ deg f1 = deg f = h

and

|B| =
�∑
j=1

tj ≤ (k − 1)

which contradicts our assumption on . Thus the conclusion of Lemma 3
cannot fail, and this completes the proof.

4 The Necessity of the k–Admissibility

Upper bound (3.3) in Theorem 2 is proved assuming certain k–admissibility.
(The study of k–admissibility is a difficult problem to which we return in the next
sections). Thus Theorem 2 could be applied more easily without this assumption,
so that one might like to know whether this assumption is really necessary, or
it can be dropped? Next we will show that, subject to certain mild conditions
on the parameters involved, any negative example with a sum A + B (A simple
set, B k–set) having property Pk induces a construction of the type described in
Theorem 2 with the property that conclusion (3.3) fails, i.e., certain correlation
is large. (Sums A + B of this type will be constructed later in Section 6.)

Assume that k ∈ N, k ≥ 2, p is a prime, A = {a1, . . . , ar} ⊂ {0, 1, . . . , p− 1},
B is a k–set with elements from {0, 1, . . . , p− 1}, |A| = r < p, |B| = t < p, the
distinct elements of B are d1, . . . , d�, their multiplicities are t1, . . . , t� (1 ≤ ti ≤
k−1), and A+B has property Pk. Set f(n) = (n+a1) . . . (n+ar), and define the
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sequence Ep = {e1, . . . , ep} in the same way as in Theorem 2. Set M = p− d�.
We claim that assuming also

p → ∞,

M = p− d� % p (4.1)

and
r = o(p), (4.2)

γ� cannot be “small”:
|γ�(Ep)| = o

( p

k�

)
. (4.3)

Consider the sum

SM =
M∑
n=1

et1n+d1
. . . et�n+d�

.

Here we have

e
tj
n+dj

=
(
χ
(
f(n+ dj)

))tj = χ

(
r∏
i=1

(n+ ai + dj)tj
)

except for n, j such that

n+ ai + dj ≡ 0(mod p) for some 1 ≤ i ≤ r. (4.4)

If n is such that there are no i (with 1 ≤ i ≤ r), j satisfying (4.4), then we
have

et1n+d1
. . . et�n+d�

= χ

 �∏
j=1

r∏
i=1

(n + ai + dj)tj

 = χ

( ∏
c∈A+B

(n + c)

)
. (4.5)

Here every c ∈ A+ B is counted as many times as the number of solutions of

a+ d = c, a ∈ A, d ∈ B

where the d’s are counted with their multiplicity; for fixed c ∈ Zp, denote the
number of solutions of this equation by ϕ(c) (for c /∈ A + B we set ϕ(c) = 0).
Then (4.5) can be rewritten as

et1n+d1
. . . et�n+d�

=
∏
c∈Zp

f(c) �=0

(
χ(n+ c)

)ϕ(c)
.

Since A+ B possesses property Pk, k | ϕ(c) for all c ∈ Zp, and we assumed that
n+ c = 0 if ϕ(c) = 0. Since χ is a character of order k, it follows that

et1n+d1
. . . et�n+d�

=
∏
c∈Zp

ϕ(c) �=0

(
χk(n+ c)

)ϕ(c)/k =
∏
c∈Zp

ϕ(c) �=0

1 = 1
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for every n for which (4.4) has no solution in i, j. In (4.4) the pair (i, j) can be
chosen in r ways, and (i, j) determine n uniquely. Thus we have

|SM −M | < r. (4.6)

On the other hand, assume that contrary to (4.3), we have

|γ�(Ep)| = o
( p

k�

)
so that, denoting the set of the k–th roots of unity by A, for every –tuple
w = (ε1, . . . , ε�) ∈ A� we have

g(Ep, w,M,D) =
M

k�
+ o

( p

k�

)
.

It follows that

SM =
∑

(ε1,...,ε�)∈A�

g
(
Ep, (ε1, . . . , ε�),M, (d1, . . . , d�)

)
εt11 . . . εt��

=
M

k�

∑
(ε1,...,ε�)∈A�

εt11 . . . εt�� + o

 p

k�

∑
(ε1,...,ε�)∈A�

1

 .

By 1 ≤ ti ≤ k − 1, the first sum is 0. Thus we have

SM = o(p)

which contradicts (4.1), (4.2) and (4.6), and this completes the proof of our
claim.

5 Concluding Remarks

We have just shown that the assumption on the k–admissibility in Theorem 2
cannot be dropped. Thus in order to be able to use the construction in Theorem
2, we need criteria for a triple (r, t, p) to be k–admissible. We will present suffi-
cient criteria of this type in Part II. The complexity of the family that we have
constructed will be also studied there. Finally we estimate the cardinality of a
smallest family achieving a prescribed f–complexity by extending the result of
[4] from binary to k–ary alphabets. Somewhat surprisingly we also improve the
earlier results by establishing a uniformity property.
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Large Families of Pseudorandom Sequences of k

Symbols and Their Complexity – Part II

R. Ahlswede, C. Mauduit, and A. Sárközy

Dedicated to the memory of Levon Khachatrian

1 Introduction

We continue the investigation of Part I, keep its terminology, and also
continue the numbering of sections, equations, theorems etc.
Consequently we start here with Section 6. As mentioned in Section 4 we present
now criteria for a triple (r, t, p) to be k–admissible. Then we consider the f–
complexity (extended now to k–ary alphabets) Γk(F) of a family F . It serves
again as a performance parameter of key spaces in cryptography. We give a lower
bound for the f–complexity for a family of the type constructed in Part I. In the
last sections we explain what can be said about the theoretically best families
F with respect to their f–complexity Γk(F). We begin with straightforward
extensions of the results of [4] for k = 2 to general k by using the same Covering
Lemma as in [1].

But then we give an improvement (also of the earlier results) with respect to
balancedness with the help of another old Covering Lemma from [1]. Finally this
will again be improved by a more recent result on edge–coverings of hypergraphs
from [2]. This has become a basic tool in Information Theory, for instance in
the Theory of Identification. In the present context it gives families with a very
strong balancedness property. A quantum theoretical analogue became a key tool
for quantum channels [3]. It invites to investigate our cryptographical concepts
in the quantum world.

2 Sufficient Criteria for k–Admissibility

We have shown in Part I that the assumption on the k–admissibility in Theorem
2 cannot be dropped. Thus in order to be able to use the construction in Theorem
2, we need criteria for a triple (r, t, p) to be k–admissible. We will prove three
sufficient criteria of this type:

Theorem 3

(i) If k, r, t ∈ N, 1 ≤ t ≤ k, p is a prime and r < p, then the triple (r, t, p) is
k–admissible.

(ii) If k, r, t ∈ N, p is a prime and

(4t)r < p, (7.1)

then (r, t, p) is k–admissible.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 308–325, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(iii) If k ∈ N, k ≥ 2, the prime factorization of k is k = qα1
1 . . . qαs

s (where
q1, . . . , qs are distinct primes and α1, . . . , αs ∈ N), and p is a prime such
that each of q1, . . . , qs is a primitive root modulo p, then for every pair
r, t ∈ N with r, t < p, the triple (r, t, p) is k–admissible.

Note that in the special case k = 2 this theorem gives Theorem 2 in [6].

Proof

(i) Assume that contrary to the assertion, there are k, r, t ∈ N and a prime p
so that

1 ≤ t ≤ k, (7.2)

r < p, (7.3)

and the triple (r, t, p) is not k–admissible, i.e., there is an A ⊂ Zp and a
k–set B whose elements belong to Zp such that |A| = r, |B| = t (multiple
elements counted with their multiplicity) and the number of solutions of
(3.1) is divisible by k for all c ∈ Z.

Consider any c ∈ A + B (A,B are non–empty, thus A + B is also non–
empty). Since for this c (3.1) has at least one solution and the number of
solutions is always divisible by k, thus (3.1) must have at least k solutions.
On the other hand, clearly (3.1) may have at most |B| = t solutions so that
we must have

|B| = t ≥ k. (7.4)

It follows from (7.2) and (7.4) that

|B| = t = k. (7.5)

Since B is a k–set, the multiplicity of each element is ≤ k − 1. Thus it
follows from (7.5) that B must have at least two distinct elements: say,
bo, bo + d ∈ B, d = 0. Every element of A + bo must have (at least) k
representations in the form (3.1) whence, by (7.5), it follows easily that
they also have a representation in the form (a+ bo+ d) with a ∈ A whence
A+ bo = A+ bo+ rd for all r ∈ N, thus A+ bo = A+ bo+ s for any s ∈ Zp,
in particular for any s ∈ A + bo. Hence, A + bo is an additive subgroup of
Zp thus A = A + bo = Zp which contradicts |A| = r and (7.3).

(ii) The proof is nearly the same as the proof of Theorem 2, (ii) in [6]. Thus we
will omit most of the details here, we will present only those critical steps
where a slight modification is needed.

Assume that r, t, p satisfy (7.1), A ⊂ Zp, B is a k–set whose elements
belong to Zp, |A| = r and |B| = t (multiple elements counted with their
multiplicity). It suffices to show that then there is a c ∈ Zp for which the
number of solutions of (3.1) (the b’s counted with multiplicity) is greater
than 0 and less than k. To show this, it suffices to prove that there are
m ∈ N, c′ ∈ Zp such that (m, p) = 1, and the number of solutions of

ma+mb = c′, a ∈ A, b ∈ B (7.6)
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is greater than 0 and less than k. Again, the proof of this is based on
Lemma 3 in [6]. We start out from this lemma, and we proceed in the same
way as in [6]. In particular, we define m, bi, bj , r1, rk, an, av in the same way.
Then again, the numbers

mbi + rk = mbj +mav

and
mbj + r1 = mbj +mau

do not have any further representations in form (7.6). Since B is a k–set,
the multiplicity of both bi and bj is less than k. Thus these numbers have
more than 0 and less than k representations in form (7.6) (counting the b’s
with multiplicity) which completes the proof.

(iii) From a practical point of view this seems to be the most important of the
three criteria. Namely, this criterion enables us to control even correlations
of very high order provided that there are “many” primes p such that each
of q1, . . . , qs is a primitive root modulo p. Partly because of the impor-
tance of this criterion, partly in order to help to understand the notion of
k–admissibility and the related difficulties better, we will give a detailed
discussion of this case in the next section. This discussion will lead not only
to the proof of criterion (iii), but it will also provide negative examples. We
will also show that, most probably, there are “many” primes p of the type
described in (iii).

3 k–Good Primes: Negative Examples

Definition 5. A number m ∈ N is said to be k–good if for any pair r, t ∈ N with
r < m, t < m, the triple (r, t,m) is k–admissible. If for all r < m, t < m the
triple (r, t,m) is (k, k)–admissible, then m is said to be (k, k)–good.

Theorem 4. If k ∈ N, k ≥ 2, the prime factorization of k is k = qα1
1 . . . qαs

s

(where q1, . . . , qs are distinct primes and α1, . . . , αs ∈ N) and p is an odd prime
such that each of q1, . . . , qs is a primitive root modulo p, then p is k–good.

Proof of Theorem 4. We will need the following lemma:

Lemma 4. If p is an odd prime and q is a prime which is a primitive root
modulo p, then the polynomial xp−1 + xp−2 + · · ·+ x+ 1 is irreducible over Fq.

Proof of Lemma 4. This is a trivial consequence of Theorem 2.47 in [11, p. 62].
We will prove the assertion of Theorem 4 by contradiction: assume that con-

trary to the statement of the theorem, there is a set A ⊂ Zp and a k–set B whose
elements belong to Zp so that

|A| = r < p, |B| = t < p (8.1)

and the sum A + B has property Pk.
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If C is a multiset whose elements belong to Zp, then let QC(x) denote the
polynomial

∑
c∈C

xs(c) where s(c) denotes the least non–negative element of the

residue class c modulo p, and the elements c of C are to be taken with their
multiplicity (so that if c occurs with multiplicity M in C, then there is a term
Mxs(c) appearing in QC(x)). Clearly we have (xp − 1) | xuQC(x) −QC+u(x) (in
Z[x]), if C is a multiset of elements of Zp and u ∈ Zp. It follows that (xp − 1) |(
QA(x)QB(x) −QA+B(x)

)
:

QA(x)QB(x) = QA+B(x) + (xp − 1)G(x) with G(x) ∈ Z[x]. (8.2)

Write QB(x) =
p−1∑
j=0

vjx
j so that the vj ’s are the multiplicities of the elements

j ∈ Zp in B. It follows that 0 ≤ vj ≤ k − 1 for all 0 ≤ j ≤ p− 1, and since

|B| =
p−1∑
j=0

vj > 0,

we have
(v0, v1, . . . , vp−1) ≤ k − 1.

It follows that there is an i with 1 ≤ i ≤ s, qαi

i � (v0, v1, . . . , vp−1). Write

qβi ‖(v0, v1, . . . , vp−1) (8.3)

so that
0 ≤ β < αi. (8.4)

Then every coefficient of QB(x) is divisible by qβi . Since A + B has property
Pk, the coefficients of QA+B(x) are divisible by k and thus also by qβi . Thus
by (8.2), every coefficient of (xp − 1)G(x) must be also divisible by qβi . Since
the polynomial xp − 1 is primitive (a polynomial ∈ Z[x] is said to be primitive
if the greatest common divisor of its coefficients is 1), and by Gauss’ lemma
the product of primitive polynomials is also primitive, thus it follows that the
coefficients of G(x) are also divisible by qβi . Thus we may simplify (8.2) so that
we divide the coefficients of QB(x), QA+B(x) and G(x) by qβi :

QA(x)

(
1

qβi
QB(x)

)
=

(
1

qβi
QA+B(x)

)
+ (xp − 1)

(
1

qβi
G(x)

)
. (8.5)

Since this equation holds over Z, it also holds over Zqi , i.e., in other words,
we may consider (8.5) modulo qi. The coefficients of QA+B(x) are divisible by
qαi

i , thus by (8.4), the polynomial 1

qβ
i

QA+B(x) is the zero polynomial. Since

(xp−1 + xp−2 + · · · + 1) | (xp − 1), thus it follows from (8.5) that

(xp−1 + xp−2 + · · · + 1) | QA(x)

(
1

qβi
QB(x)

)
.
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By Lemma 4 the polynomial xp−1 + xp−2 + · · · + 1 is irreducible over Fqi .
Thus it follows that either

(xp−1 + xp−2 + · · · + 1) | QA(x) (8.6)

or

(xp−1 + xp−2 + · · · + 1) |
(

1

qβi
QB(x)

)
; (8.7)

note that by (8.3), the polynomial 1

qβ
i

QB(x) is not the 0 polynomial. Since by the

definitions of QA(x) and QB(x) these polynomials are of degree at most p − 1,
it would follow from (8.6) and (8.7) that QA(x), resp. QB(x), is a (non–zero)
constant multiple of xp−1 + xp−2 + · · · + 1, whence |A| ≥ p, resp. |B| ≥ p. This
contradicts (8.1) which completes the proof of Theorem 4.

In Section 4 we mentioned that there are negative examples with sums A+B
having property Pk, i.e., examples for primes p which are not k–good. Now we
will present examples of this type.

First we recall that in the special case k = 2 in [6] we proved that a prime p is
2–good if and only if 2 is a primitive root modulo p. There we presented several
examples for sums A+ B possessing property P2 (so that for the corresponding
primes p, 2 is not a primitive root modulo p). Some of these examples follow:

Example 1. If p = 7, A = {0, 1, 3} and B = {0, 1, 2, 4}, then A + B possesses
property P2 so that the triples (3, 4, 7) and (4, 3, 7) are not 2–admissible.

Example 2. If p = 17, A = {0, 3, 4, 5, 8} and B = {0, 3, 4, 5, 6, 9}, then A + B
has property P2 so that (5, 6, 17) and (6, 5, 17) are not 2–admissible.

Example 3. If p = 31, A = {0, 2, 5} and B = {0, 2, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17,
20, 21, 23, 26}, then A + B has property P2, thus (3, 16, 31) and (16, 3, 31) are
not 2–admissible.

One might like to present similar negative examples for other k (and p) values
as well. To find examples of this type, one has to consider the proof of Theorem
4. We obtain that for fixed k and p, we have to look for non–trivial factorization
of xp − 1 over Zk of the form

xp − 1 = Q1(x)Q2(x) (8.8)

with
Q1(x) =

∑
a∈A

xa and Q2(x) =
∑
d∈D

tdx
d.

(Here “non–trivial” means that both Q1(x) and Q2(x) have at least 2 terms.)
If we find a factorization of this form, then defining B so that it contains the

elements d ∈ D each with multiplicity td, the sum A + B possesses property
Pk so that the triple (|A|, |B|, p) is not k–admissible. The difficulty is that not
only we have to find a non–trivial factorization of form (8.8), but also there
is the additional restriction that all the coefficients of Q1(x) must be 0 or 1.
This is the reason for that if k is a prime, then for k > 2 we can give only a
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sufficient condition for p being k–good. On the other hand, combining the proof
of Theorem 4 and the argument above, we can prove that if k is a prime then a
prime p is (k, k)–good if and only if k is a primitive root modulo p. (In [6] we
proved this in the special case k = 2.)

Example 4. If p = 13, then we have

x13 − 1 = (1 + x+ x4 + x6)(2 + x+ 2x2 + x3 + 2x5 + x7)

over Z3. It follows that, writing A = {0, 1, 4, 6}, B = {0, 0, 1, 2, 2, 3, 5, 5, 7}, the
sum A+B possesses property P3, so that (4, 9, 13) is not 3–admissible, and thus
p = 13 is not 3–good.

If we have a negative example for a certain k ∈ N and prime p, and k | k′,
then one can use this example to construct negative examples for k′ and p. E.g.,
starting out from Example 3, we obtain the following negative example for k = 6
and p = 31:

Example 5. If p = 31, A = {0, 2, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17, 20, 21, 23, 26} and
B = {0, 0, 0, 2, 2, 2, 5, 5, 5}, then A + B has property P6, thus (16, 9, 31) is not
6–admissible.

Finally, we will study the following question: is it true that for any k ∈ N, k ≥ 2
there are infinitely many k–good primes? Based on Theorem 4 and considering
the work related to Artin’s conjecture [8], [9] one would expect that the answer is
affirmative, however, this is certainly beyond reach at the moment. On the other
hand, we can prove that the affirmative answer would follow from Schinzel’s
Hypothesis H [15], [16] (see also [7, p. 21]) which generalizes the twin prime
conjecture:

Hypothesis H. If k ∈ N, F1, . . . , Fk are distinct irreducible polynomials in Z[x]
(with positive leading coefficients) and the product polynomial F = F1 . . . Fk has
no fixed prime divisor, then there exist infinitely many integers n such that each
Fi(n) (i = 1, . . . , k) is a prime.

Theorem 5. If Hypothesis H is true, then for any primes q1 < · · · < qs there are
infinitely many primes p so that each of q1, . . . , qs is a primitive root modulo p.

Proof of Theorem 5. Let r1, . . . , rt be the odd primes amongst q1, . . . , qs (i.e.,
{r1, . . . , rt} = {q1, . . . , qs} � {2}). For i = 1, . . . , t, let ui denote an arbitrary
quadratic non–residue modulo ri. Consider the linear congruence system

4x+ 1 ≡ u1 (mod r1)
...

4x+ 1 ≡ ut (mod rt).

Clearly, each of these linear congruences can be solved, and the moduli are
coprime, thus this system has a unique solution modulo r1 . . . rt. Let po be a
positive element of this residue class so that

4po + 1 ≡ ui (mod ri) (for i = 1, . . . , t). (8.9)
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Write

F1(n) = po + nr1 . . . rt

and
F2(n) = 4F1(n) + 1 = (4po + 1) + 4nr1 . . . rt.

We will show that F = F1F2 has no fixed prime divisor. F2(n) is always odd
and r1 . . . rt is odd, thus F1(n) is odd infinitely often, whence F1(n)F2(n) is also
odd infinitely often. For i = 1, 2, . . . , t, the number ui is a quadratic non–residue
modulo ri, thus ui cannot be congruent to 0 or 1 modulo ri. By (8.9), it follows
that

4F1(n) ≡ 4po ≡ ui − 1 ≡ 0 (mod ri)
and

F2(n) ≡ 4po + 1 ≡ ui ≡ 0 (mod ri)

so that
(
ri, F1(n)F2(n)

)
= 1 for all i. Finally, if v is a prime different from each

of 2, r1, . . . , rt, then
F1(n)F2(n) ≡ 0 (mod v) (8.10)

is a quadratic congruence which has at most 2 solutions modulo v. Since v > 2,
there is at least one residue class modulo v which does not satisfy (8.10), so for
all n from this residue class v � F1(n)F2(n).

Thus, indeed, F1F2 has no fixed prime divisor, the polynomials F1, F2 ∈ Z[x]
are linear and thus irreducible in Z[x], and their leading coefficients are positive,
so that all the conditions in Hypothesis H hold. Since now this hypothesis is
assumed to be true, there are infinitely many n ∈ N so that both

z = F1(n) = po + nr1 . . . rt (8.11)

and
p = F2(n) = 4z + 1 = (4po + 1) + 4nr1 . . . rt (8.12)

are primes. We will show that for such an n large enough, each of 2, r1, . . . , rt is
a primitive root modulo p = p(n).

Since p − 1 = 4z and z is a prime, all the positive divisors of p − 1 are
1, 2, 4, z, 2z and 4z. Thus if (g, p) = 1 and g is not a primitive root modulo p,
then we must have either

g4 ≡ 1 (mod p) (8.13)

or
g

p−1
2 ≡ 1 (mod p). (8.14)

Since now p is assumed to be large, (8.13) does not hold for g = 2, r1, . . . , rt.
Thus if one of these numbers is not a primitive root modulo p, then it must
satisfy (8.14) whence, by Euler’s lemma,(

g

p

)
= +1
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(where
(
g
p

)
denotes the Legendre symbol). Thus it suffices to show that(

g

p

)
= −1 for g = 2, r1, . . . , rt. (8.15)

By (8.12) we have p = 4z + 1 where z is an odd prime, and thus p is of form
8k+ 5, whence (8.15) follows if g = 2. If g = ri, 1 ≤ i ≤ t, then by the quadratic
reciprocity law we have (

ri
p

)
= (−1)

ri−1
2 · p−1

2

(
p

ri

)
. (8.16)

By (8.12), p−1
2 = 2z is even and thus

(−1)
ri−1

2 · p−1
2 = +1. (8.17)

Moreover, by (8.9) and (8.12) we have

p ≡ 4p0 + 1 ≡ ui (mod ri)

whence, by the definition of ui,(
p

ri

)
=
(
ui
ri

)
= −1. (8.18)

(8.15) with ri in place of g follows from (8.16), (8.17) and (8.18), and this
completes the proof of Theorem 5.

4 Extension of the Notion of f–Complexity and a
Construction with High f–Complexity

In [4] we introduced the notion of f–complexity (“f” for family) of families of
binary sequences. This notion can be generalized easily to families on k symbols:

Definition 6. If A is a set of k symbols, N, t ∈ N, t < N , (ε1, . . . , εt) ∈ At,
i1, . . . , it are positive integers with 1 ≤ i1 < · · · < it ≤ N , and we consider
sequences EN = (e1, . . . , eN) ∈ AN with

ei1 = ε1, . . . , eit = εt, (9.1)

then (ei1 , . . . , eit ; ε1, . . . , εt) is said to be a specification of EN of length t or a
t–specification of EN .

Definition 7. The f–complexity of a family F of sequences EN ∈ AN on k
symbols is defined as the greatest integer t so that for any t–specification (9.1)
there is at least one EN ∈ F which satisfies it. The f–complexity of F is denoted
by Γk(F). (If there is no t ∈ N with the property above, we set Γk(F) = 0.)
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Note that the special case k = 2 of this definition is the notion of f–complexity
of families of binary sequences introduced in [4].

One might like to show that the family constructed in Theorem 2, or at least
a slightly modified version of it, is also of high f–complexity. Unfortunately, we
have been able to prove only a partial result in this direction: we can handle only
the case when k, the size of the alphabet, is a prime number (this, of course,
includes the binary case). We will explain the difficulties arising in the case of
composite k later. We hope to return to this case in a subsequent paper, and
there we will present other constructions where the f–complexity can be handled
also for composite k.

Theorem 6. Assume that k, p are prime numbers, χ is a (multiplicative) char-
acter modulo p of order k (so that k | p − 1), H ∈ N, H < p. Consider all the
polynomials f(x) ∈ Fp[x] with the properties that

0 < deg f(x) ≤ H (9.2)

and
in F̄p the multiplicity of each zero of f(x) is less than k. (9.3)

For each of these polynomials f(x), consider the sequence Ep = Ep(f) =
(e1, . . . , ep) of k–th roots of unity defined as in Theorem 2:

en =

{
χ
(
f(n)

)
for

(
f(n), p

)
= 1

+1 for p | f(n).

Then we have
δ(Ep) < 11Hp1/2 log p. (9.4)

Moreover, if  ∈ N and

(i) either
(4H)� < p (9.5)

(ii) or k is a primitive root modulo p and  < p,

then also
γ�(Ep) < 10Hkp1/2 log p (9.6)

holds. Finally, we have
Γk(F) ≥ H. (9.7)

Proof of Theorem 6. The proof is a combination and extension of Theorem 1
in [4] and Theorem 2 above, thus we will leave some details to the reader.

In order to prove (9.4), we argue in the same way as in the proof of (3.2) in
the proof of Theorem 2. Again we set g(x) = f(u+ xv) and χ1 = χt with

1 ≤ t ≤ k − 1. (9.8)
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Then by (9.3) the multiplicity of the zeros of g(x) is less than k, and since
the order of χ is k and k is now a prime number, it follows from (9.8) that the
character χ1 is also of order k. Thus by Lemma 2, again (3.16) holds with H in
place of h, and then we may complete the proof of (9.4) in the same way as the
proof of (3.2) was completed.

Similarly, in order to prove (9.6), we argue as in the proof of (3.3) in the proof
of Theorem 2. We define B, f1(x) and G(x) as there: f(x) = Bf1(x), f1(x) is
unitary,

G(x) = f1(x + d1)t1 . . . f1(x + d�)t� (9.9)

with
0 ≤ t1, . . . , t� ≤ k − 1, (t1, . . . , t�) = (0, . . . , 0), (9.10)

and again we get that (3.25) and (3.26) hold, and it suffices to show that the
analogue of Lemma 3 holds.

Lemma 5. If k, f,H,  are defined as in Theorem 6, then G(x) has at least one
zero (in F̄p) whose multiplicity is not divisible by k.

Indeed, assuming that Lemma 5 holds, the proof of (9.6) can be completed in
the same way (with H in place of h) as the proof of (3.3) using Lemma 3. Thus
it remains to prove Lemma 5.

Proof of Lemma 5. We argue as in the proof of Lemma 3, i.e., we consider
the same equivalence relation as there, then we write f1(x) as the product of
irreducible polynomials over Fp, and finally we group these factors so that in
each group the equivalent irreducible factors are collected. However, there is a
crucial difference with Lemma 3: while in Theorem 2 we assumed that f(x) has
no multiple zero, now this condition is relaxed to the weaker condition (9.3).
It follows that now the irreducible factors may have an exponent not exceeding
k − 1. So now a typical group of equivalent irreducible factors looks like ϕ(x +
a1)s1 , . . . , ϕ(x+ ar)sr where

1 ≤ s1, . . . , sr ≤ k − 1. (9.11)

Then writing G(x) in (9.9) as the product of irreducible polynomials over Fp,
all the polynomials ϕ(x + ai + dj) with 1 ≤ i ≤ r, 1 ≤ j ≤  occur amongst the
factors, and for fixed i, j such a factor occurs with exponent exactly sitj . Since
now k is a prime, thus it follows from (9.10) and (9.11) that

if sitj > 0 then k � sitj . (9.12)

The conclusion of Lemma 5 fails, i.e., the multiplicity of each of the zeros of
G(x) is divisible by k if and only if each of the factors ϕ(x + ai + dj) occurs
with an exponent divisible by k. This is so if and only if the following holds: if A
denotes the k–set whose elements are a1, . . . , ar, each ai taken with multiplicity
si, and B denotes the k–set whose elements are d1, . . . , d�, each dj taken with
multiplicity tj , then A+B possesses property Pk. Take any of the groups formed
by the equivalent irreducible factors (by (9.2) there is at least one such group),
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and consider the corresponding sum A + B with property Pk. Then (|A|, |B|, p)
is not a (k, k)–admissible triple, and here we have

|A| =
r∑
i=1

si ≤
r∑
i=1

(k − 1) = r(k − 1) ≤ (deg f1)(k − 1) ≤ H(k − 1)

and

|B| =
�∑
j=1

tj ≤ (k − 1).

It remains to show that assuming either (i) or (ii) (in Theorem 6), this is
impossible.

(Observe that now we are studying (k, k)–admissibility instead of the k–
admissibility occurring in the proof of Theorem 2; this is the price paid for
relaxing the condition on the zeros of the polynomial f(x) which is necessary
for controlling the f–complexity. It is much more difficult to control (k, k)–
admissibility than k–admissibility, since if we study (k, k)–admissibility then the
set A in the sums A + B considered also can be a multiset, thus we have more
flexibility in constructing negative examples. Indeed, when k is composite, and
both A and B can be k–sets, then it is easy to give negative examples of the
type described in Example 5; this is why we cannot control the f–complexity
for composite k.)

Assume first that (i) holds. Let Ā and B̄ denote the set of the distinct elements
of A, resp. B: Ā = {a1, . . . , ar}, B̄ = {d1, . . . , d�}. Then by (9.2) and (9.5) we
have

(4r)� ≤ (4 deg f1)� = (4 deg f)� ≤ (4H)� < p

so that (9.1) in Theorem 3, (ii) holds with r and  in place of t, resp. r. Thus
the argument in the proof of Theorem 3, (ii) can be used with k = 2, and then
we obtain that there is a c ∈ Zp which has a unique representation in the form

dj + ai = c, dj ∈ B̄, ai ∈ Ā.

It follows that, considering also multiplicities,

ai + dj = c, ai ∈ A, d� ∈ B

has exactly sitj( > 0) solutions. By (9.12), this contradicts the assumption that
A + B has property Pk which completes the proof in this case.

Assume now that (ii) holds. Then we use the notations of the proof of The-

orem 4, so that, by (9.11), QA(x) =
r∑
i=1

six
s(ai) ∈ Fk[x], by (9.10) QB(x) =

�∑
j=1

tjx
s(dj) ∈ Fk[x], and, since A + B possesses property Pk, QA+B(x) = 0 in

Fk[x]. Again, (8.2) holds, whence it follows that xp−1 + xp−2 + · · · + x + 1 di-
vides QA(x)QB(x). Since it is now assumed that k is a primitive root modulo p,
thus by Lemma 4 the polynomial xp−1 + xp−2 + · · · + x + 1 is irreducible over
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Fk. It follows that xp−1 + xp−2 + · · · + x+ 1 divides either QA(x) or QB(x), so
that either QA(x) or QB(x) is a constant multiple of this polynomial, but this
is impossible by r ≤ deg f ≤ H < p and  < p, and this completes the proof of
(9.6). It remains to prove (9.7).

As in [4], we use

Lemma 6. If T is a field and g(x) ∈ T [x] is a non–zero polynomial, then it can
be written in the form

g(x) =
(
h(x)

)k
g∗(x) (9.13)

where the multiplicity of each zero of g∗(x) (in F̄p) is less than k.

Proof of Lemma 6. The special case k = 2 of this lemma was stated and
proved in [4] as Lemma 1, and the general case presented here can be proved in
the same way, thus we leave the details to the reader.

To prove (9.7), we have to show that for any specification of length H :

ei1 = ε1, . . . , eiH = εH (i1 < · · · < iH), (9.14)

there is a polynomial f(x) ∈ Fp[x] which satisfies (9.2) and (9.3) so that Ep =
Ep(f) ∈ F , and this sequence Ep = Ep(f) satisfies the specification (9.14).

By H < p, there is an integer iH+1 with 0 < iH+1 ≤ p, iH+1 /∈ {i1, . . . , iH}.
Let ε0 be a k–th root of unity with

ε0 = 1, (9.15)

and set
εH+1 = ε0ε1. (9.16)

Denote the distinct k–th roots of unity by ϕ1, . . . , ϕk, let v1, . . . , vk be integers
with

χ(vi) = ϕi (for i = 1, . . . , k),

and define y1, . . . , yH+1 by

yi = vz where z = z(i) is defined by ϕz = εi. (9.17)

By the well–known interpolation theorem, there is a unique polynomial g(x) ∈
Fp[x] with

deg g(x) ≤ H (9.18)

and
g(ij) = yj for j = 1, . . . , H + 1. (9.19)

(This polynomial can be determined by using either Lagrange interpolation or
Newton interpolation.) By Lemma 6 (with T = Fp), this polynomial g(x) can
be written in the form (9.13). Let

f(x) = g∗(x). (9.20)
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Then by Lemma 6, (9.3) holds. It follows from (9.13), (9.18) and (9.20) that

deg f(x) = deg g∗(x) ≤ deg g(x) ≤ H. (9.21)

By (9.17) and (9.19) we have

g(ij) = yj = vz(j)

so that
χ
(
g(ij)

)
= χ(vz(j)) = ϕz(j) (= 0) (9.22)

and thus (
g(ij), p

)
= 1 for j = 1, . . . , H + 1. (9.23)

By (9.13), (9.17), (9.20), (9.22) and (9.23) we have

χ
(
g(ij)

)
= χ

((
h(ij)

)k)
χ
(
g∗(ij)

)
= χ

(
f(ij)

)
= ϕz(j) = εj for j = 1, . . . , H + 1.

(9.24)
It follows from (9.15), (9.16) and (9.24) that

χ
(
f(i1)

)
= χ

(
f(iH+1)

)
and thus f(x) is not constant, i.e.,

deg f(x) > 0. (9.25)

(9.2) follows from (9.21) and (9.25). Finally, it follows from (9.24) and the
definition of Ep(f) that Ep(f) satisfies the specification (9.14) and this completes
the proof of the theorem.

5 On the Cardinality of a Smallest Family Achieving a
Prescribed f–Complexity and Multiplicity

We introduce first k–ary extensions of two quantities studied in [4].

Definition 8. For positive integers j ≤ K ≤ N,M and the alphabet A =
{a1, . . . , ak} set

S(N, j,M, k) = min
{
|F| : F ⊂ AN , ∀(ε1, . . . , εj) ∈ Aj and 1 ≤ i1 < · · · < ij ≤ N

there are at least M members EN = (e1, . . . , eN ) of F

with j–specification (ei1 , . . . , eij ; ε1, . . . , εj)
}
.

(10.1)

We also say for the F ’s considered here that they cover every j–specification
with multiplicity ≥ M .

In particular for M = 1 and j = K we get

S(N,K, k) � S(N,K, 1, k) = min
{
|F| : F ⊂ AN , Γk(F) = K

}
, (10.2)
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which counts how many sequences EN ∈ AN are needed to cover all K specifi-
cations, that is, to have f–complexity Γk(F) = K.

Finding this number can be formulated as a covering problem for the hyper-
graph

HH(N,K, k) =
(
V(N,K, k), E(N, k)

)
,

where E(N, k) = AN is the edge set and the vertex set V(N,K, k) is defined as
the set of K–specifications for AN or, equivalently, as set of (N−K)–dimensional
subcubes of AN and thus

|V(N,K, k)| =
(
N

K

)
kK , |E(N, k)| = kN (10.3)

EN ∈ E(N, k) contains specification V if and only if EN“∈”V . We derive now
bounds on S(N,K, k) and use (as in [4] for k = 2)

Lemma 7. (Covering Lemma 1 of [1]) For any hypergraph (V , E) with

min
v∈V

deg(v) ≥ d (10.4)

there exists a covering C ∈ E with

|C| ≤
⌈
|E|
d

log |V|
⌉
.

Theorem 7. The cardinality S(N,K, k) of a smallest family F ⊂ AN with

f–complexity Γk(F) = K satisfies

kK ≤ S(N,K, k) ≤ kK log
(
N

K

)
kK ≤ kKK logN (K ≥ k3).

Proof: Application of Lemma 7 to our hypergraph HH(N,K, k) yields with
d = kN−K a family F with Γk(F) ≥ K,

|F| ≤
⌈

kN

kN−K
log

(
N

K

)
kK

⌉
≤ kKK logN (K ≥ k3)

and thus the upper bound for S(N,K, k).
On the other hand one edge EN covers exactly

(
N
K

)
K–specifications and

therefore by (10.3) necessarily as lower bound we have

S(N,K, k) ≥ kK .

We explained already in [4] that in order to make it difficult for an eaves-
dropper to identify a key EN ∈ F , when he has observed j positions, we must
leave him many options. This can be achieved by constructing a family F of
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high f–complexity Γk(F). Indeed for j < Γk(F) the multiplicity Mj(F), that is,
the least multiplicity of every j–specification satisfies

Mj(F) ≥ kΓk(F)−j, (10.5)

because a j–specification can be extended to as many Γk(f)–specifications with
the same support. Therefore

min
F :Γk(F)≥K

Mj(F) ≥ kK−j (10.6)

and thus

S(N, j, kK−j , k) ≤ S(N,K, k) ≤ kKK logN (K ≥ k3). (10.7)

On the other hand, since |V(N, j, k)| =
(
N
j

)
kj and an edge EN covers exactly(

N
j

)
j–specifications, necessarily

S(N, j, kK−j , k) ≥ kK−j
(
N

j

)
kj
(
N

j

)−1

= kK . (10.8)

Quite surprisingly, for K logN small relative to kK the two bounds are very
close to each other. The fact that S(N,K, k) and therefore f–complexity contains
almost complete information about the quantity S(N, j, kK−j , k) measuring mul-
tiplicity for the eavesdropper demonstrates the usefulness of our complexity mea-
sure. We summarize these findings.

Theorem 8. The cardinality S(N, j, kK−j , k) of a smallest family F ⊂ AN
which covers every j–specification with multiplicity ≥ kK−j satisfies for all j ≤
K ≤ N

kK ≤ S(N, j, kK−j , k) ≤ S(N,K, k) ≤ kKK logN (K ≥ k3).

6 Balanced Families with Prescribed f–Complexity

Definition 9. A family F ⊂ AN with f–complexity Γk(F) = K is said to be
c–balanced for some constant c ∈ N, if no K–specification is covered by more
than c sequences EN ∈ F .

We improve now Theorem 7 by adding c–balancedness.

Theorem 9. For c = log |V(N,K, k)| = log
(
N
K

)
kK ≤ K logN (K ≥ k3) the

smallest c–balanced family F ⊂ AN with f–complexity Γk(F) = K has a cardi-
nality meeting the bounds on S(N,K, k) in Theorem 7.

Proof: We replace Lemma 7 by a lemma on balanced coverings.
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Definition 10. A covering C � {E1, . . . , EL} of a hypergraph HH = (V , E) is
called c–balanced for some constant c ∈ N, if no vertex occurs in more than c
edges of C.

Lemma 8. (Covering Lemma 3 of [1, Part II]) A hypergraph HH = (V , E) with
maximal and minimal degrees dmax � max

v∈V
deg(v) and dmin � minv∈V deg(v) > 0

has a c–balanced covering C = {E1, . . . , EL} if

(a) L ≥ 	|E|d−1
min · log |V|
 + 1

(b) c ≤ L ≤ c|E|d−1
max

(c) exp
{
−D

(
λ‖ dmax

|E|

)
L+ log |V|

}
< 1

2 for λ � c
L

(Here D denotes the Kullback–Leibler divergence.)

Using Lemma 8 with dmin = dmax = d = kN−K and

c = log |V| = log |B(N,K, k)| = log
(
N

K

)
kK ≤ K logN (K ≥ k3)

we get a c–balanced covering of said cardinality.

Remark: Using Theorem 9 also the bounds in Theorem 8 can be obtained in a
c–balanced way with c = K logN by the previous reasoning.

Next we go for improvements of the balancedness property. It is known from
probability theory that for large deviations the following inequality holds:

For a sequence Z1, Z2, . . . , ZL of independent, identically distributed random
variables with values in [0, 1] and expectation EZi = µ for 0 < ε < 1

Pr

{
1
L

L∑
i=1

Zi /∈
[
(1 − ε)µ, (1 + ε)µ

]}
≤ 2 exp

(
−L ε2µ

2n2

)
.

This can be used to establish another balancedness property, which also gives
a bound from below, but in exchange most, but not necessarily all, vertices
satisfy it. This suggests to apply a more recent auxiliary result.

Lemma 9. [2] Let HH = (V , E) be an e–uniform hypergraph (all edges’ cardi-
nalities equal e) and P a probability distribution on E. Consider a probability
distribution Q on V: Q(v) �

∑
E∈E

P (E)1
e1E(v).

Fix ε, τ > 0, and define the set of vertices V0 =
{
v ∈ V : Q(v) < τ

|V|

}
⊂ V,

then there exist edges E(1), . . . , E(L) ∈ E such that for

Q̄(v) � 1
L

L∑
i=1

1
e
1E(i)(v)

(i) Q(V0) ≤ τ
(ii) (1 − ε)Q(v) ≤ Q̄(v) ≤ (1 + ε)Q(v) for all v ∈ V � V0

(iii) L ≤
⌈
|V|
e

2�n2 log(2|V|)
ε2τ

⌉
.
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We apply this lemma now to the e–uniform hypergraph HH(N,K, k), whose
edges have cardinality e =

(
N
K

)
. First notice that

L ≤
(
N
K

)
kK(
N
K

) 3
ε2τ

log
(
N

M

)
kK =

3
ε2τ

kK log
(
N

K

)
kK ≤ 3

ε2τ
kKK logN(K ≥ k3).

Except for the constant 3
ε2τ this is our previous bound.

Next choose as P the uniform PD on E(N, k). Then for all vertices v ∈
V(N,K, k)

Q(v) =
∑

EN∈E(N,k)

k−N
(
N

K

)−1

1EN (v) = k−N
(
N

K

)−1

deg(v)

= k−N
(
N

K

)−1

kN−K =
1(

N
K

)
kK

(11.1)

and for v ∈ V � V0

(1 − ε)Le Q(v) ≤
L∑
i=1

1e(i)(v) ≤ (1 + ε)Le Q(v)

and for τ = 3/4

(1 − ε)
4
ε2
K logN ≤

L∑
i=1

1E(i)(v) ≤ (1 + ε)
4
ε2
K logN. (11.2)

This implies the uniformity property

1 − ε

1 + ε
≤ min
v,v′∈V�V0

(
L∑
i=1

1E(i)(v)

)(
L∑
i=1

1E(i)(v′)

)−1

≤ max
v,v′∈V�V0

(
L∑
i=1

1E(i)(v)

)(
L∑
i=1

1E(i)(v′)

)−1

≤ 1 + ε

1 − ε
. (11.3)

By choosing τ small most vertices are in V � V0.
Now comes a surprise. Our hypergraph has strong symmetries and by (11.1)

Q(v) is independent of v. Therefore for τ = 3/4 < 1 V0 = φ and (11.3) holds
for all vertices. We have established

Theorem 10. For every ε ∈ (0, 1) there is a family F ⊂ AN with f–complexity
ΓK(F) = K, kK ≤ |F| ≤ 4

ε2 k
K logN(K ≥ k3) such that for everyK–specification

the number of sequences EN ∈ F which cover this specification lies between
4(1−ε)
ε2 K logN and 4(1+ε)

ε2 K logN .
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7 Conclusion

We have constructed large families of sequences of k symbols with strong
pseudorandom properties. We have also introduced and studied the notion of
f–complexity of families of sequences on k symbols, and we have shown that
the f–complexity of the family constructed by us is large if k, the size of the
alphabet is a prime number but we have not been able to control the case when
k is composite. We have also shown what are essentially minimal cardinalities of
families with prescribed complexity and which additional multiplicity properties
they may have.

One might like to construct families of large complexity for com-
posite k as well; we will return to this problem in a subsequent paper.
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On a Fast Version of a Pseudorandom Generator

K. Gyarmati�

Abstract. In an earlier paper I constructed a large family of pseudo-
random sequences by using the discrete logarithm. While the sequences
in this construction have strong pseudorandom properties, they can be
generated very slowly since no fast algorithm is known to compute ind
n. The purpose of this paper is to modify this family slightly so that the
members of the new family can be generated much faster, and they have
almost as good pseudorandom properties as the sequences in the original
family.

1 Introduction

In this work I will continue the work initiated in [5]. C. Mauduit and A. Sárközy
[9, pp. 367-370] introduced the following measures of pseudorandomness:

For a finite binary sequence EN = {e1, e2, . . . , eN} ∈ {−1,+1}N write

U(EN , t, a, b) =
t−1∑
j=0

ea+jb

and, for D = (d1, . . . , dk) with non-negative integers d1 < · · · < dk,

V (EN ,M,D) =
M∑
n=1

en+d1en+d2 , . . . en+dk
.

Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t

|U(EN (t, a, b)| = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b, t ∈ N and 1 ≤ a ≤ a+ (t− 1)b ≤ N .

The correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2, . . . en+dk

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, d2, . . . , dk) and M with M+dk ≤
N . In [6] I introduced a further measure: Let

H(EN , a, b) =
[(b−a)/2]−1∑

j=0

ea+jeb−j,

� Research partially supported by Hungarian Scientific Research Grants OTKA
T043631 and T043623.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 326–342, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and then the symmetry measure of EN is defined as

S(EN ) = max
1≤a<b≤N

|H(EN , a, b)| = max
1≤a<b≤N

∣∣∣∣∣∣
[(b−a)/2]−1∑

j=0

ea+jeb−j

∣∣∣∣∣∣ .
A sequence EN is considered as a “good” pseudorandom sequence if each of

these measures W (EN ), Ck(EN ) (at least for small k) and S(EN ) is “small” in
terms of N (in particular all are o(N) as N −→ ∞). Indeed, it was proved in
[3, Theorem 1, 2] and in [6, Theorem 1, 2] that for a truly random sequence
EN ⊆ {−1,+1}N each of these measures is �

√
N logN and %

√
N .

Throughout the paper we will use the following notations: ‖ x ‖ is the distance
of x from the closest integer, e(α) = e2πiα, Fp is the algebraic closured of the
field Fp. Finally, if p is a prime, α and m are natural numbers we say that pα ‖ m
if pα | m but pα+1 � m.

Numerous binary sequences have been tested for pseudorandomness by J.
Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sárközy. The sequences
with the strongest pseudorandom properties have been constructed in [4], [5],
[9], [11] and [12]. As concerning the strength of the pseudorandom properties
these constructions are nearly equally good. But in the construction given by A.
Sárközy in [12] and extended by me in [5], the generation of the sequences in
question is much more slowly than in the other constructions. Indeed Sárközy’s
construction is the following:

Let p be an odd prime, N = p−1 and define EN = {e1, . . . , eN} ⊆ {−1,+1}N
by

en =
{

+1 if 1 ≤ ind n ≤ p−1
2 ,

−1 if p+1
2 ≤ ind n ≤ p− 1.

(1)

Here ind n denotes the index or discrete logarithm of n modulo p, defined as the
unique integer with

gind n ≡ n (mod p), (2)

and 1 ≤ ind n ≤ p − 1, where g is a fixed primitive root modulo p. In [5] I
extended this construction to a large family of binary sequences with strong
pseudorandom properties by replacing n by a polynomial f(n) in (1) (in the
same way as the Legendre symbol construction in [9] was extended in [4].)

Indeed in [5] I proved for the generalized sequence:

Theorem A. For all f ∈Fp[x] with k=deg f we have W (Ep−1)≤38kp1/2(log p)2.
Moreover if one of the following conditions holds:

a) f is irreducible;
b) If f has the factorization f = ϕα1

1 ϕα2
2 . . . ϕαu

u , where αi ∈ N and the ϕi’s are
irreducible over Fp, then there exists a β such that exactly one or two ϕi’s
have the degree β;

c)  = 2;
d) (4)k < p or (4k)� < p.



328 K. Gyarmati

Then
C�(Ep−1) < 10k4�p1/2(log p)�+1.

Finally, if f(x) ≡ f(t− x) for all t ∈ Zp, then S(Ep−1) < 88kp1/2(log p)3.
As we pointed out earlier these constructions are nearly as good as the others,

but the problem is that it is slow to compute en since no fast algorithm is known
to compute ind n. The Diffie-Hellman key-exchange system utilizes the difficulty
of computing ind n.

In this paper my goal is to improve on the construction in Theorem A by
replacing the sequence

en =
{

+1 if 1 ≤ ind f(n) ≤ p−1
2 ,

−1 if p+1
2 ≤ ind f(n) ≤ p− 1 or p | f(n)

(3)

by a sequence which can be generated faster. I will show that this is possible at
the price of giving slightly weaker upper bounds for the pseudorandom measures.
Throughout this paper we will use the following:

Notation. Let p be an odd prime, g be a primitive root modulo p. Define ind n
by (2). Let f ∈ Fp[x] be a polynomial of degree k ≥ 1, and f = chd where c ∈ Fp
and h ∈ Fp[x] is not a perfect power of a polynomial over Fp[x]. Moreover let

p− 1 = mh

with m,h ∈ N, and let x be relative prime to m: (x,m) = 1.
The crucial idea of the construction is to reduce ind n modulo m:

Construction 1. Let ind∗n denote the following function: For all 1 ≤ n ≤ p−1

ind n ≡ x · ind∗n (mod m)

(ind∗n exists since (x,m) = 1.) Define the sequence Ep−1 = {e1, . . . , ep−1} by

en =
{

+1 if 1 ≤ ind∗f(n) ≤ m
2 ,

−1 if m2 < ind∗f(n) ≤ m or p | f(n). (4)

Note that this construction also generalizes the Legendre symbol construction
described in [4] and [9]. Indeed in the special case m = 2, x = 1 the sequence
en defined in (4) becomes

en =

+1 if
(
f(n)
p

)
= −1,

−1 if
(
f(n)
p

)
= 1 or p | f(n).

(In the special case m = p− 1, x = 1 we obtain the original construction given
in (3)).

We will show that the construction presented above has good pseudorandom
properties, each of the measures W (Ep−1), Ck(Ep−1) is small under certain
conditions on the polynomial f . In the case of the well-distribution measure we
can control the situation completely.
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Theorem 1. If m/(m, d) is even we have

W (Ep−1) ≤ 36kp1/2 log p log(m+ 1).

While in the other case, when m/(m, d) is odd we have:

W (Ep−1) =
p− 1
m

+O(kp1/2 log p log(m+ 1)).

In the case of the correlation measures the situation is slightly more difficult.
When the order of the correlation measure is odd we have:

Theorem 2. If f ∈ Fp, k = deg f and  are odd integers while m is an even
integer, then we have

C�(Ep−1) < 9k4�p1/2(log p)�+1.

Otherwise we need the same conditions on the polynomial f as in [5] in the
original construction. If the degree of the polynomial is small depending on m,
the same upper bound holds as in [5], while in the general case I will prove a
slightly weaker result.

Theorem 3. i) Suppose that m is even or m is odd with 2m | p−1, and at least
one of the following 4 conditions holds:

a) f is irreducible;
b) If f has the factorization f = ϕα1

1 ϕα2
2 . . . ϕαu

u where αi ∈ N and the ϕi’s are
irreducible over Fp, then there exists a β such that exactly one or two ϕi’s
have the degree β;

c)  = 2;
d) (4)k < p or (4k)� < p.

Then

C�(Ep−1) < 9k4�p1/2(log p)�+1 +
!k�(�+1)

m�
p. (5)

ii) Moreover if we also have 2β ‖ m and k = deg f < 2β then

C�(Ep−1) < 9k4�p1/2(log p)�+1.

For fixed m by Heath-Brown’s work on Linnik’s theorem [7] the least prime
number p with m | p− 1 is less than cm5.5. Thus the condition deg f < 2β ‖ m |
p− 1 is not too restrictive.

If m2� < p holds, then the first term majorizes the second term in (5), thus
the upper bound becomes O

(
p1/2(log p)�+1

)
where the implied constant factor

may depend on k and .
The study of the symmetry measure also considered in [5] would lead to

further complications and I could control it only under the further assumption
deg f ≤ 2β+2 where β is defined by 2β ‖ m. Thus, I do not go into the details
of this here.
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In applications one should balance between the strength of the upper bounds
and the speed of the generation of the sequence depending on our priorities. We
will show in section 3 that the sequence described in (4), in particular ind ∗f(n),
can be computed faster than the original construction. Indeed, if the prime
factors of m are smaller than log p then ind∗f(n) can be computed by O((log p)6)
bit operations.

In [2] R. Ahlswede, L.H. Khachatrian, C. Mauduit and A. Sárközy introduced
the notion of f -complexity of families of binary sequences as a measure of ap-
plicability of the constructions in cryptography.

Definition 1. The complexity C(F) of a family F of binary sequence EN ∈
{−1,+1}N is defined as the greatest integer j so that for any 1 ≤ i1 < i2 <
· · · < ij ≤ N , and for ε1, ε2, . . . , εj, we have at least one EN = {e1, . . . , eN} ∈ F
for which

ei1 = ε1, ei2 = ε2, . . . , eij = εj .

We will see that the f -complexity of the family constructed in (4) is high.

Theorem 4. Consider all the polynomials f ∈ Fp[x] with

0 < deg f ≤ K.

For each of these polynomials f , consider the binary sequence Ep−1 = Ep−1(f)
defined by (4), and let F denote the family of all binary sequences obtained in
this way. Then we have

C(F) > K.

In [10] C. Mauduit and A. Sárközy proved an inequality involving the pseudoran-
dom measures W and C2. The following is a generalization of their inequality:

Theorem 5. For all EN ∈ {−1,+1}N, 32 ≤ N we have

W (EN ) ≤ 3N1−1/(2�) (C2�(EN ))1/(2�) .

Here the constant factor 3 could be improved by using a more difficult argument,
I will return to this in a subsequent paper.

In section 4 we will prove Theorem 5 and using Theorems 1,2 and 3 we will
show that Construction 1 provides a natural example for that the inequality in
Theorem 5 is the best possible apart from a constant factor. Moreover, Con-
struction 1 gives us a sequence for which the correlation measures of small order
are small while the well-distribution measure is possibly large.

2 Proofs

2.1 Proof of Theorem 1

First we note that the sequence defined in (4) by the polynomial f = hd and
the modulus m, remains the same sequence if we replace in Construction 1
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the polynomial f = hd by the polynomial hd/(m,d) and the modulus m by the
modulus m/(m, d). Thus in order to prove this theorem it is sufficient to study
the case when (m, d) = 1.

The proof of the theorem is very similar to the proof of Theorem 1 in [6]. By
the formula

1
m

∑
χ:χm=1

χj(a)χ(b) =
{

1 if m | ind a− ind b,
0 if m � ind a− ind b,

we obtain

en = 2
∑

1≤j≤m/2
jx≡ind f(n) (mod m)

1 − 1 =
2
m

∑
1≤j≤m/2

∑
χ:χm=1

χ(f(n))χ(gjx) − 1.

Thus

en =
2
m

∑
1≤j≤m/2

∑
χ�=χ0:χm=1

χ(f(n))χ(gxj) +
(−1)m − 1

2m
. (6)

Assume now that 1 ≤ a ≤ a+ (t− 1)b ≤ N . Then we have

|U(Ep−1, t, a, b)| =

∣∣∣∣∣ 2
m

∑
χ�=χ0 :χm=1

(
t−1∑
i=0

χ(f(a+ ib))

)[m/2]∑
j=1

χj(gx)


+

((−1)m − 1)t
2m

∣∣∣∣∣. (7)

We will prove the following:

S
def=

∣∣∣∣∣∣ 1
m

∑
χ�=χ0:χm=1

(
t−1∑
i=0

χ(f(a+ ib))

)[m/2]∑
j=1

χj(gx)

∣∣∣∣∣∣
≤ 18kp1/2(log p)2. (8)

If m is even we obtain the statement of Theorem 1 immediately from (7) and
(8). If m is odd using the triangle inequality we get

|U(Ep−1, t, a, b)| =
t

m
+O(kp1/2(log p)2)

which completes the proof of Theorem 1. Thus in order to prove Theorem 1, we
have to verify (8).

We will use the following lemma:

Lemma 1. Suppose that p is a prime, χ is a non-principal character modulo p
of order z, f ∈ Fp[x] has s distinct roots in F p, and it is not a constant multiple
of a z-th power of a polynomial over Fp. Let y be a real number with 0 < y ≤ p.
Then for any x ∈ R: ∣∣∣∣∣∣

∑
x<n≤x+y

χ(f(n))

∣∣∣∣∣∣ < 9sp1/2 log p.
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Proof of Lemma 1
This is a trivial consequence of Lemma 1 in [1]. Indeed, there this result is
deduced from Weil theorem, see [13].

Consider
∑t−1
i=0 χ(f(a + ib)) in (7), and here, let the order of χ be z. Since

χm = 1 we have z | m. On the other hand f = chd is not a constant multiple
of a z-th power of a polynomial over Fp, since 1 = (m, d) = (z, d) (because of
z | m) and h is not a perfect power of any polynomial over Fp.

Using Lemma 1 we have:∣∣∣∣∣
t−1∑
i=0

χ(f(a+ ib))

∣∣∣∣∣ ≤ 9kp1/2 log p

and thus by (8)

S ≤ 9kp1/2 log p
m

∑
χ�=χ0 :χm=1

∣∣∣∣∣∣
[m/2]∑
j=1

χj(gx)

∣∣∣∣∣∣ .
Lemma 2

∑
χ�=χ0:χm=1

∣∣∣∣∣∣
[m/2]∑
j=1

χj(gx)

∣∣∣∣∣∣ ≤
∑

χ�=χ0:χm=1

2
|1 − χ(gx)| < 2m log(m+ 1).

Proof of Lemma 2. This is Lemma 3 in [5] with m in place of d, m/2 in place
of (p− 1)/2 and gx in place of g, respectively, and it can be proved in the same
way.

Using Lemma 2 we obtain

S < 18kp1/2 log p log(m+ 1)

which proves (8) and this completes the proof of Theorem 1.

2.2 Proof of Theorem 2 and 3

In this section we may suppose that m is even: In Theorem 2 m cannot be odd.
If m is odd in Theorem 3, then considering 2m in place of m and f2 in place
of f in Construction 1 we generate the same sequence; however in this case we
have (2m, 2d) > 1.

To prove Theorems 2 and 3, consider any D = {d1, d2, . . . , d�} with non-
negative integers d1 < d2 < · · · < d� and positive integers M with M+d� ≤ p−1.
Then arguing as in [12, p. 382] with f(n+ dj) in place of n + dj , m in place of
p− 1, and gx in place of g from (6) and since m is even we obtain:

|V (EN ,M,D)| ≤ 2�

m�

∑
χ1 �=χ0
χm

1 =1

· · ·
∑
χ� �=χ0
χm

� =1

∣∣∣∣∣
M∑
n=1

χ1(f(n+ d1)) · · ·χ�(f(n+ d�))

∣∣∣∣∣×∏
∣∣∣∣∣∣
m/2∑
�j=1

χj(g
x�j)

∣∣∣∣∣∣ .
(9)
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Now let χ be a modulo p character of order m; for simplicity we will choose
χ as the character uniquely defined by χ(g) = e

(
x∗
m

)
where xx∗ ≡ 1 (mod m).

Then

χ(gx) = e

(
1
m

)
. (10)

Let χu = χδu for u = 1, 2, . . . , , whence by χ1 = χ0, . . . , χ� = χ0, we may take

1 ≤ δu < m.

Thus in (9) we have∣∣∣∣∣
M∑
n=1

χ1(f(n + d1)) . . . χ�(f(n + d�))

∣∣∣∣∣ =

∣∣∣∣∣
M∑
n=1

χδ1(f(n+ d1)) . . . χδ�(f(n + d�))

∣∣∣∣∣
=

∣∣∣∣∣
M∑
n=1

χ
(
f δ1(n+ d1) . . . f δ�(n + d�)

)∣∣∣∣∣ .
If f δ1(n + d1) · · · f δ�(n + d�) is not a perfect m-th power, then this sum can be
estimated by Lemma 1, whence∣∣∣∣∣

M∑
n=1

χ(f δ1(n + d1) · · · f δ�(n + d�))

∣∣∣∣∣ ≤ 9sp1/2 log p.

Therefore by (9) and the triangle-inequality we get:

|V (EN ,M,D)| ≤ 2�

m�

∑
χ1 �=χ0
χm

1 =1

· · ·
∑
χ� �=χ0
χm

� =1

9sp1/2 log p

∣∣∣∣∣∣
�∏
j=1

m/2∑
lj=1

χδj (gx�j )

∣∣∣∣∣∣
+

2�

m�

∑
1≤δ1,...,δ�≤m,

fδ1(n+d1)···fδ� (n+d�) is
a perfect m-th power

(p− 1)

∣∣∣∣∣
�∏
j=1

m/2∑
lj=1

χδj (gx�j)

∣∣∣∣∣
=
∑

1
+
∑

2
. (11)

From Lemma 2 the same way as in [12, p.384] we have∑
1
≤ 9kp1/2(log p)�+1. (12)

It remains to estimate
∑

2. First we claim that in Theorem 2 and in Theorem 3
(ii) we have

∑
2 = 0.

Indeed in these cases I will show that if f δ1(n+ d1) . . . f δ�(n+ d�) is a perfect
m-th power, then there exists a δi which is even. Then, if δi is even, by (10) and
m � δi (1 ≤ δi ≤ m− 1) we have

m/2∑
�j=1

χδi(gx�j ) =
m/2∑
�j=1

e

(
δi/2
m/2

j

)
= 0,
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which means that in
∑

2 the product is 0, whence
∑

2 = 0. From this, (11) and
(12) Theorem 2 and 3 (ii) follows.

Let us see the proof of those cases for which there exists an even δi. In the
case of Theorem 2 if f δ1(n+ d1) · · · f δ�(n+ d�) is a perfect m-th power, then m
divides the degree of f δ1(n+d1) · · · f δ�(n+d�) which is k(δ1 + · · ·+δ�). Contrary
to our statement, suppose that all δi are odd. Then using that k and  are also
odd we get that k(δ1 + · · ·+ δ�) is odd, which contradicts 2 | m | k(δ1 + · · ·+ δ�).
In the case of Theorem 3 (ii) we will use the following lemma, which is Lemma
5 of [5] with m in place of p− 1.

Lemma 3. Suppose that the conditions of Theorem 3 hold.
Then if 1 ≤ δ1, . . . , δ� ≤ m− 1, and f δ1(n+ d1) · · · f δ�(n+ d�) is a perfect m-th
power, then there is a δi (1 ≤ i ≤ ) and an integer 1 ≤ α ≤ k such that m | αδi.

By Lemma 3 we have

m | αδi and
m

(m,α)
| δi.

By the conditions of Theorem 3 we have 2β ‖ m and k < 2β. Thus (m,α) ≤
α ≤ k < 2β. Therefore 2 | m

(m,α) , whence δi is even. This completes the proof of
Theorem 2 and Theorem 3 (ii).

In order to prove Theorem 3 (i) we need a generalization of Lemma 3. This
is the following:

Lemma 4. Suppose that the conditions of Theorem 3 (i) hold. If 1 ≤ δ1, . . . , δ�
≤ m− 1 and f δ1(n+ d1) · · · f δ�(n + d�) is a perfect m-th power, then there is a
permutation (ρ1, . . . , ρ�) of (δ1, . . . , δ�) such that for all 1 ≤ i ≤  there exists an
αi with 1 ≤ αi ≤ ki and

m | αiρi.

We postpone the proof of Lemma 4.
Now, from this lemma we verify that

∑
2 ≤ �!k�(�+1)

m� p. Consider a fixed -tuple
(δ1, . . . , δ�) for which f δ1(n+ d1) . . . f δ�(n+ d�) is a perfect m-th power. We will
prove that

�∏
j=1

∣∣∣∣∣∣
m/2∑
�j

χδj (gx�j)

∣∣∣∣∣∣ ≤ k�(�+1)/2

2�
. (13)

Indeed, by Lemma 4 we have a permutation (ρ1, . . . , ρ�) of (δ1, . . . , δ�) such that
for all 1 ≤ i ≤  there exists an αi with 1 ≤ αi ≤ ki and m | αiρi. By this,
0 < αiρi < αim and αi ≤ ki we get
m ≤ αiρi ≤ (αi − 1)m, 1

αi
≤ ρi

m ≤ 1 − 1
αi

and 1
ki ≤ 1

αi
≤

∣∣∣∣ ρi

m

∣∣∣∣.
By this, (10) and |1 − e(α)| ≥ 4 ||α|| we have∣∣∣∣∣∣
m/2∑
�j=1

χρj (gx�j)

∣∣∣∣∣∣ ≤ 2
|1 − χρj (gx)| =

2
|1 − e(ρj/m)| ≤

1
2 ||ρj/m|| ≤

kj

2
. (14)



On a Fast Version of a Pseudorandom Generator 335

Taking the term-wise product in (14) for j = 1, . . . ,  we obtain (13). Thus∑
2
≤ p

k�(�+1)/2

m�

∑
1≤δ1,...,δ�≤m,

fδ1 (n+d1)···fδ� (n+d�) is
a perfect m-th power

1. (15)

Next we give an upper bound for

r
def=

∑
1≤δ1,...,δ�≤m,

fδ1(n+d1)···fδ� (n+d�) is
a perfect m-th power

1. (16)

The number of different permutations (ρ1, . . . , ρ�) of (δ1, . . . , δ�) is !. Consider
a fixed permutation (ρ1, . . . , ρ�). Then by Lemma 4 we have m | αiρi where
1 ≤ αi ≤ ki. Thus m

(m,αi)
| ρi. Since 1 ≤ ρi ≤ m we have that ρi may assume

(m,αi) ≤ αi ≤ ki values. Therefore

r ≤ !
�∏
i=1

ki = !k�(�+1)/2. (17)

By (15), (16) and (17) we have∑
2
≤ !

k�(�+1)

m�
p

which proves Theorem 3 (i). It remains to prove Lemma 4.

Proof of Lemma 4
We will need the following definition and lemma:

Definition 2. Let A and B be multi-sets of the elements of Zp. If A + B rep-
resents every element of Zp with multiplicity divisible by m, i.e., for all c ∈ Zp,
the number of solutions of

a+ b = c a ∈ A, b ∈ B

(the a’s and b’s are counted with their multiplicities) is divisible by m, then the
sum A + B is said to have property P.

Lemma 5. Let A = {a1, a2, . . . , ar}, D = {d1, d2, . . . , d�} ⊆ Zp. If one of the
following two conditions holds

(i) min{r, } ≤ 2 and max{r, } ≤ p− 1,
(ii) (4)r ≤ p or (4r)� ≤ p,
then there exist c1, . . . , c� ∈ Zp and a permutation (q1, . . . , q�) of (d1, . . . , d�)
such that for all 1 ≤ i ≤ 

a+ d = ci a ∈ A, d ∈ D

has at least one solution, and the number of solutions is less than i+1. Moreover
for all solution a ∈ A, d ∈ D we have d ∈ {q1, q2 . . . , qi}, and d = qi, a = ci− qi
is always a solution.
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Proof of Lemma 5
We will prove Lemma 5 by induction on i. It was proved in [4, Theorem 2] that
for all sets A and D with the conditions of Lemma 5, we have a c ∈ Zp such that

a+ d = c a ∈ A, d ∈ D

has exactly one solution.
This proves Lemma 5 in the case i = 1. Suppose that Lemma 5 holds for i = j.

Then we will prove that it also holds for i = j + 1. By the induction hypothesis
we have c1, . . . , cj and a permutation (q1, . . . , qj) of (d1, . . . , dj) according to
Lemma 5. Let D′ = D \ {q1, . . . qj}. Since Lemma 5 is true for i = 1 we have
that there exists cj+1 ∈ Zp such that

a+ d = cj+1 a ∈ A, d ∈ D′

has exactly one solution. Let this unique solution be α = αi+1 and d = qj+1.
Then for the solution of

a+ d = cj+1 a ∈ A, d ∈ D

we have d ∈ {q1, q2, . . . , qj+1} which completes the proof of Lemma 5.
Now we return to the proof of Lemma 4. The following equivalence relation was

defined in [4] and also used in [5]: We will say that the polynomials ϕ(x), ψ(x) ∈
Fp[x] are equivalent, ϕ ∼ ψ, if there is an a ∈ Fp such that ψ(x) = ϕ(x + a).
Clearly, this is an equivalence relation.

Write f as the product of irreducible polynomials over Fp. Let us group these
factors so that in each group the equivalent irreducible factors are collected.
Consider a typical group ϕ(x + a1), . . . , ϕ(x+ ar).
Then f is of the form f(x) = ϕα1(x + a1) . . . ϕαr (x + ar)g(xr) where g(x) has
no irreducible factors equivalent with any ϕ(x+ ai) (1 ≤ i ≤ r).

Let h(n) = f δ1(n + d1) · · · f δ�(n + d�) be a perfect m-th power where 1 ≤
δ1, . . . , δ� < m. Then writing h(x) as the product of irreducible polynomials over
Fp, all the polynomials ϕ(x+ ai + dj) with 1 ≤ i ≤ r, 1 ≤ j ≤  occur amongst
the factors. All these polynomials are equivalent, and no other irreducible factor
belonging to this equivalence class will occur amongst the irreducible factors of
h(x).

Since distinct irreducible polynomials cannot have a common zero, each of
the zeros of h is of multiplicity divisible by m, if and only if in each group,
formed by equivalent irreducible factors ϕ(x+ai+dj) of h(x), every polynomial
of form ϕ(x+ c) occurs with multiplicity divisible by m. In other words writing
A = {a1, . . . , a1, . . . , ar, . . . , ar}, D = {d1, . . . , d1, . . . , d�, . . . , d�} where ai has
the multiplicity αi in A (αi is the exponent of ϕ(x + ai) in the factorization of
f(x)) and di has the multiplicity δi in D (where h(n) = f δ1(n+d1) · · · f δ�(n+d�)
is a perfect m-th power), then for each group A + D must possess property P .

Let A′ and D′ be the simple set version of A and D, more exactly, let A′ =
{a1, . . . , ar} and D′ = {d1, . . . , d�}. A′ and D′ satisfy the conditions of Lemma
5. So by Lemma 5 for the multi-sets A and D we have the following: There exist
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c1, . . . , c� ∈ Zp and a permutation (q1, . . . , q�) = (dj1 , . . . , dj�) of (d1, . . . , d�) such
that if

a+ d = ci a ∈ A′, d ∈ D′,
then we have

d ∈ {q1, . . . , qi} = {dj1 , . . . , dji}
and d = qi, a = ci−qi is a solution. Here (j1, . . . , j�) is a permutation of (1, . . . , ).
Define ρi’s by ρi = δji (so (ρ1, . . . , ρ�) = (δj1 , . . . , δj�) is the same permutation
of (δ1, . . . , δ�) as the permutation (q1, . . . , q�) = (dj1 , . . . , dj�) of (d1, . . . , d�)).
Returning to the multi-set case, using these notation we get that the number of
the solutions

a+ d = ci a ∈ A, d ∈ D
is of the form

εi,1αi,1ρ1 + εi,2αi,2ρ2 + · · · + εi,iαi,iρi

where εi,j ∈ {0, 1}, αi,j ∈ {α1, . . . , αr} for 1 ≤ j ≤ i and εi,i = 1. (We study the
number of the solutions by multiplicity since A and D are multi-sets).

Since A + D posses property P we have that for all 1 ≤ i ≤ 

m | εi,1αi,1ρ1 + εi,2αi,2ρ2 + · · · + εi,iαi,iρi. (18)

By induction on i we will prove that

m | α1,1α2,2, . . . , αi,iρi. (19)

Indeed, for i = 1 by (18) and ε1,1 = 1 we get m | α1,1ρ1. We will prove that if
(19) holds for i ≤ j − 1, then it also holds for i = j.

By the induction hypothesis we have

m | α1,1ρ1, m | α1,1α2,2ρ2, . . . , m | α1,1α2,2 . . . , αj−1,j−1ρj−1. (20)

Multiplying (18) for i = j by α1,1 . . . αj−1,j−1 we get:

m |εj,1αj,1α1,1 . . . αj−1,j−1ρ1 + εj,2αj,2α1,1 . . . αj−1,j−1ρ2 + . . .

+ εj,jαj,jα1,1 . . . αj−1,j−1ρi.

From this using (20) and εj,j = 1 we get

m | α1,1 . . . αj,jρj

which was to be proved.
α1,1, . . . , αi,i ∈ {α1, . . . , αr} where αi’s are exponents of irreducible factors of

f , thus 1 ≤ αi,i ≤ deg f = k. Therefore α1,1α2,2 . . . αi,i ≤ ki and by (19) this
completes the proof of Lemma 4.

2.3 Proof of Theorem 4

The proof is exactly the same as in [2, Theorem 1], the only difference is in the
definitions of q and r: now we choose q, r as integers with (q, p) = (r, p) = 1 and
1 ≤ ind∗q ≤ m

2 , m2 < ind∗r ≤ m.



338 K. Gyarmati

3 Time Analysis

Construction 1 depends on the key gx where g is a primitive root and (x,m) = 1.
We only need gx, it is not necessary to know the value of g or x. First we prove
that it is easy to find a key gx.

Suppose that the factorization of m is known: m = pα1
1 . . . pαr

r where p1, . . . , pr
are primes. The condition (x,m) = 1 is equivalent with that y = gx is not a
perfect pi-th power for any 1 ≤ i ≤ r in Fp. In other words, using Fermat’s
theorem we have that

y(p−1)/pi ≡ 1 (mod p) (21)

does not hold for all 1 ≤ i ≤ r. By using the iterated squaring method to check
(21), it takes O

(
(log p)3

)
bit operations (see e.g. in [8]).

We will choose a random y ∈ Zp, and by (21) we check that y = gx weather
satisfies (x,m) = 1 or not. For a fix primitive root g, the number of x’s with
this property is ϕ(m)p−1

m % p
log log p . Thus after c log log p attempts we will find

a suitable key gx with high probability.
Next we prove that ind∗n can be computed fast. Indeed, first we determine

ind∗n modulo prime power divisor qα of m by O
(
αq(log p)3

)
bit operations. If

we know ind∗n modulo pαi

i for all 1 ≤ αi ≤ r where m = pα1
1 . . . pαr

r , then using
the Chinese Remainder theorem we have determined the value ind∗n modulo m,
which gives ind∗n because of 1 ≤ ind∗n ≤ m. Thus to compute ind∗n we use

O((logm)4 + (log p)3(α1p1 + · · · + αrpr))

≤ O((logm)4 + (log p)3(α1 + · · · + αr) max
1≤i≤r

pi)

≤ O((log p)4 max
1≤i≤r

pi)

bit operations.
Let us see the proof of that ind∗n can be computed modulo prime power

divisors qα of m by O(αq(log p)3) bit operations. We will prove this by induction
on α. When α = 0 the statement is trivial. Suppose that we already know ind∗n
modulo qi:

ind∗n ≡ s (mod qi).

From this we compute ind∗n modulo qi+1 by O(q(log p)3) bit operations if qi+1 |
m. In order to prove this statement we will use the following lemma, which
is a trivial consequence of the properties of the primitive roots and Fermat’s
theorem.

Lemma 6. qα | m. Then

ind∗n ≡ s (mod qα)

holds if and only if

n/gsx is a perfect qα-th power modulo p

which is equivalent with

(n/gsx)(p−1)/qα

≡ 1 (mod p). (22)
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By Lemma 6 we have that n/gsx is a perfect qi-th power. By Lemma 6, using
(22), we check that which of the numbers

n/gsx, n/g(s+qi)x, n/g(s+2qi)x, . . . , n/gs+(q−1)qix

is a perfect qi+1-th power. This takes O
(
q(log p)3

)
bit operations. There is surely

one which is a perfect qi+1-th power, because s, s + qi, . . . , s + (q − 1)qi run
over the residue classes modulo qi+1 which are congruent to s modulo qi. By
Lemma 6, n/gs+jp

ix is a perfect pi+1-th power if and only if ind∗n ≡ s + jqix
(mod qi+1). This completes the proof of the statement.

4 An Extension of an Inequality of Mauduit and Sárközy

C. Mauduit and A. Sárközy [10] expressed the connection between the well-
distribution measure and the correlation measure of order 2 in a quantitative
form: For all EN ∈ {−1,+1}N

W (EN ) ≤ 3
√
NC2(EN ). (23)

They also gave a construction for which W (EN ) %
√
NC2(EN ). Their result

shows that (23) is sharp apart from a constant factor. The following theorem
generalizes (23) for the correlation measures of higher order:

Theorem 5. For all EN ∈ {−1,+1}N , 32 ≤ N we have

W (EN ) ≤ 3N1−1/(2�) (C2�(EN ))1/(2�) .

By Theorem 3 we get for N = p− 1:

C�(EN ) �� k
�(�+1) p

m�
(24)

if m < p1/(2�)

(log p)1+1/� . We will see that if  is even, m is odd and small enough, then
by Theorem 5 and Theorem 1 we have that the upper bound in (24) is sharp
apart from a constant factor. Thus in case of even  and odd m Construction 1
provides a natural example for a sequence whose correlation measures of small
orders are small while the well-distribution measure is possibly large. Indeed, by
Theorem 1 if m < 1

2kp
1/2/(log p)2 we have

W (Ep−1) %
p

m
.

By Theorem 5 we fixed

p

m
� W (EN ) � p1−1/(2�) (C2�(EN ))1/(2�) ,

which implies
1
2�

p

m2�
� C2�(EN ).
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Comparing this with (24) we get that Theorem 5 is sharp apart from a constant
factor. While the construction of A. Sárközy and C. Mauduit [10] showing that
(23) is sharp used probabilistic methods, Construction 1 is explicit.

Proof of Theorem 5
The proof is nearly the same as in [10], however we have to handle larger product
of ei’s than in [10].

Let

W (EN ) =
t−1∑
j=0

ea+jb =
∑
a≤i<m

i≡a (mod b)

ei

where m = a+ tb ≤ N + b. If N < i ≤ N + b, let ei = 1. Then

(W (EN ))2� =
( ∑

a≤i<m
i≡a (mod b)

ei

)2�

≤
b−1∑
h=0

( ∑
a≤i<m

i≡h (mod b)

ei

)2�

=
∑

r≤2�, a≤i1<i2<···<ir<m
i1≡i2≡···≡ir (mod b)

Xr · ei1ei2 . . . eir

=
∑

j≤�, a≤i1<i2<···<i2j<m
i1≡i2≡···≡i2j (mod b)

X2j · ei1ei2 . . . ei2j . (25)

Here r ≤ 2 because originally all the products are in the form of eα1
1 . . . e

αm−1
m−1

(where α1 + · · ·+αm−1 = 2) but eαi

i = 1 if αi is even and eαi

i = ei if αi is odd.
The sum α1 + · · ·+ αm−1 = 2 is even, so the number of odd αi’s is even. Thus
in (25) we may suppose that r = 2j where j ∈ N.

Let s denote the number of i’s with a ≤ i < m and for which i belongs to a
fixed residue class modulo b (here s is the number of the terms in

∑
a≤i<m

i≡h (mod b)

ei

for any h, s does not depend on h on the value of the fixed residue class). Using
the multinomial theorem:

X2j =
∑

α1+···+αs=2�
α1,...,α2j are odd
α2j+1,...,αs are even

(2)!
α1! . . . αs!

≤
∑

α1+···+αs=2�
α1,...,α2j are odd
α2j+1,...,αs are even

(2)!.

For 1 ≤ i ≤ 2j let αi = 2βi − 1 and for 2j + 1 ≤ i ≤ s let αi = 2βi − 2. Then

X2j ≤ (2)!
∑

β1+···+βs=s+�−j
∀i: βi>0

1 = (2)!
(
s+ − j − 1

s− 1

)

≤ (2)!
(− j)!

(s+ − j − 1)�−j ≤ (2)�+j(s+ − j − 1)�−j

≤ (2)�+j(N + )�−j = 2�+j�+j(N + )�−j . (26)
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By (25) and the triangle-inequality we have

(W (EN ))2� ≤
�∑
j=0

|X2j|
∑

1≤d1<d2<···<d2j−1<m−a
0≡d1≡d2≡···≡d2j−1 (mod b)∣∣∣∣∣∣

m−1−d2j−1∑
i=a

eiei+d1 . . . ei+d2j−1

∣∣∣∣∣∣ . (27)

By the definition of the correlation measure we have:∣∣∣∣∣∣
m−1−d2j−1∑

i=a

eiei+d1 . . . ei+d2j−1

∣∣∣∣∣∣ ≤ C2�(EN ) + 1.

Thus from (26) and (27) we obtain

(W (EN ))2� ≤
�∑
j=0

2�+j�+j(N + )�−j
∑

1≤d1<d2<···<d2j−1<m−a
0≡d1≡d2≡···≡d2j−1 (mod b)

(C2j(EN ) + 1)

=
�∑
j=0

2�+j�+j(N + )�−jN2j−1(C2j(EN ) + 1)

where by definition C0(EN ) = N . Using that for 1 ≤ j ≤  − 1 C2j(EN ) ≤ N
we obtain

(W (EN ))2� ≤
�−1∑
j=0

2�+j�+j(N + )�+j + 4�2�N2�−1(C2�(EN ) + 1). (28)

By 1 + x ≤ ex we have

�−1∑
j=0

2�+j�+j(N + )�+j = 2��(N + )�
�−1∑
j=0

2jj(N + )j

= 2��(N + )�(1 + 2(N + ))�−1

= 22�−12�−1N2�−1

(
1 +



N

)�(
1 +

22 + 1
2N

)�−1

≤ 22�−12�−1N2�−1e2�
2/N ≤ 4�2�−1N2�−1.

From this and (28) we obtain

(W (EN ))2� ≤ 4�2�N2�−1(C2�(EN ) + 1 +
1

) ≤ 9�2�N2�−1C2�(EN ),

which proves Theorem 5.
I would like to thank to Professor András Sárközy for the valuable discussions

and to the referee Christian Elsholtz for his careful reading and constructive
comments.
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quences of k symbols and their complexity, Part I, Part II, this volume.

2. R. Ahlswede, L.H. Khachatrian, C. Mauduit, and A. Sárközy, A complexity mea-
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4. L. Goubin, C. Mauduit, and A. Sárközy, Construction of large families of pseudo-
random binary sequences, J. Number Theory 106, No. 1, 56–69, 2004.

5. K. Gyarmati, On a family of pseudorandom binary sequences, Period. Math. Hun-
gar. 49, No. 2, 45–63, 2004.

6. K. Gyarmati, On a pseudorandom property of binary sequences, Ramanujan J. 8,
No. 3, 289–302, 2004.

7. D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions and the least prime
in an arithmetic progression, Proc. London Math. Soc. 64, 265-338, 1992.

8. N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in
Mathematics 114, Springer-Verlag, New-York, 1994.
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On Pseudorandom Sequences and Their

Application

J. Rivat� and András Sárközy�

Abstract. A large family of finite pseudorandom binary sequences is
presented, and also tested “theoretically” for pseudorandomness. The
optimal way of implementation is discussed and running time analysis is
given. Numerical calculations are also presented.

1 Introduction

In the last century numerous papers have been written on pseudorandom (briefly,
PR) sequences. In these papers a wide range of goals, approaches, tools is pre-
sented, even the concept of “pseudorandomness” is interpreted in different ways
(depending mostly on the applications in mind). In the majority of the papers
constructions of PR sequences are given and/or tested for pseudorandomness.
In most papers PR sequences of real numbers taken from [0, 1) are considered,
much less is known on PR binary sequences, although PR sequences of this type
are also needed in applications (simulation, cryptography). Thus when a PR bi-
nary sequence is needed, then typically one constructs a sequence by using either
a random bit generator (which can be both hardware-based or software-based),
or a mathematical principle. In the latter case, one describes a mathematical
algorithm which maps certain parameters to a well-defined binary sequence; the
values of these parameters are chosen randomly from a certain set (this is the
seed). In either of the two cases, we do not have a priori control about the PR
quality of the sequence to be constructed, thus when the construction is over,
one has to test the numerical sequence obtained by using certain statistical tests
(that a truly random sequence must pass).

Motivated by these facts, Mauduit and Sárközy initiated a comprehensive
study of finite pseudorandom binary sequences focusing “. . . on construction and
testing, more exactly, on apriori or, as Knuth [11] calls it, theoretical testing”.
They wrote “. . . our goal is not the search for new constructions superior to
all previous ones; this would be too optimistic. Instead, we are aiming at con-
structions superior to the previous ones at least in certain special situations,
besides we will gather new information on random-type properties of special bi-
nary sequences playing an important role in number theory and in other fields
of mathematics”. Since then more than 10 related papers have been written. We

� Research partially supported by Hungarian National Foundation for Scientific Re-
search, Grant No T 029 759 and MKM fund FKFP-0139/1997. This paper was com-
pleted while the authors were visiting the Zentrum für interdisziplinäre Forchung,
Universität Bielefeld, Germany.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 343–361, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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feel we have arrived to the point to utilize our theoretical conclusions in the ap-
plications as well; to see what are the most promising constructions and to look
for the most effective and economical ways to adapt them to different fields in
the applications. In this paper our goal is to make the first steps in this direction
by focusing on the case when our only goal is to guarantee possibly “good” PR
properties (in a possibly effective way).

(Note that usually binary sequences consisting of 0, 1 bits are considered.
However, in our case it will be more convenient to study sequences consisting of
−1 and +1; clearly, this difference is insignificant).

2 The Measures of Pseudorandomness

In particular, in [12] Mauduit and Sárközy proposed to use the following mea-
sures of pseudorandomness.

Consider a finite pseudorandom binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}N . (1)

Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣ (2)

where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤ a+(t−1)b ≤ N ,
while the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2 · · · en+dk

∣∣∣∣∣ (3)

where the maximum is taken over all D = (d1, . . . , dk) and M such that 0 ≤ d1 <
· · · < dk ≤ N −M . Then the sequence is considered as a “good” pseudorandom
sequence if both these measures W (EN ) and Ck(EN ) (at least for “small” k)
are “small” in terms of N (in particular, both are o(N) as N → ∞). Indeed, it
is shown in [5] that for a “truly random” EN ∈ {−1,+1}N , both W (EN ) and
for fixed k, Ck(EN ) are around N1/2 with “near 1” probability. Thus for “really
good” PR sequence we expect the measures (2) and (3) to be not much greater
than N1/2. (In [5], other important properties of the two measures are studied
as well).

We remark that quantities like (2) or (3) often occur in the literature, and
even the word “correlation” (or autocorrelation) is often used in connection with
expressions of form (3). However, in our case definitions (2) and (3) have two
important characteristics:

(i) In both cases (2) and (3), we also take the maximum in terms of the length
of the sum, in other words, “incomplete sums” are also considered.
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(ii) When the word “correlation” is used, then typically sums of form (3) are
considered with “small”, often fixed d1, d2, . . . , dk and “large” M (typi-
cally M → +∞); in this case we may speak of “short range” correlation.
In our case (3), “long range” correlation is also considered.

In [12] other possible measures of pseudorandomness are also mentioned (see
also [7]), but we decided to restrict ourselves to these two measures (2) and (3).

3 The Q-Construction and Its Pseudorandomness

In [12] the Legendre symbol was also studied, and it was tested for pseudoran-
domness. More exactly, let p be an odd prime, write N = p− 1, and define the
binary sequence EN by

EN = {e1, e2, . . . , eN}, en =
(
n

p

)
for n = 1, . . . , N, (4)

(where
(
n
p

)
denotes the Legendre symbol). Then it was shown in [12] that for

the sequence (4) we have

W (EN ) � N1/2 logN (5)

and
Ck(EN ) � kN1/2 logN (6)

for all k < N (where � is Vinogradov’s notation, i.e., f(x) � g(x) means that
f(x) = O(g(x))). (In [12] (5) and (6) are stated in a slightly different form).

[12] was followed by a series of papers in which numerous other sequences
were constructed and tested for pseudorandomness. Still the Legendre symbol
sequence (4) is the best PR sequence constructed, but recently Goubin, Mauduit
and Sárközy [6] have extended construction (4) considerably (and this construc-
tion was also studied in [1]). This construction and its most important properties
are described in the following theorem (proved in [6]):

Theorem 1. If p is a prime number, f(x) ∈ Fp[x] (Fp being the field of the
modulo p residue classes) has degree k (> 0), f(x) has no multiple zero in Fp
(= the algebraic closure of Fp), and the binary sequence Ep = {e1, . . . , ep} is
defined by

en =

{(
f(n)
p

)
for (f(n), p) = 1,

+1 for p | f(n),
(7)

then we have
W (Ep) < 10kp1/2 log p. (8)

Moreover, assume that also  ∈ N, and one of the following assumptions holds:

(i)  = 2;
(ii)  < p, and 2 is a primitive root modulo p;
(iii) (4k)� < p.
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Then we also have
C�(Ep) < 10kp1/2 log p. (9)

The crucial tool in the proofs of (8) and (9) is an estimate for incomplete char-
acter sums of the form ∑

A<x<B

χ(f(x))

where χ = χ0 is a character modulo p and f(x) ∈ Fp[x]; this estimate was
deduced in [12] from a theorem of Weil [22] by using an inequality of Vinogradov.

The f(n) = n special case of this theorem corresponds to the basic Legendre
symbol construction studied in (4), (5) and (6). If the degree k of the polynomial
f(n) grows, then the upper bounds in (8) and (9) get weaker. However, this slight
loss is more than compensated by the fact that in this way we obtain a “large”
family of “good” pseudorandom sequences. Indeed, it is shown in [1] that this
family is not only large, but it is also of “rich”, “complex” structure which can
be very well utilized (e.g., in cryptography).

The construction described in Theorem 1 will play a role of basic importance
in the remaining part of this paper. Thus in order to be able to refer to it in a
short form, we will call it Q-sequence, Q-construction (Q for “quadratic”, since
the construction is based on the use of quadratic residues).

4 Our PR Measures and the Standard Statistical Tests

In [13] (which is an excellent monograph and we will often refer to it) the fol-
lowing definition is presented.

Definition 1. “A pseudorandom bit generator (PRBG) is a deterministic algo-
rithm which, given a truly random binary sequence of length k, outputs a binary
sequence of length l % k” which “appears” to be random. The output of the
PRBG is called a pseudorandom bit sequence”.

Moreover, referring to “ad hoc” techniques for PR bit generation, [13] writes: “In
order to gain confidence that such generators are secure, they should be subject-
ed to a variety of statistical tests designed to detect the specific characteristics
expected of random sequences. A collection of such tests is given in 5.4. As the
following example demonstrate, passing these statistical tests is a necessary but
not sufficient condition for a generator to be secure”. Next the linear congru-
ential generator is presented, and the conclusion is: “While such generators are
commonly used for simulation purposes and probabilistic algorithms, and pass
the statistical tests of 5.4, they are predictable and hence entirely insecure for
cryptographic purposes”. . .

We will show that our Q-sequence passes (or nearly passes) the statistical
tests mentioned above (as a consequence of Theorem 1) so that it can be used
very well for simulation purposes and probabilistic algorithms; this is one of
our main goals here. Moreover, from cryptographic aspect the situation is not as
negative as in the case of the linear congruential method: a limited cryptographic
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application of the construction is possible, and with some work it can be made
more secure; we will return to this briefly in section 7.

The “five basic tests” of [13], 5.4 are (we adopt our notation, apart from that,
we quote [13]):

(i) Frequency test (monobit test). (. . . ) Let n−, n+ denote the number of −1’s
and +1’s in EN , respectively. The statistic used is

X1 =
(n− − n+)2

N
(10)

which approximately follows a χ2 distribution with one degree of freedom
if N ≥ 10.

(ii) Serial test (two bit test). (. . . ) Let n−, n+ denote the number of −1’s
and +1’s in EN , respectively, and let n−−, n−+, n+−, n++ denote the
number of occurrences of (−1,−1), (−1,+1), (+1,−1), (+1,+1) in EN ,
respectively. (. . . ) The statistic used is

X2 =
4

N − 1
(n−− + n−+ + n+− + n++) − 2

N
(n2
− + n2

+) + 1 (11)

which approximately follows a χ2 distribution with two degrees of freedom
if N ≥ 21.

(iii) Poker test. Let m be a positive integer such that �N/m� ≥ 5 · 2m and let
k = �N/m�. Divide the sequence EN into k non-overlapping parts each
of length m, and let ni be the number of occurrences of the i-th type of
sequence of length m, 1 ≤ i ≤ 2m. (. . . ) The statistic used is

X3 =
2m

N

(
2m∑
i=1

n2
i

)
− k (12)

which approximately follows a χ2 distribution with 2m− 1 degrees of free-
dom. Note that the poker test is a generalization of the frequency test:
setting m = 1 in the poker test yields the frequency test.

(iv) Runs test. (. . . ) The expected number of runs of −1’s (or +1’s) of length i
in a random sequence of length N is mi = (N − i+3)/2i+2. Let k be equal
to the largest integer i for which mi ≥ 5. Let Bi, Gi be the number of runs
of −1’s (or +1’s) of length i in EN for each i, 1 ≤ i ≤ k. The statistic used
is

X4 =
k∑
i=1

(Bi −mi)2

mi
+

k∑
i=1

(Gi −mi)2

mi
(13)

which approximately follows a χ2 distribution with 2k − 2 degrees of free-
dom.

(v) Autocorrelation test. Let d be a fixed integer, 1 ≤ d ≤ �N/2�. The number
of bits in EN not equal to their d-shifts is

A(d) = −
N−d∑
i=1

eiei+d − 1
2

=
N − d

2
− 1

2

N−d∑
i=1

eiei+d
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The statistic used is

X5 = 2
(
A(d) − N − d

2

)
/(N − d)1/2 (14)

which approximately follows a N (0, 1) distribution if N − d ≥ 10. Since
small values of A(d) are as unexpected as large values of A(d), a two-sided
test should be used.

Now we will show that the statistics X1, X2, X5 can be controlled very well
(in fact, nearly optimally) while X4 satisfactorily in terms of our PR measures
W and C�. (We will return to the case of the statistic X3 in a remark at the end
of this section).

Theorem 2. For all binary sequences EN of form (1) we have

(i)

X1 ≤ 1
N

(W (EN ))2;

(ii)

X2 ≤ 2
N

(
(C2(EN )2) + (W (EN ))2

)
+ 21; (15)

(iii) writing

Yi =
(Bi −mi)2 + (Gi −mi)2

mi

so that

X4 =
k∑
i=1

Yi (16)

we have

Yi ≤
2
mi

(
3 +

i+ 2
2i+2

W (EN ) +
1

2i+2

i+2∑
�=2

(
i+ 2


)
C�(EN )

)2

(17)

for i ≤W (EN ), and
Yi = 2mi (18)

for i > W (EN );
(iv)

X5 ≤ C2(EN )
(N − d)1/2

Proof of Theorem 2

(i) Clearly we have

n− = −1
2

N∑
i=1

(ei − 1), n+ =
1
2

N∑
i=1

(ei + 1)
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so that

X1 =
1
N

(n− − n+)2 =
1
N

(
−

N∑
i=1

ei

)2

≤ 1
N

(W (EN ))2.

(ii) If |a| ≤ |b| we will write a = θ(b). Clearly we have

1
N − 1

=
1
N

+
1

(N − 1)N
=

1
N

+ θ

(
2
N2

)
so that

4
N − 1

(n2
−− + n2

−+ + n2
+− + n2

++) (19)

=
4
N

(n2
−− + n2

−+ + n2
+− + n2

++) + θ

(
2
N2

)
θ
(
4N2

)
=

4
N

(n2
−− + n2

−+ + n2
+− + n2

++) + θ(8)

Moreover we have

n− = n−− + n−+ + θ(1)

whence

n2
− = (n−− + n−+)2 + θ(2(n−− + n−+)) + θ(1) (20)

= n2
−− + 2n−−n−+ + n2

−+ + θ(3N)

and in the same way

n2
+ = n2

+− + 2n+−n++ + n2
++ + θ(3N). (21)

It follows from (11), (19), (20) and (21) that

X2 =
2
N

(
(n−− − n−+)2 + (n+− − n++)2

)
+ θ(8) + θ(12) + θ(1) (22)

Here we have

(n−− − n−+)2 (23)

=

(
1
4

N−1∑
i=1

(ei − 1)(ei+1 − 1) +
1
4

N−1∑
i=1

(ei − 1)(ei+1 + 1)

)2

=

(
1
2

(
N−1∑
i=1

eiei+1 −
N−1∑
i=1

ei+1

))2

≤ 1
4

(C2(EN ) +W (EN ))2

≤ 1
2
(
(C2(EN ))2 + (W (EN ))2

)
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and in the same way

(n+− − n++)2 ≤ 1
2
(
(C2(EN ))2 + (W (EN ))2

)
. (24)

(15) follows from (22), (23) and (24).
(iii) Clearly we have

Bi =
(−1)i

2i+1
(e1 − 1) · · · (ei − 1)(ei+1 + 1)

+
N−i−1∑
n=1

(−1)i

2i+2
(en + 1)(en+1 − 1) · · · (en+i − 1)(en+i+1 + 1)

+
(−1)i

2i+1
(eN−i + 1)(eN−i+1 − 1) · · · (eN − 1).

Here the absolute value of both the first and the last term is at most 1, so
that their contribution is θ(2) (where again θ(. . .) is defined as previously).
Taking the term-by-term product in the sum in the middle, the contribution
of the products of the −1’s and +1’s is

(N − i− 1)
1

2i+2
= mi + θ(1),

and all the other terms can be collected in form of sums of type

± 1
2i+2

∑
n

en+j1en+j2 · · · en+j� (25)

where n runs over consecutive integers so that the contribution of such a
sum is

θ(W (EN )/2i+2) for  = 1

and
θ(C�(EN )/2i+2) for  > 1,

and here (j1, . . . , j�) runs over all -tuples with 0 <  ≤ i+ 2,

0 ≤ j1 < j2 < · · · < j� ≤ i+ 1.

For fixed  the number of these -tuples is
(
i+2
l

)
, so that altogether

Bi = mi + θ

(
3 +

1
2i+2

(
(i+ 2)W (EN ) +

i+2∑
�=2

(
i+ 2


)
C�(EN )

))
.

Since exactly the same estimate can be given for Gi, (17) follows (for all
k).
If i > W (EN ) then for all 1 ≤ n ≤ N − i+ 1 we have∣∣∣∣∣∣

n+i−1∑
j=n

ej

∣∣∣∣∣∣ ≤W (EN ) < i,
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thus both −1 and +1 occur amongst en, en+1, . . . , en+i−1 so that there is
no run of length i, hence

Bi = Gi = 0

which proves (18).
(iv) Clearly we have

|X5| =

∣∣∣∣∣
(
−
N−d∑
i=1

eiei+d

)
/(N − d)1/2

∣∣∣∣∣ ≤ C2(EN )
(N − d)1/2

.

and this completes the proof of the theorem.

Combining Theorems 1 and 2 we get

Corollary 1. For the Q-sequence described in Theorem 1 we have

X1 ≤ 100 k2(log p)2,
X2 ≤ 1000 k2(log p)2 + 21,

X5 ≤ 20 kp1/2 log p
(p− d)1/2

.

Remarks

(i) Specifying Theorem 2 to the case of the Q-sequence, we get a good estimate
for the statistic X4 only if k in (16) is much smaller than the one described
in the definition of the runs test. Namely, the number of runs of length i
can be estimated by using the bounds for the correlations of order ≤ i,
however, the estimates obtained in this way become too weak for large i.

(ii) Trying to estimate the statistic X3 in the poker test, the difficulty is that
we have to divide EN into non-overlapping parts; it is for this reason that
it is not enough to use correlations of different orders. However, in [12]
we also introduced a third PR measure, the combined (well-distribution –
correlation) PR-measure of order k, defined as

Qk(EN ) = max
a,b,t,D

∣∣∣∣∣∣
t∑
j=0

ea+jb+d1ea+jb+d2 · · · ea+jb+dk

∣∣∣∣∣∣ ;
and we also proved that for the special Q-sequence formed by the Legendre
symbol (described in (4)) we have

Qk(EN ) � kN1/2 logN.

(Later we dropped the use of this measure Qk. Namely, it provides better
insight into the PR properties of the given sequence if we separate the
estimates of the well-distribution measure and the correlation, besides the
arguments and formulas become easier to follow.)
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It could be shown similarly that for the general Q-sequence, described in
Theorem 1, we have

Qk(EN ) � kN1/2 logN.

Using this, we could also estimate the statistic X3 reasonably well.

The theoretical testing performed above lead to the conclusion that for the
Q-sequence described in Theorem 1, uniformly for all choices of the seed (the
coefficients of f(n)), it is guaranteed that the value of three of the five basic
statistics is either within the passing limit, or in the worst case just a little (by
at most a factor O(log2 N)) greater than this limit, and reasonably good uniform
upper bounds can be given for the values of the two other statistics as well. These
facts can be considered as a strong tendency towards pseudorandomness which
has two consequences of basic importance:

(i) In not very demanding applications we may accept the sequences made by
the Q-construction without any further numerical testing.

(ii) Even if in certain special applications we need special numerical sequences
which pass all the five basic tests, we may expect that substituting ran-
domly chosen seeds successively, in a very few tries we arrive to a numerical
sequence which passes all the five tests.

5 Trying to Eliminate the Logarithm Factor

We have seen that three times out of five cases, the theoretical uniform upper
bound is worse than the limit for passing the test by an O(log2 N) = O(log2 p)
factor only. Can one eliminate this unwanted log factor, or at least a part of
it ? Can one do this by choosing p (and/or f(n)) in the appropriate way ?
The mathematically provable answer seems to be beyond reach at the moment;
however, one can give a more or less convincing heuristics.

Specifying the Q-construction to the case (4) (the Legendre symbol), (8) in
Theorem 1 gives

max
0<X<Y<p

∣∣∣∣∣ ∑
X<n<Y

(
n

p

)∣∣∣∣∣ ≤ W (Ep) < 10p1/2 log p. (26)

Can one improve on this, can one prove

max
0<X<Y<p

∣∣∣∣∣ ∑
X<n<Y

(
n

p

)∣∣∣∣∣ = o(p1/2 log p) ?

It seems hopeless to prove this without any unproved hypothesis. On the
other hand, Montgomery and Vaughan [15] proved: “Suppose that GRH [the
Generalized Riemann Hypothesis] is true. Then for any non-principal character
χ modulo q and any x, ∑

n≤x
χ(n) � q1/2 log log q.
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This estimate is essentially best possible, for Paley [18] has shown that there
are infinitely many fundamental discriminants D ≡ 1 mod 4 for which

max
x

∣∣∣∣∣∣
∑
n≤x

(
D

n

)∣∣∣∣∣∣ > 1
7
D1/2 log logD.”

These facts may suggest that, perhaps, our upper estimates for X1, X2 and
X5 also hold with the unwanted log2 p, resp. log p factors reduced to log log p;
however it seems hopeless to prove this without GRH, and it seems to be very
difficult even under GRH. Moreover, even if this reduction to log log p is possible,
this is the best we can achieve uniformly in p.

On the other hand, still one may hope that even this unwanted log log p factor
can be eliminated for appropriate values of p. A result of Montgomery and
Vaughan [16] seems to point in this direction: they proved that for a positive
proportion of the primes p we have

max
0≤X<Y≤p

∣∣∣∣∣ ∑
X<n<Y

(
n

p

)∣∣∣∣∣ � p1/2.

However, even if the logarithm factors in the upper bounds for X1, X2 and
X5 can be eliminated completely for certain special values of p, it will be very
difficult to show this.

6 Choosing p

We have just proposed a restriction on the choice of p. However, there is an
other, even more important requirement when we choose p. Namely, the upper
estimate (9) in Theorem 1 is conditional: it holds under the condition that one
of (i), (ii) and (iii) in Theorem 1 holds. Thus when we choose our parameters,
we have to do this so that we should be able to use one of the three assumptions.

Clearly, from practical point of view (i) is the least useful condition, since it
ensures the control of the correlation of order 2 only. (iii) is much more useful,
and if we want completely unconditional construction and estimates, then this
is the best one of the three. On the other hand, the inequality in (iii) poses quite
strong restriction on the choice of k and , so that if we want to control high
order correlations as well, then we must keep the degree of f(n) quite small.
Probably this inequality is very far from being best possible; it would be very
desirable to improve on it.

However, out of the three, (ii) is far the most convenient condition to use,
provided that there is a p at hand with the property that 2 is a primitive root
modulo p. So what is known about the primes with this property? For p > 2, let
g(p) denote the least positive integer which is a primitive root modulo p. Murata
[17] writes: “Numerical examples show that, in most cases, g(p) are very small.
Among the first 19862 odd primes up to 223051, g(p) = 2 happens for 7429
primes (37.4%) (. . . ) And we can support this observation by a probabilistic
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argument (. . . ) we can surmise that, for almost all prime p, g(p) is not very far
from p−1

ϕ(p−1) . The function p−1
ϕ(p−1) fluctuates irregularly, but we can prove the

asymptotic formula:

π(x)−1
∑
p≤x

p− 1
ϕ(p− 1)

= C +O

(
log log x

log x

)
,

C =
∏
p

(1 +
1

(p− 1)2
) ≈ 2.827.”

Heath-Brown [8] writes: “In 1927 Artin conjectured that any integer k, other
than −1 or a perfect square, is a primitive root for infinitely many primes.
It was shown by Hooley [9], [10, Chapter 3] that the conjecture is true for k,
providing that the Riemann Hypothesis holds for the Dedekind zeta function of
each field Q(k1/q) (where q runs over primes). Indeed, under this assumption,
Hooley proved that there are asymptotically cLi(x) primes p ≤ x for which k
is a primitive root, where c is a certain constant depending on k.” Moreover,
he proved in [8]: “There are at most two (positive) integers for which Artin’s
conjecture fails.” So that almost certainly there are infinitely many primes p
such that 2 is a primitive root modulo p, and a positive proportion of the primes
p is expected to have this property. Thus if we check consecutive primes p for 2
being a primitive root modulo p, we may expect to hit a prime with this property
in bounded many tries. Moreover, as Murata’s remark shows, one may speed up
this search for a good prime by restricting ourselves to primes such that p−1

ϕ(p−1)

is “small”, say < 4 (anyway, we need the factorization of p−1 to decide whether
2 is a primitive root modulo p or not); this requirement is in good accordance
with the one formulated at the end of Section 5.

If there is a table of prime numbers at hand, then in the search for a good p we
may also utilize the well-known and easy-to-prove elementary fact that if p is a
prime of the form 4q+1 where q is also a prime, then 2 is a primitive root modulo
p. (If a stronger, quantitative version of Schinzel’s well-known “Hypothesis H”
[19], [20] is true, then there are % x/ log2 x primes of this form up to x). Note
that a prime of this form also suits the requirement at the end of Section 5 ideally
(certain heuristic considerations seem to indicate that, perhaps, character sums
of type studied in Section 5 are easier to estimate from above if ϕ(p− 1)/(p− 1)
is possibly large).

7 Length of the Sequence Generated

So far we have studied the “complete” Q-sequence Ep = {e1, . . . , ep} described
in (7). However, in modular constructions it is customary (in cryptographic
applications, even necessary) also study much shorter, “truncated” sequences
EM = {e1, e2, . . . , eM} with M much smaller than p. So the question is: how
small can one make M so that EM still possesses certain PR character?

If M > cp (with c > 0), then clearly, our estimates above can be used equally
well, the sequence preserves its PR nature basically intact. If M decreases to
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about N1/2, the rate of the error term to the trivial estimate grows, and around
N1/2 our estimates become trivial. Of course, it is possible that the sequence
still preserves its PR character, only we cannot prove it, only the techniques fail.
So what is really going on at this point? Again, as in Section 5, nothing can be
proved anymore, but at least a good heuristics can be given.

If there is a non trivial upper bound for W (EM ) with, say, M = �pc�, then
this must also cover the simplest special case (4) (the Legendre symbol) so that
we must have ∣∣∣∣∣∣

∑
n≤M

(
n

p

)∣∣∣∣∣∣ < M

It follows that the least quadratic non-residue is less than M ≤ pc, but this
is not known for c < 1

4e
−1/2 (still Burgess’ [4] c = 1

4e
−1/2 + ε is the best known

exponent). Thus we cannot expect any unconditional proof for M < pc with c
small. Again, under GRH the situation is different: “on GRH one has∑

n≤x
χ(n) �ε x

1/2qε ”

[15] (where χ belongs to the modulus q) so that we may expect that our PR
measures are “small” even for M ∼ pε. Thus the truncated sequence almost
certainly preserves its PR character down to pε, and perhaps even much further.
However, for sure we cannot go below log p log log p since it is known [14] that
the GRH implies that the least quadratic non residue mod p is infinitely often
% log p log log p.

Summarizing: M must be chosen from the interval

[log p(log p log p)1+c, p];

if our priority is pseudorandomness, then we have to choose M near the top end,
say M > cp, while in, say, cryptographic applications, we may wish to choose M
closer to the lower end, but then it is advised to check the numerical sequence
constructed by using one or more of the basic statistical tests listed above.

8 Choosing the Seed (the Polynomial f(n))

Let K be a positive integer to be fixed later; at this point it suffices to assume
that, say, 3 ≤ K < p1/2. Consider all the polynomials h(x) ∈ Fp[x] of the form

h(x) = aKx
K +

T∑
i=0

aix
i with T = �K/3� (27)

(here we modify slightly the construction given in [6]) where aK , aT , a0, a1, . . . ,
aT−1 are chosen in random way with

aK , aT ∈ Fp \ {0}, a0, a1, . . . , aT−1 ∈ Fp. (28)



356 J. Rivat and A. Sárközy

Each of these polynomials h(x) can be written in the form

h(x) = (r(x))2h�(x) (29)

where r(x) ∈ Fp[x], h�(x) ∈ Fp[x] and h� has no multiple zero in Fp (the algebraic
closure of Fp). (See Lemma 1 in [1]). Then clearly r(x) | (h(x), h′(x)) whence

r(x) | (Kh(x) − xh′(x)) = (K − T )aTxT + · · ·

and thus
0 ≤ deg r(x) ≤ T. (30)

It follows from (29) and (30) that

deg h�(x) = deg h(x) − 2 deg r(x) (31)
≥ K − 2T = K − 2 �K/3� ≥ �K/3� > 0.

By (31) and the definition of h�(x), the polynomial h�(x) is of degree ≥ �K/3� >
0 (this is why we needed the gap between the xT and xK terms in (27)) and it
has no multiple zero. Thus we may apply Theorem 1 with h�(x) and deg h�(x)
(≤ deg h(x) = K) in place of f(x) and k, respectively. We obtain that for the
Q-sequence Ep = {e1, . . . , ep} defined by

en =

{(
h
(n)
p

)
for (h�(n), p) = 1

+1 for p | h�(n)
(32)

we have
W (Ep) < 10Kp1/2 log p (33)

and assuming that either  < p and 2 is a primitive root mod p, or

4K� < p,

we have
C�(Ep) < 10Klp1/2 log p. (34)

(Note that (31) ensures not only deg h�(x) > 0, but also that h�(n) in (32) is of
“not very small” degree.)

The analysis of the Q-sequences given in the previous sections applies to this
family F of Q-sequences of form (32). The size of the family F is huge: there are
more than pK/3 polynomials h(x) of form (27), and uniformly over all the random
choices in (28), the polynomial h(x) in (27) defines a “good” PR sequence by
(32). It is possible that different polynomials h(x) reduce to the same polynomial
h�(x); however, it was shown by Ahlswede, Khachatrian, Mauduit and Sárközy
[1] that there are not only many different sequences in F , but also the structure
of F is “rich”, “complex”, which may pay very well in the applications.

It remains to study how to choose K from the interval 3 ≤ K < p1/2. If K
grows, then our bounds in (33) and (34) for W (Ep) and C�(Ep) become weaker,
and for K % p1/2 they become trivial. Thus to guarantee good PR properties,
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K must be much less than P 1/2, so that we may choose K from the interval,
say,

0 < K < p1/4. (35)

Again, it is a matter of our priorities how to choose K from the interval (35).
If our top priority is good PR properties then we choose K near the lower end,
while if we choose K near the top end, then the PR properties may get weaker,
still this choice pays in applications where our priority is to construct “large”
families of PR sequences (like in cryptography).

9 A Further Construction

Recently the second author [21] studied the following binary sequence: let p be an
odd prime, let g be a primitive root modulo p, and let ind a denote the (modulo
p) index of a (to the base g) so that

ginda ≡ a mod p,

and also assume
1 ≤ ind a ≤ p− 1.

Then write N = p− 1, and define the sequence EN = {e1, . . . , eN} by

en =
{

+1 if 1 ≤ indn ≤ (p− 1)/2,
−1 if (p+ 1)/2 ≤ indn ≤ p− 1.

Sárközy [21] showed that this sequence has “good” PR properties: we have

W (EN ) < 20N1/2 log2 N

and, for all  ∈ N,  < p,

C�(EN ) < 278�N1/2(logN)�+1.

Comparing these estimates with the ones in Theorem 1, there the bounds are
just slightly better; the really important difference is that there a large family
of “good” PR sequences is constructed.

We learned recently that the idea to exploit ind x < p/2 or > p/2 was also
used in the Blum-Micali (BM) generator [3], defined precisely in the next section.
However, the two constructions are very different, and the Blum-Micali generator
was proved to pass the next bit test, while the construction above ensures better
control over the PR properties.

10 Running Time Analysis and Comparison with Other
Sequences

The Blum-Micali (BM) algorithm [3] (see also [13], p. 189) defines a binary
sequence EN = {e1, . . . , eN} ∈ {−1,+1}N as follows: let p an odd prime number,
g a primitive root modulo p and x0 an integer (the seed) such that 1 ≤ x0 < p.
Then for n = 1, . . . , N we compute
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xn = gxn−1 mod p and en =
{

+1 if 1 ≤ xn−1 ≤ (p− 1)/2,
−1 if (p + 1)/2 ≤ xn−1 ≤ p− 1.

Generating each pseudorandom bit using BM requires essentially one modular
exponentiation (modulo p), so the whole sequence will cost at least O(N log2 p).

The Blum-Blum-Shub [2] (BBS) algorithm defines a sequence

{b1, . . . , bN} ∈ {0, 1}N

as follows: let p and q be two distinct (random) prime numbers congruent to 3
modulo 4, and compute n = pq. Select a random integer s (the seed), 1 ≤ s < n
such that (s, n) = 1, and compute x0 = s2 mod n. Then for i = 1, . . . , N :

xi = x2
i−1 mod n, bi = least significant bit of xi.

A ±1 sequence can be deduced immediately by writing ei = 2bi − 1.
Generating each pseudorandom bit using BBS requires essentially one mod-

ular squaring (modulo n), so the whole sequence will cost between O(N logn)
and O(N log2 n) depending on the squaring method used.

The construction of a Q-sequence (7) is very simple when we are going to take
N ≡ p. In that case we just compute a table of all Legendre symbols in O(p) =
O(N) bit operations, and then it remains to compute all consecutive f(n). If the
polynomial f has a special form, this step can be optimized. Otherwise, the most
straightforward method will lead to O(NK) bit operations. Of course if we do
not take K “small”, the running time becomes greater than in case of the BM or
BBS generators, but we have much better control over the PR properties. The
case when we take N much “smaller” than p is just a little more complicated:
we will have to compute each Legendre symbol instead of using a table. This
will multiply the running time by O(log p).

11 Numerical Calculations

To illustrate our theoretical results by numerical data we have used the “Sta-
tistical Test Suite for random and pseudorandom number generators for cryp-
tographic applications” (sts-1.4) from the National Institute of Standards and
Technology (NIST) to submit our Q-sequences to several basic tests.

First, we have written a Q-sequences generator for “small” values of p, which
is very fast and produces good pseudorandom sequences. To save space, here we
present an example with a relatively small p and a polynomial of small degree.
We take p = 1000003, and the pseudorandom polynomial

f(x) = x32 + 637854 x9 + 514861 x8 + 755545 x7 + 883229 x6

+ 237063 x5 + 741922 x4 + 631773 x3

+ 687734 x2 + 928348 x+ 283971.

To illustrate the behavior of the sequence en obtained in this manner, we have
plotted in figure 1 the sum

∑
n≤x en, compared to ±

√
x. We used sts-1.4 to
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Fig. 1. “Walk” of our specific Q-sequence, compared with ±√
x

analyze the quality of pseudorandomness of the sequence obtained. (Of course in
the applications, p can be chosen much greater). Issuing the command assess
50000 (which means that the size of each bit-stream is 50000 bits), we could gen-
erate 20 such bit-streams and the output of the program sts-1.4 is reproduced
in figure 2. Column C1 up to C10 correspond to the a frequency specific to the
test. Then P-VALUE is the result of the application of a χ2–test, and PROPORTION
the proportion of sequences that pass the test. We have not limited the tests to
those discussed in this paper. We have also included some other classical tests
like cumulative sums (Cusum), binary matrix rank test (Rank), discrete Fourier
transform (FFT), approximate entropy (Apen). The column PROPORTION shows
that 100% of our Q-sequences passed all requested basic statistical tests.

------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
2 2 1 1 4 2 0 3 3 2 0.739918 1.0000 Frequency
4 1 2 2 1 0 0 4 3 3 0.350485 1.0000 Block-Frequency
2 1 2 3 3 3 0 2 1 3 0.834308 1.0000 Cusum
1 2 3 3 3 3 1 1 1 2 0.911413 1.0000 Cusum
6 2 2 1 0 2 2 2 0 3 0.162606 1.0000 Runs
2 3 2 3 1 4 3 2 0 0 0.534146 1.0000 Long-Run
1 0 2 0 2 4 0 3 4 4 0.162606 1.0000 Rank
0 1 5 3 0 1 2 4 2 2 0.213309 1.0000 FFT
0 3 4 3 1 1 3 3 0 2 0.437274 1.0000 Apen
2 6 1 1 3 0 1 1 1 4 0.090936 1.0000 Serial
6 2 2 1 0 3 1 2 0 3 0.122325 1.0000 Serial

Fig. 2. Statistical tests for p = 1000003

Secondly, we have implemented a version of our Q-sequences generator, using
the package

free-lip-1.1,
written by Arjen K. Lenstra, which is included in sts-1.4. This version which
can handle arbitrary large integers is of course much slower (minutes instead of
seconds), both because of the increased size of p and the necessity to compute
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each Legendre symbol individually. This is a price to pay for more security.
Concerning the statistics, the results are similar.

12 Conclusions

A large family finite pseudorandom binary sequences is presented. These se-
quences possess “very good” PR properties. The construction uses the Legendre
symbol modulo p, and polynomials f(n) over Fp. It involves a large number of
parameters: p, the degree of f(n) and, mostly, the (almost) random coefficients of
f(n). This fact ensures large flexibility in adapting the construction for different
purposes. Several general principles are discussed how to choose our parameters
optimally depending on our priorities (good PR qualities, short running time,
long sequence, some sort of cryptographical security or a combination of these).
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Authorship Attribution of Texts: A Review

M.B. Malyutov

Abstract. We survey the authorship attribution of documents given
some prior stylistic characteristics of the author’s writing extracted from
a corpus of known works, e.g., authentication of disputed documents
or literary works. Although the pioneering paper based on word length
histograms appeared at the very end of the nineteenth century, the reso-
lution power of this and other stylometry approaches is yet to be studied
both theoretically and on case studies such that additional information
can assist finding the correct attribution.

We survey several theoretical approaches including ones approximat-
ing the apparently nearly optimal one based on Kolmogorov conditional
complexity and some case studies: attributing Shakespeare canon and
newly discovered works as well as allegedly M. Twain’s newly-discovered
works, Federalist papers binary (Madison vs. Hamilton) discrimination
using Naive Bayes and other classifiers, and steganography presence test-
ing. The latter topic is complemented by a sketch of an anagrams ambi-
guity study based on the Shannon cryptography theory.

Keywords: micro-style, macro-style analysis, anagrams presence testing
and ambiguity.

1 Micro-style Analysis

1.1 Introduction

The importance of dactyloscopy (fingerprint) and DNA profiling in forensic and
security applications is universally recognized after successful testing of their res-
olution power and standardization of analyzing tools. Much less popular so far is
a similar approach to the attribution of disputed texts based on statistical study
of patterns appearing in texts written by professional writers. The best tests and
their power are yet to be estimated both theoretically and by intensive statistical
examination of stylometric differences between existing canons. If this work will
prove that conscious and unconscious style features of different professionals can
be discriminated as well or nearly as well as fingerprints of different persons,
stylometry will change its status from a hobby to a forensic tool of compara-
ble importance to those mentioned above. One obstacle for implementing this
program is the evolution and enrichment of styles during professional careers of
writers. Thus plots of style characters vs. time of production seem more relevant
tools than constant characters. Rates of change for characters may vary. Also,
authors can work in several forms, for instance, prose and verse which may have
different statistical properties. Therefore, an appropriate preprocessing must be
applied to the texts analyzed to avoid heterogeneity of forms in, for example,

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 362–380, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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parts of a dramatic corps. Finally, a reliable stylometry analysis should take into
account all available information about a disputed work, say time of its prepa-
ration, and thus teams of ”classifiers” should consist of specialists in different
fields, certainly including literary experts.

Especially appealing are those case studies where the stylometric evidence
helps to identify an otherwise unexpected candidate for authorship or deny a
popular candidate, if this attribution is confirmed later by credible evidence.
One example of such success is the denial of Quintus Curtius Snodgrass articles’
attribution to Mark Twain, later confirmed by credible documents, see section 1.
A recently discovered play ”Is he dead” was also attributed to Mark Twain. Why
not study this play by tools of stylometry before claiming its attribution?

Much more dramatic is the famous Shakespeare controversy with the attri-
bution result so far unavailable. Various stylometry and other tests point to the
same person, although much more careful testing is needed. It would be extreme-
ly encouraging if credible evidence would prove one day the correctness of the
stylometry results in this case study.

1.2 Survey of Micro-stylometry Tools

The pioneering stylometric study (Mendenhall, 1887, 1901) was based on his-
tograms of word-length distribution of various authors. These papers showed
significant difference of these histograms for different languages and also for dif-
ferent authors (Dickens vs. Thackeray) using the same language. The second
paper describes the histograms for Shakespeare contemporaries commissioned
and supported by A. Hemminway. This study demonstrated a significant dif-
ference of Shakespearean histogram from those of all but one contemporaries
studied (including the Bacon’s), and at the same time it called attention to
the practical striking identity of Shakespearean and C. Marlowe’s histograms
(Marlowe allegedly perished two weeks before the first Shakespearean work was
published). The identity was shown by a method close to the contemporary
bootstrap. However, Williams (1975) raised some doubts about the validity of
the Bacon-Shakespeare divergence of styles, pointing to the lack of homogene-
ity of the texts that were analyzed (Bacon used different literary forms, which
in my opinion only strengthens discrepancy of their styles). This objection de-
serves careful statistical analysis; its cost is now minor (hours vs. months before)
because of the availability of software and texts in electronic form. Stability of
word-length distribution for a given author also deserves further statistical study.

Ever since T. Mendenhall’s pioneering work, word-length histograms have
become a powerful tool that has been used to attribute authorship in several
case studies including an inconclusive one over a disputed poem (Moore vs.
Livingstone) controversy, and a successful rejection of Quintus Curtius Snodgrass
articles’ attribution to M. Twain, as described in Brinegar, 1963.

The frequencies and histograms mentioned above characterize the stationary
distribution of words or letters when an author has a large body (canon) of
known work. Another popular attribution tool of this kind is a Naive Bayes
(NB) classifier of Mosteller and Wallace (1964) developed during their long and
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very costly work over binary authorship attribution (Madison vs. Hamilton) of
certain Federalist papers supported by federal funding.

Fig. 1. Histograms of word length in Mark Twain and Quintus Curtius Snodgrass

After fitting appropriate parametric family of distributions (Poisson or nega-
tive binomial), they follow the Bayes rule for odds (posterior odds is the product
of prior odds times the likelihood ratio )when multiplying the odds: Madison vs.
Hamilton, by the sequence of likelihood ratios corresponding to the frequencies of
a certain collection of relatively frequent function words, obtaining astronomical
odds in favor of Madison.

This classifier presumes independence of function words usage, which is obvi-
ously false. This premise should be kept in mind when estimating significance
of similar studies (see, for example, the attribution study of certain Shakespeare
works as a byproduct of cardiac diagnosis software, well-advertised by the Boston
Globe on August 5, 2003, or certain Moliere-Corneille controversy studies). The
NB-attribution can often be confirmed by other stylometric tests, although the
NB-likelihood ratios cannot be taken seriously. The NB-classifier is routinely
used also for screening out bulk or junk e-mail messages, see Katirai, 1999, De
Vel et all, 2001.

In contrast, Thisted and Efron, 1987, use the new words usage distribution in
a newly discovered non-attributed anapest poem ”Shall I die, shall I fly?”, found
in the Yale University library, 1985.

I will touch on only one detail in their application of a popular estimation
method for the number of unseen biological species (first invented by Turing
and Good for breaking the Enigma code), namely neglecting the enrichment of
an author’s language with time. Thus the distribution of new words in a disputed
work preceding the canon of an author and that for a text following the canon,
can be significantly different, for example if Marlowe or Shakespeare wrote the
poem. Therefore, this particular application of the Turing-Good method seems
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inappropriate. Also, the comparative power of their inference in appropriate
cases seems unknown.

More promising and popular now tools use modeling of long canons as Markov
chains of some order composed of English letters and auxiliary symbols. Given a
non-attributed text T and a collection of firmly attributed (to author k) canons
T(k) of approximately the same length for training the Markov model of, say,
order 1, with transition probabilities P (k, i, j) between symbols i and j, k=1,...,
M, the log likelihood of T being written by the k-th author is

∑
log(p(k, i, j))N(i, j) + log πk(x(1)),

where the sum is over all i and j, N(i, j) is the frequency of i followed by j, πk
denotes the stationary probability of the k-th Markov chain, and x(1) is the first
symbol in T. Second order Markov chain modeling admits similar expressions
for the likelihood. The author with maximal likelihood is chosen, which is practi-
cally equivalent to minimizing the cross entropy of empirical and fitted Markov
distributions and to minimizing the prediction error probability of a next symbol
given the preceding text (Rosenfeld, 1994, 1996, Zhao, 1999), see also Khmelev,
2000, who considers his work as an extension of the classical approach of A.
Markov, 1913, 1916. Markov, 1916 applies Markov modeling to the authorship
attribution, improving an earlier less satisfactory approach by Morozov, 1915.
The power of this inference can be approximated theoretically for large sizes of
canons T(k) and T under rather natural conditions of asymptotic behavior of
their sizes (Kharin and Kostevich, personal communication). Some regulariza-
tion of small transition frequencies is worthwhile.

In a canon apparently written jointly by several authors (say, the King James
English bible), a Hidden Markov modeling is more appropriate.

Even better attribution performance in certain tests is shown in Kukushki-
na et al, 2001, by the now very popular conditional complexity of compression
minimizing classifier discussed also by Cilibasi and Vitanyi, 2003, available from
the web-site of the first author. There, the idea (approximating a more abstract
Kolmogorov conditional complexity concept which may appear theoretically the
best authorship classifier) is the following: every good compressor automatically
adapts to patterns in the text which it is compressing, reading the text from
its beginning (some compressors use various extensions of the Markov model-
ing described above, including those based on the variants of the Lempel-Ziv
algorithm). Let us define concatenated texts C(k) = T (k)T as texts starting
with T (k) and proceeding to T without stop, and corresponding compressed
texts T ′(k) and C′(k). Define the conditional compressing complexity (CCC)
to be the difference between the lengths of compressed texts |C′(k)| − |T ′(k)|
and choose the author with minimal CCC. Certainly, this definition depends on
the compressor used. In the tests described in Kukushkina et al, 2001, the best
attributing performance was shown to be that of the compressor rar.

A comparable performance is shown by some ad hoc classification methods
such as Support Vector Machines, (see Bosh and Smith, 1998, Burges, 1998).
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These methods are based on sets of characters chosen ad hoc and not unified
between different applications which does not permit a valid comparison.

I skip also any discussion of methods based on grammar parsing since these
methods are yet not fully automated. Also, their application for classifying
very old texts, such as those written by Shakespearean contemporaries, seems
doubtful.

2 Shakespeare Controversy

2.1 Introduction

Controversy concerning authorship of the works traditionally attributed to W.
Shakespeare dates back several centuries. A bibliography of material relevant to
the controversy that was compiled by J. Galland in 1947 is about 1500 pages
long (see Friedmans, 1957). A comparable work written today might well be
at least four times as large. Resolving the controversy would certainly aid our
understanding of what the author intended to convey in his works and thus would
contribute to a better insight into the history of culture. Methodology developed
during this investigation would also be useful in other applications, including the
attribution of newly discovered non-attributed texts. The goal of this part of our
rather personal overview is to stimulate further research by scholars with diverse
areas of expertise in order to resolve the Shakespeare authorship mystery. My
own contribution is minor and concerns the existence of certain steganography
in the sonnets and plausibility of longer messages hidden there. I review in
more detail the arguments in favor of only one alternative candidate, whom I
personally regard as the most likely one.

If additional incentive to undertake this study is needed, note that the Calvin
Hoffman prize, presently worth about one million British pounds, will be awarded
to the person who resolves this controversy.

The orthodox side, consisting of those who believe the traditional figure to
be the true author of these works or simply of those who find it appropriate to
maintain this version, mostly keeps silent about arguments put forth against the
authorship of W. Shaxpere (W.S.) from Stratford on Avon (this one of several
spellings of the name is used to distinguish the traditional figure from the as
yet undecided author of the Shakespeare canon). When not silent, the orthodox
accuse the heretics of being lunatics or snobbish. A collection of their arguments
can be found in Matus, 1994.

2.2 Documentary and Literary Arguments

Anti-Stratfordian snobbish lunatics (including to some extent M. Twain, S.
Freud, Ch. Chaplin, Ch. Dickens, B. Disraeli, J. Galsworthy, V. Nabokov, W.
Whitman, R. Emerson, J. Joyce, and H. James: ”divine William is the biggest
and most successful fraud ever practiced”) point out numerous documentary and
literary reasons for rejecting or doubting the authorship of W.S.
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One early survey of these grave doubts in several hundred pages was written by
a US presidential hopeful Donnelly, 1888. Similar doubts were expressed in many
subsequent books including recent ones, see Mitchell, 1996, and Price, 2001.
Scarce documents related to W.S. revealed there allow the following scenario of
his career.

His education in Stratford or any literary work there is not documented. A
rather ambiguous record about his marriage is kept in the local church. Aban-
doning Stratford just after the birth of his twins and being warned of severe
persecution over next stealing rabbits in the woods of his landlord, he apparent-
ly wandered for several years in constant fear of a severe punishment imposed
on tramps in the Elizabethan time. Eventually, he was employed in valet horse
parking at one of London theaters, later on he was apparently promoted to its
security (since he is mentioned in several complaints over his part in assaults
against alternative theaters: these were also centers of criminal activities such
as gambling, prostitution, etc., there were frequent fights between them which
forced the London mayor to transfer them out of City). Being a talented organiz-
er, W.S. has later become an ambitious administrator, producer and shareholder
of the theater occasionally performing secondary scenic roles,, and likely also an
informer of the ESS (he seems to be the only theater functionary avoiding ar-
raignment after the Essex revolt involving a performance of an allegedly W.S.’
play!). W.S. has probably bought a respect of censors for popular plays to pass
smoothly. He used to make around a thousand pounds a year for his apparent-
ly mostly undercover activity (compare this to only a twice larger sum which
was paid by Elizabeth to her prime minister W. Cecil!). He argued fiercely with
dramatists for changes in their plays to make them more popular, and he was
not sensitive to authors’ rights in publications which brought him pennies as
compared to his other activities. Thus he apparently cared little if any plays
were published under his name (if he could fluently read at all). His Last Will
clearly shows that he did not keep any printed matters, without mentioning
manuscripts. His death was not even noticed by contemporary poets.

There is evidence that W.S. lent money to dramatists for writing plays per-
formed and published under his name and ruthlessly prosecuted those failing to
give the money back in time. This is revealed by Mitchell and Price in their dis-
cussions of Groatsworth of Wit published in 1592 after the death of well-known
dramatist R. Green, where apparently W.S. is called Terence and Batillus with
the obvious meaning of appropriating somebody else’s plays. In a recently found
manuscript (see
http://ist-socrates.berkeley.edu/˜ahnelson/Roscius.html)
written during W.S.’s retirement in Stratford prior to 1623 (First Folio) he was
called our humble Roscius by a local educated Stratfordian author, meaning a
famous Roman who profited from special laws allowing him to hawk or sell seats
in the theater, and who was not known as an actor/playwright, merely as a
businessman who profited on special favor1.

1 A possible visual pattern for W.S. is father Doolittle from ”My fair lady”, who also
did little for creating the treasure of arts bearing his name.
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As a Russian scholar, I knew several Russian Terences in Math Sciences who
used their Communist party privileges to produce remarkable lists of publica-
tions ”borrowed” from others, say persons condemned as dissidents or enemies
of the State, who were meant to be forgotten in the Soviet Union, and for whom
any reference to their work was strictly forbidden. It is not sufficiently remem-
bered that Elizabethan England was an equally closed society with its ruthless
censorship and persecution. Well-known, Oscar-winning scenarios written dur-
ing the McCarthy era in the US by blacklisted authors under false names were
milder similar stories.

This concise overview cannot touch on the hundreds of grave very different
questions raised in the books mentioned above2. W.S.’s authorship (WSA) of a
substantial part of Shakespeare is hardly compatible with any of them and my
subjective log likelihood of WSA to answer all of them does not exceed negative
40 (compare with naive Bayes classifier discussed before). In my experience as a
statistical consultant in forensic cases (especially a disputed paternity) involving
DNA profiling, a much milder mismatch would be sufficient for a court to reject
paternity. Some scholars would prefer an explanation of the existing documents
not to be based on miracles as holds for WSA. Forensic (in addition to literary)
experts must play a decisive role in resolving the controversy as shown further.

The major issues for anti-Stratfordians to resolve are: whose works were pub-
lished under the Shakespeare name, and why this disguise of authorship hap-
pened in the first place and then remained hidden for such a long time.

Francis Bacon became the first candidate for an alternate author, probably
because his knowledge of vast areas of culture matched well with that shown in
the Shakespeare works.

(a) Francis Bacon (b) Ignatius Donnelly

Fig. 2.

2 See also a vast recent collection in http://www2.localaccess.com/marlowe/
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The pioneering stylometric study (Mendenhall, 1901) of Shakespeare contem-
poraries using histograms of their word-length distribution demonstrated the
unlikelihood of Bacon’s authorship of Shakespeare.

Century-long fruitless mining for cryptography in Shakespeare, allegedly in-
stalled there by F. Bacon, and multi-million expenditures for digging the ground
in search of the documents proving that F. Bacon wrote Shakespearean works,
are brilliantly analyzed in Friedmans, 1957. The father of American military
cryptography William Friedman and his wife started their careers in cryptogra-
phy assisting the deceptive (by their opinion) Bacon cryptography discovery in
Shakespeare by E. Gallup (which was officially endorsed by general Cartier, the
head of the French military cryptography those days!). This amusing book, full
of historic examples, exercises and humor, should be read by everyone studying
cryptography!

Up to now, one of most attractive alternative candidates has been Edward de
Vere, 17th earl of Oxford. De Vere’s life seems by many to be reflected in the
sonnets and Hamlet. Both de Vere and F. Bacon headed branches of the English
Secret Service (ESS). De Vere was paid an enormous sum annually by Queen
Elizabeth allegedly for heading the Theater Wing of the ESS, which was designed
in order to prepare plays and actors to serve the propaganda and intelligence
collecting aims of the Queen’s regime3. De Vere’s active public support of the
corrupt establishment of the official Anglican church in the dramatic Marprelate
religious discussions confirms him as one of the principal Elizabethan propaganda
chiefs.

(a) Mary Sidney Herbert, countess
of Pembroke

(b) William Friedman

Fig. 3.

3 See www.shakespeareauthorship.org/collaboration.htm referring to Holinshed’s
chronicles commissioned by W. Cecil, the head of Elizabethan Privy Council.
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Other major candidates for Shakespeare authorship include R. Manners, 5th
earl of Rutland, W. Stanley, 6th earl of Derby and several other members of an
aristocratic Inner Circle surrounding the Queen and including F. Bacon, Edward
de Vere and Mary Sidney Herbert (who ran a literary academy at her estate in
Wiltshire for the University Wits) together with her sons. Judging by the works
that were firmly attributed with reasonable certainty to each of them, none seems
to have been a genius in poetry.

Some from this circle might have been able to produce plots and first versions
of plays, but these attempts would need a master in order to be transformed
into masterpieces. Some of these people may in fact have done the editing work
on some of the Shakespeare works (Mary Sidney and her sons). One should also
consider that the voluntary hiding of authorship on any of their parts seems
unlikely. Due to the wide extent of the Inner Circle, authorship information
would inevitably have become known to everyone. And yet, to the true author
of the plays and poems there should have been dramatic reasons to not claim
the works universally recognized as ”immortal”. Note also that the author of the
works mastered more than 30,000 English words (as estimated by Efron and
Thiested (1975)) compared to about 3000 words used by an average poet. He
had also mastered Greek, Latin and several contemporary European languages.
In addition, he must have had a profound knowledge of classical literature, phi-
losophy, mythology, geography, diplomacy, court life and legal systems, science,
sport, marine terminology and so forth.

The role of paper Mendenhall, 1901, may be informally compared with that
of a hunting dog. Due to the discovery contained in it, a famous poet, translator
and playwright Christopher Marlowe emerged as one of main candidates. In an
unprecedented petition by Elizabethan Privy Council Marlowe’s important
service on behalf of the ESS was acknowledged, and granting him Masters degree
by Cambridge University was requested in spite of his frequent long absences (see
Nicholl, 1992.). His blank iambic pentameter, developed further in Shakespearean
works, remained the principal style of English verse for several centuries. In 29,
ambitious Marlowe was among the most popular London dramatists during his
allegedly last 5 years.

Arraigned into custody after T. Kyd’s confessions under torture, and let out
on bail by his ESS guarantors, Marlowe was allegedly killed by an ESS agent (in
the presence of another one responsible for smuggling agents to the continent)
at their conventional departure house in Deptford, owned by a close associate of
Elizabeth, almost immediately after a crucial evidence of Marlowe’s heresy was
received by the court, implying an imminent death sentence. There is evidence
of Marlowe’s involvement in the Marprelate affair which made him a personal
enemy of the extremely powerful ruthless archbishop Whitgift of Canterbury, who
did everything possible to expose Marlowe for ages as a heretic and eliminate him
(see the well-known anathema written by cleric T. Bird, O. Cromwell’s teacher,
in Nicholl, 1992).
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A Marlowe’s friend T. Penry, publisher of the Marprelate pamphlets, was
hanged previous evening two miles from Deptford and his body has never after
been accounted for, in spite of many petitions by Penry’s relatives.

Then, two weeks after Marlowe’s supposed demise, the manuscript of the poem
Venus and Adonis, which had been anonymously submitted to a publisher some
months before, was amended with a dedication to the earl of Southampton that
listed for the very first time the name of W. Shakespeare as author (any link
between the earl and W.S. seems unlikely, Marlowe was likely the earl’s tutor in
Cambridge).

There are numerous documentary and literary reasons to believe that Mar-
lowe’s death was faked by his ESS chiefs (who expected further outstanding ser-
vice from him) in exchange for his obligation to live and work forever after under
alternate names. These arguments are shown on the intelligent and informative
web-site http://www2.prestel.co.uk/rey/ of a popular Shakespearean actor
and former top manager of British Airlines, P. Farey. One of them is obvious :
spending the whole last day in Deptford (apparently, awaiting the companion),
Marlowe defied a strict regulation of daily reporting to the court, hence he knew
beforehand that he would never come back under his name.

Farey also reviews extracts from the sonnets and other works of Shakespeare
hinting at their authorship by Marlowe after the Deptford affair. He gives the
results of various stylometric tests, showing that the micro-styles of Marlowe and
Shakespeare are either identical, or else the latter’s style is a natural development
and enrichment of the former. The micro-style fingerprint would give strong ev-
idence for Marlowe’s authorship of Shakespearean work, if further comprehen-
sive study confirms that their style patterns are within the natural evolutionary
bounds while other contemporary writers deviate significantly in style4.

Some scholars believe that the ingenious propaganda chiefs of the ESS part-
ly inspired and paid for the production of C. Marlowe, and perhaps of some
other politically unreliable dramatists, and directed this production using the
Shakespeare pipeline to avoid problems with scrupulous censorship proceedings
and also convert dissidents into a kind of unnamed slaves (an early prototype of
Stalin labor camps for researchers).

During O. Cromwell puritan revolt in forties-fifties of 17th century all theaters
were closed, many intelligence documents were either lost or burnt, and the
revival of interest to the Shakespearean creative work came only in 18th century
making the authorship attribution problematic.

2.3 Micro-style Analysis

The stylometric tables in the section Stylometrics and Parallelisms, Chapter
Deception in Deptford, found on the Farey’s website include convincing tables
of word-length usage frequencies, including those made by T. Mendenhall, as

4 Imagine James Bond let out on bail and reported killed by his colleague soon after
a DNA test proved his unauthorized crime. Will you believe in his death if his DNA
was repeatedly found later on his victims?
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well as of function words, feminine endings, run-on lines, etc., in both Mar-
lowe and Shakespeare as functions of presumable dates of writing corresponding
texts.

Again, more careful statistical study of these and more powerful micro-style
tests described in section 1 is desirable. Farey’s plots clearly show the evolution of
styles, which has not been taken into account (or even denied) in many previous
studies. For example, some Russian linguists have claimed that the proportion of
function words is constant inside the canon during the whole writer’s life. This
claim was used by them to reject Sholokhov’s authorship of the first part of his
Nobel prize-winning novel.

2.4 Macro-style Analysis

An interesting controversial comparative study of Shakespeare’s and Marlowe’s
macro-styles5 exists on the web-site of late Alfred Barkov

http://www.geocities.com/shakesp marlowe/
Barkov’s analysis of the inner controversies in Marlowe’s and Shakespeare

works including Hamlet, well-known for a long time, enables him to claim that
the texts were intentionally used to encode the story in such a way that the
authors’ actual messages remain misunderstood by laymen while being under-
standable to advanced attentive readers. Barkov calls this style menippea, con-
sidering it similar to the satira menippea, a style found in many classical works
and discussed by prominent Russian philosopher M.Bakhtin (1984). Menippeas
often appear in closed societies, since authors tend to use Aesopian language
to express their views. This language was very characteristic for Marlowe: he
used his poetic genius to provoke Elizabethan enemies by his ambiguous state-
ments to expose their views for subsequent reporting to the ESS (see Nicholl,
1992).

Barkov’s analysis of the inner controversies in Hamlet is parallel to the inde-
pendent analysis of other authors. For instance, the well-known contemporary
novelist publishing under the nickname B. Akunin, presented recently his ver-
sion of Hamlet in Russian (available in the Internet via the search inside the
web-library www.lib.ru) with a point of view rather similar to that of Barkov,
including the sinister decisive role played by Horatio.

2.5 Cryptpgraphy Mining

In November 2002, a Florida linguist, R. Ballantine, sent me her decipherment
of Marlowe’s anagrams in consecutive bi-lines (that is, pairs of lines) of most
of Shakespeare and also of some other works, revealing the author’s amazing
life story as a master English spy both in Britain and overseas up to 1621.
Her stunning overview with commentaries based also on her previous 20 years of
documentary studies is almost 200 pages long. Her novels covering Marlowe’s life

5 Namely, a sophisticated architecture of their works and well-known ambiguity of
many statements inside them.



Authorship Attribution of Texts: A Review 373

Fig. 4. Roberta Ballantine

until the Deptford affair are more than thousand pages long. I was challenged to
make a judgment about the validity of her findings, which stimulated my interest
in the topic.

Irrespective of the authenticity of the historic information conveyed in her
overview, the story is so compelling that it might become a hit of the century
if supplied with dialogues and elaboration and published as a fiction novel by a
master story teller (see several chapters of her unpublished novels and anagram
examples on the web-site:

http://www.geocities.com/chr marlowe/
Barkov claims that Ballantine’s deciphered anagram texts follow the menippea

macro-style of Marlowe’s works. If established as true, this story will constitute
a bridge between golden periods of poetry and theater in the South-Western
Europe and Britain because in it C. Marlowe is revealed as a close friend of such
leading late Renaissance figures as M. Cervantes and C. Monteverdi, as well as
the main rival in love and theater of Lope de Vega.

It is almost unbelievable that the author of Shakespearean works could pur-
sue additional goals while writing such magnificent poetry. However, caution
is needed: Thompson and Padover, 1963, p. 253, claim that Greek authors of
tragedies used to anagram their names and time of writing in the first lines of
their tragedies (a kind of water marking), which Marlowe could well learn from
his best teachers in the King’s school, Canterbury and University of Cambridge; a
similar tradition was shared by Armenian ancient writers as a protection against
plagiarism of copyists, as described in Abramyan, 1974. Also, first announcing
discoveries by anagrams was very popular in those times (Galileo, Huygens, Ke-
pler, Newton among other prominent authors); anagrams were certainly used by
professional spies.

Attempting to establish cryptographic content in Shakespeare after the dis-
couraging book Friedmans, 1957, is very ambitious. Moreover, serious doubts
remain concerning the appropriateness of anagrams as a hidden communication
(or steganography) tool, as will be discussed further.
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It is natural to consider two stages in the analysis of the validity of deciphered
anagrams. The first question to address is the existence of anagrams in the texts.
This we have attempted to test statistically starting from our observation that
all the anagrams deciphered in Shakespeare contain various forms of Marlowe’s
signature at the beginning.

R. Ballantine has considered bi-lines as suitable periods for anagramming
case-insensitive letters. After deciphering an initial bi-line, she proceeds to the
very next one, and so on, until the final signature. In a given play, the first bi-line
that begins an anagramming is usually at the beginning of a dialogue, or after
a special, but otherwise meaningless sign, a number of which appear in early
editions of Shakespearean works.

Following Thompson and Padover, 1963, we mine for Marlowe’s signature in
the first bi-lines of sonnets, which makes for an easier test, since a disastrous
multiplicity-of-decisions problem is avoided in this way. Besides, 154 sonnets,
with only a small part of them deciphered so far, constitute a homogeneous
sample of 14 lines (7 bi-lines) each (with a single exception). Hence we chose
to focus on the sonnets for statistical testing of the presence of anagrams leav-
ing aside almost all other Shakespearean works, which allegedly also contain
anagrams.

An important requirement is a careful choice of an accurate published version
which has varied over time. I was fortunate to find help from an expert in the
field, Dr. D. Khmelev, University of Toronto, who was previously involved in a
joint Shakespeare-Marlowe stylometry study with certain British linguists.

For a given bi-line b, let us introduce the event M = {b contains the set of
case-insensitive letters M,A,R,L,O,W,E } (event M is equivalent for this name
to be a part of an anagram) Using a specially written code, Khmelev showed (by
my request):

Proposition 1. The numbers of first, second, etc. bi-lines in the sonnets for
which event M occurs are respectively 111, 112, 88, 98, 97, 101, 102 out of 154
sonnets.

Our first corollary follows:

Proposition 2. Let us test the null hypothesis of homogeneity: event M has
the same probability for all consecutive bi-lines in sonnets versus the alter-
native that the first bi-line contains this set of letters more often than subse-
quent ones. It is also assumed that these events for all bi-lines are independent.
Then the P-value of the null hypothesis (i.e. the probability of the frequency
deviation to be as large or more under the null hypothesis) is less than four
per cent.

Proof.We apply a standard two-sample test for equality of probabilities based on
the normalized difference between frequencies fi, i = 1, 2, of containing the case-
insensitive set of letters ’m’, ’a’, ’r’, ’l’, ’o’, ’w’, ’e’ inside the first and all other bi-
lines respectively which has approximately standardnormal distribution for such a
big sample; f1 is near 72.1 per cent, f2 is almost 65 per cent. Thus the approximate
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normalized difference of frequencies (f1 − f2)/
√
f̄(1 − f̄)(1 + 1/6)/154 is around

1.78, where f̄ := (f1 +6f2)/7, and the normal approximation to the binomial prob-
ability of this or larger deviation (P-value) is near 3.75 per cent which is a rather
unlikely event.6

Apparently, this anomaly in homogeneity of bi-lines signals that the first bi-
lines were specially designed to include this set of letters as part of an anagram
signature. Note that signatures may vary over sonnets. Thus our estimate is an
upper bound for the P-value of bi-lines homogeneity versus several variants of
Marlowe’s signature in the first bi-line.

Thus, the existence of anagrams hidden by Marlowe in Shakespeare looks
rather likely.

Of course, other explanations of this statistical anomaly might also be possible.
To deal with this possibility, I applied to a recognized expert in statistics on
Shakespeare and on English verses in general who is with the University of
Washington. Unfortunately, she turned out to be a Stratfordian, and so she
chose not to reply at all.

A much more difficult task is to study the authenticity (or uniqueness) of the
anagrams deciphered by R. Ballantine. This is due to a notorious ambiguity of
anagrams which seems to be overlooked by those who have used anagrams to
claim priority, see above. An amazing example of this ambiguity is shown on pp.
110-111, Friedmans, 1957, namely: 3100 different meaningful lines-anagrams in
Latin exist for the salutation ”Ave Maria, gratia plena, Dominus tecum”. These
are referred to a book published in 1711.

A theory of anagram ambiguity can be developed along the lines of the fa-
mous approach to cryptography given in C. Shannon’s Communication Theory
of Secrecy Systems written in 1946 and declassified in 1949. An English text is
modeled in it as a stationary ergodic sequence of letters with its entropy per letter
characterizing the uncertainty of predicting the next letter given a long preced-
ing text. The binary entropy of English turns out to be around 1.1 (depending
on the author and style), estimated as a result of long experimentation.

Shannon showed that this value of the entropy implies the existence of around
21.1N meaningful English texts of large length N . Due to the ergodicity of long
texts, the frequencies of all letters in all typical long messages are about the
same, and so all typical texts could be viewed as almost anagrams of each
other. Thus, the number of anagrams to a given text seems to grow with the
same exponential rate as the number of English texts. We can prove this plau-
sible conjecture in a more artificial approximation of English text as an i.i.d.
multinomial sequence of symbols. Let us first further simplify the setting for
transparency:

6 A more detailed study of numbers in Proposition 1 ignoring the multiplicity of hy-
potheses shows that the case insensitive set ’marlowe’ is located anomalously often in
the first two bi-lines of the sonnets (the homogeneity P-value is around 0.2 per
cent). Another popular (according to Ballantine) signature ’Kit M.’ turns out to be
found unusually often (the homogeneity P-value is around 5 per cent) in the last two
bi-lines concluding the sonnets.
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Proposition 3. Consider an i.i.d. three-nomial N -sequence of three letters A,B
and C with rational probabilities p(A) = L(A)/N, p(B) = L(B)/N such that
Np(A) := L(A) and Np(B) := L(B) are integers. Our claim is: Number N(A,B)
of N -sequences with L(A) letters A and L(B) letters B satisfies:

logN(A,B)/N = H(A,B) = −[p(A) log p(A) + · · · + p(C) log p(C)](1 + o(1)).

Proof. Follows immediately from the method of types (see e.g. Cover and
Thomas, 1991). The fraction above is asymptotically the number of typical N -
sequences as we stated above.

A generalization to a general multinomial case without the condition of all
probabilities being multiples of 1/N is straightforward. A generalization to a
model of stationary ergodic source can be formulated and proved using the tech-
niques also developed in Cover and Thomas, 1991, say their sandwich argument,
in proving the equipartition theorem.

Thus the number of meaningful English anagrams for n bi-lines is the n-th
power of that for a single bi-line, if deciphering is independent for subsequent
bi-lines, and also exponential in the length of text. This is a discouraging result
for considering anagrams as a communication tool beyond other disadvantages
of anagrams, namely excessive complexity of encoding and decoding. Moreover,
the aim of putative anagrams that would become known to an addressee only
after the long process of publication is unclear, unless an ESS editor would
pass it directly to an addressee. Again a parallelism: many of M. Bulgakov’s
menippeas with hidden anti-Soviet content were prepared for publication by an
active informer of the Stalin secret police!

There still remains hope that R. Ballantine’s claim about the uniqueness of
the anagrams she deciphered may prove correct due to the following reasons:

Every one of her deciphered anagrams starts with one of the variants of Mar-
lowe’s signature, which restricts the remaining space on the first bi-line, and
makes the combination of remaining letters atypical, thereby narrowing the set
of meaningful anagrams. Furthermore, the names and topics conveyed by Mar-
lowe in the hidden text, may be familiar to his intended receiver (say, the earl
of Southampton or M. Sidney Herbert with her sons), who might decipher the
anagrams using a type of Bayesian inference, looking for familiar names and
getting rid of possible anagrams that did not make sense for him/her. Existence
of other keys unknown to us is also possible.

It should also be noted that the hidden sentence on the first bi-line is usually
continued on the next bi-line (run-on line) giving the decipherer additional infor-
mation as to how to start deciphering the next bi-line, and so forth. Surely, these
arguments are rather shaky. Only a costly experimentation in deciphering
anagrams by specially prepared experts can lead to sound results about the
authenticity of anagrams deciphered from these texts. Various types of software
are available to ease the deciphering of anagrams, although it is questionable if
any of them is suitable for these archaic texts.
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In summary, the anagram problem in Shakespeare remains unresolved, al-
though I regard it as worthy of further study.

C. Shannon himself developed an important theory for breaking codes. His
Unicity theory specifies the minimal length of encoded messages that admit a
unique decoding of a hidden message by a codebreaker due to the redundancy
of English. Unfortunately, his main assumption of the key and message inde-
pendence, crucial for his results about unicity in cryptography, is obviously not
valid for anagrams, which use special keys for each bi-line depending on the
combination of letters in the bi-line.

Our statistical result on the special structure of the first bi-lines shows that
the encoding (if it took place at all!) had to be iterative: if the poetic bi-line
was not suitable for placing Marlowe’s anagram-signature there, the line and
hidden message were to be revised in order to make the enciphering possible.
This is exactly a situation where knowledge of an incredible number of English
words, demonstrated by Shakespeare, could have been put to perfect use permitting
flexibility in the choice of a relevant revised text!

2.6 Hopes for Genetic Evidence

It turns out that the critical argument against Marlowe’s authorship of Shake-
speare is the inquest by Queen Elizabeth’s personal coroner found in 1935 (made
in violation of several instructions) stating that Marlowe was killed on May 30,
1593. The question of the validity of this inquest is discussed by Farey and
Nicholl, 1992 in detail. If the inquest was faked and C. Marlowe’s survival for
several more years is proved, then his authorship of Shakespearean works be-
comes very likely: Marlowe could have written these masterpieces with abundant
features to be ascribed to him, and he had more than enough reasons to hide
under a fictitious name.

One long-shot way to prove Marlowe’s survival is as follows. A mysterious
posthumous mask is kept in Darmstadt, Germany, ascribed to Shakespeare by
two reasons: The Encyclopaedia Britannica states that it matches perfectly the
known portraits of the bard (which are likely actually versions of Marlowe’s
portraits as shown brilliantly, say, on the title page of the web-site of a recent
award-winning documentary film Much ado about something. A second reason is
the following: this mask was sold to its penultimate owner-collectioner together
with a posthumous portrait of apparently the same dead man in laurels lying in
his bed.

The mask contains 16 hairs that presumably belonged to the portrayed per-
son. A specialist from the University of Oxford has claimed in a personal letter
to me his ability to extract mitochondrial DNA from these hairs and match it
with that from the bones of W.S. (or W.S.’s mother Mary Arden) and Mar-
lowe’s mother Kate or any of W.S.’s or Marlowe’s siblings. As is well-known,
mtDNA is inherited strictly from maternal side since sperm does not contain
mitochondria. This study is in the planning stage, and serious legal, bureaucrat-
ic, financial and experimental obstacles must first be overcome before the study
can proceed.
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A fragment of the title page of the web-site
www.muchadoaboutsomething.com

The posthumous mask ascribed
to Shakespeare

Fig. 5.

3 Conclusion

The problem of Shakespeare authorship is old, and the documents are scarce.
Therefore, only a statistical approach, e.g., comparing the likelihoods of hy-
potheses based on the fusion of all kinds of evidence, seems feasible in trying to
resolve it.

An explosion in computing power, emergence and development of new meth-
ods of investigation and their fusion let me believe that in this framework the
Shakespeare controversy will eventually be resolved with sufficient conviction in
spite of the four-century long history of puzzles and conspiracies.

The methods that are now developing are promising and could also very well
apply in other similar problems of authorship attribution, some of which might
even have significant security applications.
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III
Raum-Zeit und Quantenphysik – Ein

Geburtstagsständchen für Hans-Jürgen Treder

A. Uhlmann

Gefragt nach einem Vortrag für Hans-Jürgen Treders 75. Geburtstag, hatte ich
kurz entschlossen geantwortet, etwas zum Verhältnis von Relativitätstheorie und
Quantentheorie sagen zu wollen. Das war etwas leichtsinnig; denn nur ein paar
Beobachtungen habe ich anzubieten, Lösungen nicht.

Die großen physikalischen Theorien des 20-ten Jahrhunderts, die wir zurecht
bewundern, überdecken und beherrschen weite Teile der Physik. Doch nicht in
allen arbeiten sie gleich gut. In manchen finden wir sie perfekt. In anderen
meint man, ein leichtes Klappern der Maschinerie heraushören zu können. Es
liegt eine Spannung zwischen Geometrie und dynamischen Größen wie Energie
und Impuls. Wir finden sie in der Fortschreibung der Teilung in Kinematik
und Dynamik, die wir von der Klassischen Mechanik kennen. Kinematik ist die
geometrische Analyse der mechanischen Bewegung, Dynamik fragt nach ihrer
Verursachung.

Es war ein 2000 Jahre währendes Geheimnis, dass die Euklidische Geometrie
nicht die allein denkbare ist. Dann aber brauchte es keine hundert Jahre, um auch
der Zeit die Starre des Absoluten zu nehmen. Und kaum hatte Albert Einstein
in seiner Speziellen Relativitätstheorie Raum und Zeit zu einem universellen
Block vereinigt und Minkowski ihn geometrisch analysiert, so zeigte er mit der
Allgemeinen Relativitätstheorie dessen Veränderbarkeit und Bedingtheit.

Bald darauf entdeckten Werner Heisenberg und Erwin Schrödinger eine
geschlossene, in sich stimmige Form der Quantenphysik. Max Born erkannte die
zufällige Natur beobachtbarer Quantenprozesse. Danach ist die Antwort eines
Quantensystem auf einen definierten Eingriff nur bedingt determiniert: Welche
Reaktionen mit welcher Wahrscheinlichkeit erlaubt sind, ist vom Systemzustand
abzulesen. Welche der erlaubten Reaktionen jedoch im Einzelprozess erfolgt, ist
Zufall.

1 Raum-Zeit und Geometrie

Der Relativitätstheorie liegt die Mannigfaltigkeit der Raum-Zeit-Punkte, die
auch “Welt-Punkte” genannt werden, zugrunde. Ihre metrischen Bindungen sind
ihr vornehmster Forschungsgegenstand. In ihnen, im metrischen Tensor, ist die
Geometrie von Raum und Zeit kodiert.

Paare von Weltpunkten können, zumindest in nicht zu großen Gebieten, in
Klassen eingeteilt werden: Entweder A ist vor B, oder B ist vor A, oder keines
von beiden findet statt.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 381–393, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A vor B zeigt die Möglichkeit an, eine Wirkung über eine Kausalkette von A
nach B zu übertragen. Eine etwas allgemeinere, gegen die Vielschichtigkeit des
Kausalitätsproblems weniger anfällige Definition, ist die: Von A nach B kann ein
Signal gesendet werden, ist “Information” übertragbar. Umgekehrt kann, wenn
A nach B kommt, also B vor A, in A ein Signal mit Ursprung in B empfangen
werden.

Nicht weniger interessant sind die Fälle, in denen Signale weder von A nach B
noch von B nach A gelangen können. Diese Paare nennt man entweder zueinan-
der “raumartig” oder voneinander “kausal unabhängig”. Denn Ereignisse, die an
ihnen stattfinden oder stattfinden könnten, sind mit Notwendigkeit voneinander
unabhängig. Andererseits nennt man ein solches Paar von Welt-Punkten aber
auch raumartig, weil man ihm, wenigstens lokal, eine Entfernung zuordnen kann,
die sich verhält, wie man es von einem ordentlichen Abstandsbegriff erwartet.

Die kausale Unabhängigkeit von Ereignissen, die in den unmittelbaren Umge-
bungen raumartiger Paare stattfinden, ist grundlegend für jedwede relativis-
tische Quantenphysik: Simultane Messungen oder andere Eingriffe in räumlich
voneinander getrennten Weltgebieten beeinflussen sich nicht in vorhersehbarer
Weise. Sie verhalten sich wie unabhängige Zufallsgrößen. Die Schwierigkeiten
mit nicht-vertauschbaren Observablen finden hier ihr vorübergehendes Ende.

Treten wir nun ein wenig in die Fußstapfen des Laplaceschen Dämons: Hätten
wir in einem Raum-Zeit-Gebiet die Liste der Abstände aller raumartigen Paare
von Weltpunkten, dann hätten wir auch den kompletten metrischen Tensor.
Diesen Zweck würde auch jede gekürzte Liste erfüllen, die nur Paare berück-
sichtigt, die nicht weiter als eine vorgegebene Länge, beispielsweise 1 mm, au-
seinander liegen. Jede derartige Liste impliziert die Kenntnis der möglichen
zeitlichen Abläufe. Jede Änderung der räumlichen Geometrie zieht unauswe-
ichlich die Veränderung zeitlicher Abläufe nach sich.

Analoge virtuelle Listen kann man aus Zeitmessungen gewonnen denken. Man
hat Kurven zu betrachten, längs denen Signalfortschreibung möglich ist. Man
nennt sie “vorwärts gerichtete” Weltkurven. An jedem Punkt einer derarti-
gen Weltkurve zeigt die Tangente in die von diesem Weltpunkt aus erreichbare
Zukunft.

Beschränken wir unsere Liste auf zeitartige Weltkurven und schließen lichtar-
tige Weltkurven, die eine Sonderrolle beanspruchen, aus. Letztere sind Weltkur-
ven, die durchfahren werden ohne Zeit zu verbrauchen. Auf ihnen steht die Zeit
still. Sie gehören zu Grenzen, die raumartige und zeitartige Regimes trennen.

Es dauert seine Zeit, eine zeitartige Weltkurve zu durchlaufen. Diese Dauer ist
eine Invariante der Kurve. Indem man alle zeitartigen Weltkurven, die A und B
verbinden, zur Konkurrenz zulässt, entsteht ein neues Optimierungsproblem: Es
muss nach einer Kurve gesucht werden, deren Verbrauch an Zeit, um von A nach
B zu gelangen, von keiner anderen Kurve übertroffen wird. Besagte maximale
Zeitdauer ist die “zeitliche Distanz”, die B von A trennt.

Auch unsere Liste der zeitlichen Abstände der Paare von Raum-Zeit-Punkten
eines Weltgebiets, die kausale Abhängigkeiten zulassen, reicht aus, um die
Geometrie des Gebiets komplett zu bestimmen. Es langt auch jede gekürzte
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Liste, die nur Paare von Weltpunkten enthält, deren zeitliche Distanz eine obere
Schranke, zum Beispiel eine Millisekunde, nicht überschreitet.

Dass die Länge von Raumkurven minimiert, die Dauer von Zeitkurven aber
maximiert werden muss, unterscheidet das Räumliche vom Zeitlichen.

2 Quantale Grundstrukturen

Auch in der Quantenphysik gibt es Gegenden von fundamentaler Bedeutung, die
in markanter Weise nicht dynamisch sind.

Versuchen wir, dies an Hand der 2-Niveau-Systeme zu verstehen. Ihre klas-
sische Version wäre ein System, das nur zwei verschiedene Zustände einnehmen
kann, zum Beispiel ein Schalter, der nur die Stellungen EIN und AUS zulässt.
Alle anderen Eigenschaften, (Aufbau, Zuverlässigkeit usw.), die eine konkrete
Realisierung des Schalters betreffen, werden vernachlässigt. Als Abstraktum ist
der klassische Schalter ein ziemlich triviales System.1

Ein quantales 2-Niveau-System ist wesentlich komplexer. Bei ihm werden
sowohl die beobachtbaren physikalischen Größen als auch ihre Zustände mit Hil-
fe von 2x2-Matrizen (Operatoren) beschrieben. Zählen wir ein paar physikalisch
interessante Beispiele auf:

– Die Polarisation des Photons.
– Der Spin des Elektrons.
– Die beiden Energie-Niveaus des Ammoniak Moleküls, die den Ammoniak

Maser ermöglichen, und ihre Überlagerungen.
– Organische Farbstoffe, etwa das Fuchsin, die ihre Farbe einem 2-Niveau Sub-

system verdanken.
– Physikalisch von ganz anderer Art ist ein 2-Niveau System, das den neu-

tralen K-Mesonen zugeordnet wird, um die eigenartigen Verhältnisse zu
beschreiben, die sie mit der schwachen und der starken Wechselwirkung
eingehen.

Um in den genannten Beispielen von der abstrakten Grundstruktur zur Dy-
namik zu kommen, müssen eine oder mehrere Matrizen zu Observablen erklärt
werden: Die Helizität beim Photon, Drehimpulse beim Spin des Elektrons, die
Energie beim Ammoniak und beim Fuchsin, die Hyperladung bei den neutralen
K-Mesonen.

Woran sehen wir, dass es sich bei einem 2-Niveau-System um einen Elektronen-
Spin handelt? Offenbar dadurch, dass wir es als Teilsystem eines anderen,
umfassenderen erkennen, welches eine genauere Beschreibung des Elektrons ges-
tattet. Diese Identifizierung entsteht, indem wir die Einbettung des kleineren Sys-
teme in ein oder mehrere größere Systeme analysieren: Der Spin des Elektrons
verbleibt, wenn wir andere Freiheitsgrade, zum Beispiel den Impuls, ignorieren.

Analog bleibt nur die Polarisation des Photons übrig, wenn wir von Energie
(Frequenz) und Ausbreitungsrichtung des Photons absehen.
1 Allerdings nur, wenn er als einzelnes Objekt auftritt und nicht in Massen, wie bei

einem Prozessor.
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Weitere wichtige Kriterien für die physikalische Identifizierung von Quanten-
systemen folgen aus Erhaltungssätzen.

Die Einstufung als Teilsystem ist keineswegs herabsetzend. Es ist auch nicht
als bloße Approximation an etwas, das wir genauer kennen, zu verstehen.

Im Gegenteil: Jedes Quantensystem ist Teilsystem von anderen Systemen, die
zusätzliche Freiheitsgrade besitzen. Reduktion und Erweiterung von Quanten-
systemen sind für die “Quantenwelt” von grundsätzlicher Bedeutung. In dieser
hierarchischen Struktur verbleibt jede Observable eines Systems als Observable
in jedem größeren. Und umgekehrt bestimmt der Zustand eines Obersystems die
Zustände aller seiner Teilsysteme. Letztere nennt man deshalb auch “reduziert”
oder “marginal” bezüglich des Obersystems.

Kurz gesagt: Quantensysteme, ob endlich oder nicht, sind hierarchisch
miteinander verknüpft. Von einem physikalischen System ist es wichtig zu wis-
sen, von welchen anderen Systemen es ein Teilsystem ist und, falls das zutrifft,
wie es in diesen untergebracht ist, wie es in ihnen eingebettet ist.

Ich vermerke noch, dass der Quantentheorie die Annahme eines “größten”,
allumfassenden Systems fremd ist. Aus sich heraus bietet sie keinerlei Handhabe
für ein solches Konstrukt. Was sollte man auch von dem Versuch halten, alle in
der Natur tatsächlich oder virtuell angelegten Freiheitsgrade zu umfassen und
über alles, was in Zukunft entdeckt werden wird, vielleicht aber auch für immer
verborgen bleibt, etwas aussagen zu wollen2?

Um zu erklären, welche der Regeln und Gesetze ich hier als “nicht-dynamisch”
bezeichnen will, komme ich nochmals auf die beobachtbaren Größen zurück. Die
Frage ist hier, was von der Identifizierung einer Matrix (oder eines Operators)
mit einer konkreten beobachtbaren Größe abhängt, und was von dieser Identi-
fizierung ganz unabhängig ist. Den unabhängigen, nicht-dynamischen Teil will
ich für die Zwecke des Vortrages “quantale Grundstruktur” nennen.

Bereits unsere kleine Liste von 2-Niveau Systemen ist geeignet, sich der Frage
zu näheren: Was hängt davon ab, ob wir eine Matrix mit der Beschreibung der
Helizität des Photons, oder mit einer Spinkomponente des Elektrons, oder mit
dem Energie-Operator identifizieren, und was nicht. Was bleibt, wenn wir die
Besonderheiten der einzelnen 2-Niveau Systeme ignorieren? Sehr wenig, wird
man zurecht sagen. Denn die Vielfalt der Kräfte und Wechselwirkungen, die
Spezifika ihrer Realisierungen, gehen verloren.

Und doch verbleibt nicht nur ein dürrer Rest, sondern etwas sehr Wichtiges:
Das Überlagerungsprinzip und die Gesetze, die die Zufälligkeit von Quanten-
prozessen kontrollieren. Es sind Regeln, die von allen quantalen Vorgängen
befolgt werden müssen. Sie sind von jener Klarheit und Schärfe, die wir von
elementaren logischen Operationen kennen.

Versichern wir uns zunächst an Hand eines Beispiels, wie die elementare Logik
mit “Eigenschaften” umgeht, die entweder wahr oder falsch sind, zutreffen oder
nicht zutreffen können: Eine natürliche Zahl ist entweder eine Primzahl, oder
sie ist es nicht. Also bilden in der Menge aller Zahlen die Primzahlen eine gut

2 Auch in der Kosmologie beschränkt man sich auf eine überschaubare Zahl von Be-
griffen und Parametern.
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definierte Teilmenge. Es ist zwar tautologisch, zu sagen, eine Zahl sei prim, wenn
sie zu dieser Teilmenge gehört. Aber durch diesen Trick entsteht eine Isomorphie
zwischen Eigenschaften und Teilmengen einer Gesamtmenge: Die Eigenschaften
werden durch eine Familie vom Teilmengen repräsentiert.

Besonders interessant wird es, wenn nicht alle, sondern nur gewisse Teilmengen
als Eigenschaften zugelassen werden. Dann wird man verlangen, dass logische
Operationen, zum Beispiel das UND, das ODER und das NEIN, in einer solchen
Familie von Teilmengen, sprich Eigenschaften, ausgeführt werden können. Diesen
Trick hat uns G. Boole verraten.

In der Quantenphysik gibt es das nämliche Problem und die Willkür bei seiner
Lösung ist nicht allzu groß; denn das Überlagerungsprinzip ist zu berücksichtigen:
Damit eine Menge von Zuständen eines quantalen Systems eine Eigenschaft
im logischen Sinne sein kann, darf die Bildung von Überlagerungen nicht aus
ihr herausführen. Eine quantale Eigenschaft muss also mit zwei oder mehreren
Zuständen auch allen denkbaren Überlagerungen zukommen. Sie muss in diesem
Sinne geschlossen sein.

Nach Birckhoff und von Neumann haben wir es mit einer notwendigen Bedin-
gung zu tun. Nur für eine solche Menge kann eine Messapparatur existieren, die
entscheiden kann, ob ein Zustand zu ihr gehört oder nicht.

Zwar muss nicht jede Menge von Zuständen, die die genannte Voraussetzung
erfüllt, notwendigerweise eine Eigenschaft sein. Der Punkt ist, dass es nur Eigen-
schaften gibt und Messgeräte geben kann, die mit dem Überlagerungsprinzip im
Einklang sind. Am Rande beinhaltet diese Behauptung eine sehr scharfe und
weitreichende Verneinung der Existenz verborgener Parameter.

Ein, zwei Beispiele zur Erläuterung. Wählen wir in dem Raum, der einem
Schrödingerschen Teilchen zugängig ist, ein Teilgebiet G aus. Die Menge der
Zustände, die bei einer Ortsmessung mit Notwendigkeit das Teilchen in G auffind-
en lässt, ist eine Eigenschaft. Es ist die Eigenschaft, in G lokalisiert zu sein. Trifft
sie zu, so ist die Schrödingerfunktion nur in G von Null verschieden.
Im zweiten Beispiel verlangen wir, dass die Messung der kinetischen Energie mit
Notwendigkeit einen Wert ergibt, der nicht größer als ein vorgegebener Wert ist.
Auch diese Vorschrift definiert eine Eigenschaft.

In diesen Formulierungen sollte die Wendung “mit Notwendigkeit” aufhorchen
lassen. Man könnte an ihrer Stelle auch “mit Wahrscheinlichkeit Eins” sagen3.
Sie führt uns auf eine weitere Besonderheit, die sie von der Klassischen Logik
deutlich unterscheidet. Es ist die Rolle des Zufalls und der Wahrscheinlichkeit.
Sie markiert eine Grenze zwischen Klassischer und Quantenphysik, vielleicht
sogar die wichtigste.

Ein Schrödinger-Teilchen muss sich weder in einem Raumgebiet G aufhalten
noch muss es zwingend außerhalb von G angetroffen werden. Es muss überhaupt
nicht in irgendeinem Teilgebiet lokalisiert sein! Um dem damit verbundenen
Dilemma zu entgehen, kommt der Zufall zu Hilfe:

Soll experimentell entschieden werden, ob das Schrödinger-Teilchen sich in
G aufhält oder nicht, so ist es fast immer der pure Zufall, ob die Antwort

3 Für tatsächliche Messungen ist der Unterschied irrelevant.
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JA oder NEIN lautet. In welchem Zustand sich das Teilchen auch anfangs
befunden hatte, nach dem Test ist es entweder in G oder nicht in G. Dabei
ist die Wahrscheinlichkeit, es in G anzutreffen, durch den Zustand vor der Mes-
sung festgelegt. Jedoch ist es innerhalb dieses Rahmens ein zufälliges Ereignis, ob
der Experimentator JA oder NEIN findet. Findet er im Einzelfall JA, so darf er
sicher sein, dass sich das Teilchen nach seiner Messung tatsächlich in G aufhält:
Der Test präpariert einen neuen Zustand. Sobald wir eine Information über den
Systemzustand erzwingen, passt sich dieser dem hierzu erforderlichen Eingriff
an! (Ich muss zugeben, dass ich ein einfaches aber etwas akademisches Beispiel
gewählt habe, da durch den Rand von G der Raum scharf in verschiedene Teile
getrennt wird. Das ist energetisch nur angenähert möglich.)

Wir sehen hier eine weiteres, für die Quantenphysik fundamentales nicht-
dynamisches Gesetz. Als Folge des Testens einer Quanten-Eigenschaft wird ein
neuer Zustand hergestellt, der diese Eigenschaft entweder definitiv besitzt oder
definitiv nicht besitzt. Welcher der beiden möglichen neuen Zustände hergestellt
wird, ist nichts als Zufall. Bei häufiger Wiederholung der gleichen Messung
im jeweils gleichen Zustand nähert man sich einer berechenbaren Wahrschein-
lichkeitsverteilung. Dadurch und durch nichts anderes wird der Zufall reguliert.

All das gilt unabhängig vom konkreten physikalischen Charakter des betra-
chteten Quantensystems und unabhängig von der Art der Wechselwirkungen. Im
Rahmen der Quantenphysik ist es ein universelles Gesetz.

Nun muss ich noch auf eine weitere, bisher nicht erwähnte seltsame Eige-
nart quantaler Zustände zu sprechen kommen: Zustände sind generisch nicht
lokalisiert. Jede Veränderung in einem begrenzten Raumgebiet zieht unmittel-
bar globale Veränderungen nach sich.

Insbesondere ist der Übergang von einem Zustand in einen neuen, der als Ergeb-
nis des Testens einer Eigenschaft erfolgt, global und instantan4. Diese Behauptung
kann man experimentell nur approximativ prüfen. Aber es gibt gute Experimente,
die, bei vorsichtiger Abschätzung der Messfehler, für die Ausbreitung derartiger
Zustandsänderungen vielfache Lichtgeschwindigkeiten messen. Und es gibt,
wie schon gesagt, gute theoretische Gründe für die Behauptung, dass sich diese
Änderungen prinzipiell nicht mit endlicher Geschwindigkeit ausbreiten können.

Die vermutlich eindrucksvollsten Experimente handeln von Messungen, die
simultan in der Nähe zweier raumartig getrennter Weltpunkte ausgeführt wer-
den. Der Zustand des zu messenden Systems kann so eingestellt werden, dass
man aus der Messung am Weltpunkt A auf das Messergebnis im Weltpunkt B
schließen kann. (Einstein-Podolski-Rosen-Effekt.) Einzelne Ereignisse, die derart
streng korrelieren5, ohne jedoch kausale Abhängigkeiten zu erlauben, müssen
rein zufällig sein. Jegliches Abweichen von der Zufälligkeit erlaubt die Übertra-
gung von Information mit beliebig hoher Geschwindigkeit. Daher sind die in
einer Einstein- oder Minkowski-Welt gültigen Schranken für kausale Prozesse
mit dem Bornschen Postulat über die Zufälligkeit quantaler Prozesse auf Gedeih
und Verderb verbunden!

4 In der älteren Literatur wird vom Kollaps der Wellenfunktion gesprochen.
5 Es handelt sich nicht um statistische Korrelationen!
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Diesen Aussagen, die in der Klassischen Physik kein Analogon besitzen, set-
zt die Theorie noch ein geometrisches Sahnehäubchen auf. In der Menge der
Zustände eines Systems gibt es Metriken6, die die Bornschen Wahrscheinlichkeit-
en für Quantenprozesse in Abstände konvertieren: Je näher der Zustand X
am Zustand Y liegt, um so größer ist die Wahrscheinlichkeit, dass X in Y
übergeht. Ist eine Zustandsänderung zeitlos, so verläuft sie auf einer kürzesten
Verbindung im Raum der Zustände. Wenn aber die Veränderung des Zustandes
an einen zeitlichen Vorgang geknüpft ist, wie wir es von der zeitabhängigen
Schrödinger-Gleichung kennen, dann ist die entsprechende Kurve gekrümmt und
keine Kürzeste.

Jeder mögliche Quantenprozess, der den Zustand X mit dem Zustand Y
verbindet, wird im Raum aller Zustände als Kurve von X nach Y beschrieben.
Die Länge dieser Kurve ist genau dann minimal, wenn der Prozess raum-zeitlich
instantan ist, also keine Zeit verbraucht. Es ist die raum-zeitliche “Oberfläche”,
die nicht fähig ist, derartige Prozesse darzustellen. Sie wirkt eher wie ein Zensor,
der nur Teile des Quantengeschehens zur Besichtigung frei gibt.

3 Spektralität

Eine der notwendigen Voraussetzungen für das Verständnis von Dynamik wird
unter dem Namen “Spektralität” geführt. Ihr physikalischer Ursprung sind die
Linien- und Energiespektren der Atome und Moleküle, ihr mathematischer ist
in der Operatortheorie begründet.

Relativistisch gesehen fordert Spektralität, dass Massen und Energien niemals
negativ sein dürfen.
Nicht-relativistisch spielen nur Energiedifferenzen eine Rolle. Hier darf die En-
ergie nicht unbegrenzt ins Negative abwandern. Anderenfalls hätten wir einen
sich nie füllenden energetischen Abgrund, eine fatale energetische Instabilität.

Die Spektralitätsforderung ist in ein Postulat gegosseneErfahrung. Wir müssen
sie cum grano salis per Hand hinzufügen. Auf den ersten Blick scheint sie von allen
anderen theoretischen Grundannahmen unabhängig zu sein. Jedoch: Wenngleich
wir es mit einem plausiblen und anschaulichen Postulat zu tun haben, werden mit
ihm allerlei Fallen aufgestellt.

Wir wissen, dass die Klassische Physik keine Handhabe für die energetis-
che Stabilität von Coulombschen Systemen bietet. Zumindest für das nicht-
relativistische Regime wird dieser Mangel durch die Quantentheorie beseitigt.
Dank Dyson, Lenard, Lieb, Thirring und anderen wissen wir, dass Vielteilchen-
systeme mit dominierenden Coulomb-Kräften energetisch7 stabil sein können:
Die Bindungsenergie pro Teilchen bleibt beschränkt. Voraussetzung ist, dass das
System insgesamt (so gut wie) neutral ist, dass keine nennenswerten Mengen
an Antiteilchen vorhanden und mindestens die Hälfte der Teilchen Fermionen8

6 Mathematisch von Fubini und Study bzw. von Bures entdeckt.
7 ... und auch thermodynamisch.
8 Fermionen brauchen Platz, Bosonen nicht notwendigerweise.
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sind. Das ist so bei “gewöhnlichen” makroskopischen Dingen, einem Stück Eisen,
Blumentöpfen, bei Hunden und Katzen, usw.

Wir müssen jedoch folgern, dass energetische Stabilität nicht nur von der
Art der Wechselwirkung abhängt. Es ist auch wichtig, welche stabilen Teilchen
massenhaft vorhanden sind und in welchem Verhältnis sie anzutreffen sind. Spek-
tralität hängt nicht nur von den fundamentalen Wechselwirkungen ab! Offenbar
können wir annehmen, dass die kosmologische Evolution dieses Problem für uns
gelöst hat: Was an “normaler Materie” übrig geblieben ist, ist energetisch stabil.
Das gilt aber nur, solange die Gravitation nicht dominant wird. Für sie ist die
Bindungsenergie pro Teilchenmasse bereits in der Newtonschen Näherung nicht
beschränkt.

Ich erinnere mich an einen Besuch bei Hans-Jürgen. Vor den Buchwänden ste-
hend, griff ich die Kirchhoffsche Mechanik heraus, ein meisterhaft geschriebenes
Lehrbuch. Ich war erstaunt, wie selbstverständlich Kirchhoff den Zusammen-
hang von Symmetrie und Erhaltung behandelt. Schon in der zweiten Hälfte
des 19. Jahrhunderts hatten die Physiker erkannt, dass die allgemeinen Erhal-
tungssätze aus den Symmetrien von Raum und Zeit folgen. Jeder Erhaltungssatz
der Mechanik, der nicht von der speziellen Natur des physikalischen Systems
abhängt, muss einen Grund haben. Er kann nicht einfach vom Himmel gefallen
sein. In Sonderheit erweist sich der Erhaltungssatz für die Energie als Konse-
quenz der Homogenität der Zeit.

In der Quantenphysik ist dieser Zusammenhang noch inniger. Die Symmetrien
legen die korrespondierenden dynamischen Größen durch ihre Erzeugenden bis
auf einen Faktor fest. Dieser Faktor ist das mit i multiplizierte (und nach Dirac
normierte) Plancksche Wirkungsquantum.

Erinnern wir uns rückblickend an die abstrakten Quantensysteme, in de-
nen das Überlagerungsprinzip und die quantalen Wahrscheinlichkeiten kodiert
sind. In ihnen finden wir das Plancksche Wirkungsquantum nicht. Größen mit
der physikalischen Dimension einer Wirkung sind in ihnen nicht vorhanden.
Erst wenn wir Entfernung und Geschwindigkeit mit dynamischen Variablen wie
Masse, Impuls und Energie verbinden wollen, bekommt es seine überragende Be-
deutung. Sein Auftritt verbindet rein raum-zeitliche Konstrukte mit dynamis-
chen.

Und was ist mit i, einer der beiden Wurzeln aus -1 ? Heisenberg und Schrödinger
haben die in der oberen Hälfte der Gaußschen komplexen Zahlenebene liegende
Wurzel in ihren Vertauschungsregeln und Bewegungsgleichungen benutzt. Denkt
man sich die reelle Achse der Gaußschen Ebene als Zeitachse, so vergeht die Zeit,
indem wir ihre obere Hälfte links liegen lassen, sie im mathematisch positiven
Sinne umfahren.

So gesehen hat Spektralität eine physikalisch nicht leicht zu verstehende Kon-
sequenz: Man kann die Zeit analytisch in die obere Halbebene fortsetzen.
Zeitabhängige Erwartungswerte können daher oft als stetige Randwerte analytis-
cher Funktionen dargestellt werden. Eine analytische Funktion wird als Ganzes
bereits im Kleinen vollständig bestimmt. Jede Abänderung zieht unweigerlich
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ihre globale Veränderung nach sich. Auch diese simple Tatsache stützt die Be-
hauptung über die nicht-lokale Natur von (generisch allen) Quantenprozessen.

Analytische Fortsetzung physikalisch relevanter Größen in sogenannte un-
physikalische Bereiche wie komplexe Impulse, Energien, Zeitvariable usw. ist eine
weit ausgebaute Methode der Quantenphysik. Die Streutheorie macht exzessiven
Gebrauch von ihr. In der Relativistischen Quantentheorie wird sie herangezogen,
um das Spin-Statistik Theorem zu beweisen, aber auch den Unruh-Effekt, die
Minkowski-Variante der Hawkinschen Strahlung schwarzer Löcher und manches
mehr.

Es ist eigenartig, dass für einige fundamentale Sätze der Physik keine Beweis-
methode gefunden worden ist, die die analytische Fortsetzung in anscheinend
unphysikalische Wertebereiche vermeidet.

Spektralität ist eine sehr vernünftige Forderung, da sie als energetische Sta-
bilität verstanden werden kann. Weiterführende Konsequenzen ergeben sich je-
doch erst in Verbindung mit Symmetrien, die von zeitartigen Transformationen
herrühren. Es ist das Dreieck a) dynamische Observable, b) Symmetrie und
c) Erhaltungssatz, das immer wieder durchlaufen wird, um Postulaten wie der
Spektralität Bedeutung zu verleihen. Wird dieses Dreieck an einer Stelle zer-
brochen, kommt man schnell in Beweis- oder Definitionsnot, als wäre ein Kom-
pass verloren gegangen.

Und das geschieht, wenn wir die Spezielle Relativitätstheorie verlassen und
Quantentheorie auf allgemeineren Raum-Zeit-Geometrien zu treiben beabsichti-
gen. Der allgemein beliebte Langrange-Formalismus reicht dann selbst für freie
Teilchen nicht zur korrekten Quantisierung aus. Es muss noch auf die richtige
Massen- und Energieabhängigkeit geachtet werden. Im hochsymmetrischen
Minkowskischen Fall erzielt man mit energetisch stationären Lösungen die
gewünschte Spektralität. Stationarität aber wird als Invarianz gegen Zeitver-
schiebungen verstanden. Einige Autoren meinen deshalb, vermutlich etwas zu
voreilig, dass man nur in einem asymptotischen Sinn von Teilchen sprechen dürfe,
und das auch nur unter der Annahme, wir hätten es mit einer Welt zu tun, die für
hinreichend große Entfernungen vom eigentlichen Geschehen sich immer genauer
einer Minkowski Welt annähert.

4 Die Welt ohne Symmetrien

Was erwartet uns in einer Raum-Zeit ohne Symmetrien 9? Auch hier gibt es
Transformationen mit zeitartigen Trajektorien im Überfluss. Jedoch lassen sie
die metrische Struktur nicht invariant. Daher haben wir keinen Grund, auf eine
von ihnen zu zeigen und sie der Energie (oder dem Impuls) zuzuordnen (oder
für sie einen Erhaltungssatz fordern).

Es entsteht eine Art Definitionsnot: Der Begriff des universellen
Erhaltungssatzes, des allgemeinen Integrals der Bewegung, wird fragwürdig.
Spezielle Integrale konkreter physikalischer Systeme darf man hingegen erwarten.

9 Nur von Raum-Zeit-Symmetrien ist hier die Rede!
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Wie schon gesagt, bemerkt man das angedeutete Problem schmerzlich bei dem
Versuch, auch nur das einfachste freie Quantenfeld auf einer symmetrielosen
Raum-Zeit zu etablieren. Trotz vieler Anstrengungen und schöner Teilerfolge
muss die Aufgabe als ungelöst angesehen werden. Allerdings sind 3- und 4-
dimensionale Probleme ohne Symmetrien mathematisch notorisch überaus
schwierig. Doch muss wohl auch noch Einiges zur begrifflichen Analyse des Prob-
lems getan werden.

Würde in der heute üblichen Manier ein Wettbewerb um die raffinierteste
Gleichung der Physik ausgeschrieben werden, so würde sicherlich die Einstein-
sche Gleichung der Allgemeinen Relativitätstheorie als unangefochtener Sieger
hervorgehen. Schon kurz nach ihrer Aufstellung zeigte H. Cartan ihre Einzi-
gartigkeit unter sehr wenigen und sehr vernünftigen Annahmen. Nur zwei
Konstanten bleiben frei: Die auch heute noch nicht voll verstandene Kosmol-
ogische Konstante und die Gravitationskonstante. Zum Besonderen gehört, dass
der Energie-Impuls Tensor einem Ausdruck gleichgesetzt wird, der allein aus
der Metrik heraus erklärt ist. Denken wir etwa an die eingangs diskutierte Liste
räumlicher Abstände. Sie bestimmt nicht nur die gesamte Metrik sondern auch
die Verteilung von Energie und Impuls, wenn auch in einer etwas delikaten
Weise.

Ganz im Gegensatz dazu ist der Energie-Impuls Tensor für kein physikalis-
ches System ohne Kenntnis des metrischen Tensors bildbar. Ohne Metrik ist er
undefiniert.

Die weltpunktweise Erhaltung der Energie ist diesem Tensor als Existenzbe-
dingung auferlegt worden. Infolge des allgemeinen Mangels an Symmetrie, kann
hieraus kein Erhaltungssatz für Weltgebiete hergeleitet werden, wie klein oder
groß sie auch seien.

Man kann vom Energie-Impuls Tensor aber Positivität von Energie und Ruhe-
masse verlangen: Spektralität ist keine Folge der Einsteinschen Gleichungen. Sie
kann nur ad hoc gefordert werden. Aber man kann sie wenigstens formulieren.

Die Situation wird wesentlich besser, wenn weitere Annahmen erfüllt sind.
So kann eine Art Gesamtenergie definiert werden, wenn asymptotisch flache
“Zeitschlitze” existieren. Für die Schwarzschild-Lösung bekommt man so den
“richtigen” Wert.

Ein Zeitschlitz ist eine Teilmenge der Raum-Zeit, deren Weltpunkte paarweise
raumartig angeordnet sind und die nicht vergrößert werden kann, ohne dieses
Charakteristikum zu zerstören. Ein Zeitschlitz ist ein Moment in der zeitlichen
Entwicklung, ein Augenblick von idealer Kürze.

Über den Schwarzschild-Fall hinaus hat man starke Aussagen für fast-
stationäre10 Zeitschlitze beweisen können. In besagtem Fall ist die Energiedichte
der Riemannschen skalaren Krümmung proportional. Von der gesamten En-
ergie konnte man jetzt zeigen, dass sie größer ist als die Energiesumme der in
ihr eventuell enthaltenen Schwarzen Löcher, eine 30 Jahre alte Vermutung von
Penrose.

10 Gemeint ist das Verschwinden der zweiten Fundamentalform sowie asymptotische
Flachheit.
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Ohne die vorausgesetzte Spektralität brechen die mathematisch sehr aufwendi-
gen und intelligenten Beweise zusammen und die genannten und weitere schöne
Ergebnisse sind nicht mehr richtig.

Der Energie-Impuls Tensor reflektiert im Idealfall alles, was dynamisch
geschieht. Er wirkt dabei wie ein Filter, in den alles Dynamische eingebracht wird,
und der nur einen genau ausgesuchten Anteil der dynamischen Komplexität hin-
durch lässt. Kennt man daher besagten Tensor, so wissen wir keineswegs welche
Vielfalt an physikalischen Prozessen sich hinter ihm verbirgt.
Das Ausführen dieser Reduktion ist die schwierige Weise, die Einsteinschen Gle-
ichungen zu lesen. Sie besteht in der Vorgabe eines physikalischen Systems, z.B.
eines elektromagnetischen Feldes, und der Suche nach der Metrik. Die Metrik
soll dann derart sein, dass der mit ihr gebildete Energie-Impuls Tensor den Ein-
steinschen Gleichungen genügt.

Eine einfache und naheliegende Hypothese meint, der Energie-Impuls Ten-
sor sei als Erwartungswert zu verstehen und der metrische Tensor eine Zufalls-
größe, wie man es von Quantensystemen gewohnt ist. Das ist vermutlich zu kurz
gedacht, obwohl niemand weiß, wie es ist.

5 Die Metrik und der Zufall

Wie verträgt sich die Allgemeine Relativitätstheorie mit dem Zufall, wie kommt
sie mit der Quantenphysik zurecht? Sie tut es nicht perfekt, aber erstaunlich
gut.

Bei einer hypothetischen quantenphysikalischen Ausmessung des metrischen
Tensors ist die zu erwartende Unschärfe extrem gering und ganz außerhalb aller
Experimentierkunst. Denn wir haben nicht Entfernungen11 und Impuls gleichzeit-
ig zu messen, sondern Entfernungen und Geschwindigkeiten. Die metrischen
Verhältnisse stellen sich somit als ein “fast klassisches” Gebilde dar.

Dieser Schluss wird erst brüchig, wenn es um sehr dichte Sterne oder um
schwarze Löcher geht. Bei letzteren erlauben Symmetrien die willkürfreie Defin-
ition besonderer dynamischer Größen. Damit ist auch die Quantenphysik wieder
in ihrem Element. Und nicht nur das, der vorhergesagte Quanteneffekt, die
Hawkinsche Strahlung, hat einen besonders guten Beweisstatus in der Wight-
manschen axiomatischen Quantenfeldtheorie. Er gehört zu den Glanzpunkten
des Zusammenwirkens von Quanten- und Allgemeiner Relativitätstheorie.

Werfen wir nochmals einen Blick auf das Problem der Messungen an einem
Quantensystem. Hierzu nehmen wir an, in einem Raumgebiet G werde eine Mes-
sung durchgeführt, die das gesamte Raumgebiet betrifft. Die Messung präpariert
dann momentan und global einen neuen Zustand, indem in der Menge aller zu
G raumartig gelegenen Weltpunkte eine neue Anfangbedingung für die weit-
ere quantale Evolution gesetzt wird. Ist das Messergebnis bekannt, so hat man
erfahren, worin die Zustandveränderung besteht.

Nach dieser Wiederholung des schon früher Gesagten, fragen wir uns nun,
wann das Messergebnis bekannt sein kann.
11 Messungen der Entfernungen werden meist als Ortsmessungen bezeichnet.
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Das Messergebnis ist eine Information. Es unterliegt somit den Einsteinschen
Kausalitätsforderungen. Wird, wie angenommen, ganz G zur Durchführung der
Messung benötigt, so muss diese Information von allen in G liegenden Punkten
abgerufen werden. Folglich kann das Ergebnis nur an Weltpunkten verfügbar
sein, die kausal nach allen in G liegenden Weltpunkten kommen12, die also in
Bezug auf G zeitlich später sind. Ist r die lineare Ausdehnung von G und c die
Lichtgeschwindigkeit, so müssen wir mindestens die Zeit r/c auf das Messergeb-
nis warten. Erst danach wird uns die Veränderung bekannt, die zur Messzeit
eingetreten ist. Vorher wird sie vor uns geheim gehalten!

Es ist auch dieser Trick, der das Zusammenspiel von Raum-Zeit Metrik mit
quantalen Prozessen widerspruchsfrei gestattet. Wären die Messergebnisse
unmittelbar bekannt und könnten wir nicht kompatible Messungen beliebig
schnell hintereinander ausführen, so wäre Informationstransport mit Überlicht-
geschwindigkeit möglich, wenn auch mit einem wesentlich anderen Mechanismus
als dem bereits früher angesprochenen.

In der Tat gibt es in der Quanten-Informationstheorie eine Reihe von
Protokollen, die zu akausalen Prozessen führen, wenn man annimmt, quanten-
physikalisch inkompatible Messungen und Manipulationen könnten ohne Zeitver-
lust hintereinander ausgeführt werden. Ich halte eine solche Annahme für falsch.

Die eben kurz dargestellten Überlegungen sind auch allgemein relativistisch gut
denkbar. Hierzu müssen wir lediglich annehmen, dass auch für die Metrik die An-
fangsbedingungen (ein ganz klein wenig!) geändert werden und die Veränderung
der Metrik mit der Verarbeitung der Information mitlaufen. Man kann sich so
vorstellen, dass das Ergebnis der Messung in Übereinstimmung mit allen kausalen
Forderungen bekannt wird – und nicht früher. Dabei ist die Veränderung der
Metrik abrupt allenfalls auf allen Zeitschlitzen, die G enthalten. Auf ihnen kann
infolge eines Eingriffs in ein Quantensystem eine Änderung des Zustands als ein so-
genannter instantaner Quantensprung13 erscheinen. Die damit verbundenen
Veränderungen in Zustandsräumen der Quantensysteme verlaufen hingegen glatt,
siehe das unter dem Stichwort “geometrisches Sahnehäubchen” Gesagte.

Ich hatte schon betont, dass zur Bildung des Energie-Impuls Tensors, wie
schlechthin zu allen dynamischen Observablen, die Beihilfe des metrischen Ten-
sors unabdingbar ist. Beeinflusst er auch den nicht-dynamischen Bereich, die
quantalen Grundstrukturen? Diese Frage ist zu bejahen. Die Wahrscheinlichkeit-
en, die für die Änderung des Zustandes bei Eingriffen zuständig sind, hängen von
der raum-zeitlichen Metrik ab. Dies zeigen schon die einfachsten Beispiele. Auch
die (äquivalente) Frage, welche Operatoren als Observable zulässig sind, wird
durch die Geometrie mit entschieden.

Damit rückt auch die Art und Weise, wie Quantensysteme ineinander ver-
schachtelt sind, in den Zugriff der Metrik. Da bei einer Messung in G die Zu-
standsänderung in allen Zeitschlitzen, die G enthalten, vor sich gehen muss,
können weitere Abhängigkeiten entstehen, die logisch sehr schwer zu kontrol-
lieren sind, von ihrer konkreten Form ganz zu schweigen.

12 Diese Weltpunkte liegen im Durchschnitt aller von G ausgehenden Zukunftskegel.
13 Eine historisch korrekte, heute vor allem von Werbefachleuten benutzte Bezeichnung.
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Der Zugriff der raum-zeitlichen Geometrie auf die quantale Grundstruktur
ist im stationären Fall gut verstanden. Allgemein ist das aber nicht so. Einen
großen Teil der Schwierigkeiten sieht man bereits bei dem Versuch, einfachen
Quantensystemen zeitabhängige Randbedingungen aufzuerlegen. Eine systema-
tische Untersuchung dieser Aufgabe ist mir nicht bekannt.

Hiermit schließe ich meine subjektiven und stückhaften Ausführungen.
Manchmal hänge ich der Vorstellung nach, es gäbe eine Quantenwelt, die uns auf
irgendeine Weise Raum und Zeit als Benutzeroberfläche zur Verfügung stellt.



Quantum Information Transfer from One

System to Another One

A. Uhlmann

Abstract. The topics of the paper are: a) Anti-linear maps governing
EPR tasks in the absence of distinguished reference bases. b) Imperfect
quantum teleportation and its composition rule. c) Quantum teleporta-
tion by distributed measurements. d) Remarks on EPR with an arbitrary
mixed state, and triggered by a Lüders measurement.

1 Introduction

The problem of transferring “quantum information” from one quantum system
into another one has its roots in the 1935 paper [1] of A. Einstein, B. Podolski,
and N. Rosen. These authors posed a far reaching question, but they doubt the
answer given by quantum theory. The latter, as was pointed out by them, asserts
the possibility to create simultaneously and at different places exactly the same
random events. The phenomena is often called “EPR effect” or, simply, “EPR”.

Early contributions to the EPR problem are due to Schrödinger, [2]. Since then
a wealth of papers had appeared on the subject, see [3] and [4] for a résumé.
Even to-day some authors consider it more a “paradox” than a physical “effect”,
because EPR touches the question, whether and how space and time can live
with the very axioms of quantum physics, axioms which, possibly, are prior to
space and time1.

Quantum information theory considers EPR as a map or as a “channel”, as
an element of protocols transferring “quantum information” from one system to
another one or supporting the transmission of classical information, [5], [6], [4].
One of our aims is to present a certain calculus for EPR and EPR-like processes
or, more general, for processes triggered by measurements. We begin, therefore,
with some selected fundamentals of quantum measurements.

The following treatment of EPR has its origin in the identification problem in
comparing two or more quantum systems. It is by far not obvious how to identify
two density operators, say �a and �b, belonging to two different Hilbert spaces,
Ha and Hb. Often one fixes two bases, {φaj } and {φbj}, and defines �a and �b

to be “equal” one to another if they have the same matrix representation with
respect to the reference bases. The more, one needs a stable synchronization if
several tasks have to be done in the course of time. It seems, therefore, worth-
while to postpone the selection of the reference bases as long as possible. If that
can be done, it can be done using the s-maps, [12], of the EPR section. These
maps are anti-linear. The anti-linearity in the EPR problem is usually masked
by the reference bases: The bases provide conjugations which create, combined
1 Sometimes it is helpful to think space-time a user interface above the quantum world.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 394–412, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Quantum Information Transfer from One System to Another One 395

with the “natural” anti-linearity, the suggestion of an unrestricted linearity. An
interesting, though quite different approach, [23], is founded on Ohya’s idea of
compound states [22]. Also in [24] there is a side remark on anti-linearity.

For pure states in quantum systems with finitely many degrees of freedom,
there is a duality between pure states and maximal properties in the sense of von
Neumann and Birkhoff. In the section “inverse” EPR we show by an example
the meaning of the mentioned duality.

We proceed with an analysis of the beautiful quantum teleportation protocol
of Bennett at al [18]. Here we prove a composition rule for imperfect (i. e. not
faithful) quantum teleportation. Then we show its use in quantum teleportation
with distributed measurements by an example with a 5-partite system. In the
following EPR example based on a 4-partite Hilbert space one observes “entan-
glement swapping”, see Zukowski et al [20], Bose et all [21].

There is a short section on polar decompositions of the s-maps, including a
quite elementary link to operator representations.

Finally we show how to handle, again by some anti-linear maps, an EPR task
in a bi-partite system if its state is mixed and if a measurement is performed in
one of its subsystems by a projection operator of any rank.

Remarks on notation: In this paper the Hermitian adjoint of a map or of an
operator A is denoted by A∗. The scalar product in Hilbert spaces is assumed
linear in its second argument.

2 Preliminaries

The implementation independence in quantum information theory is guaranteed
by the use of Hilbert spaces, states (density operators), and operations between
and on them. It is not said, what they physically describe in more concrete
terms, whether we are dealing with spins, polarizations, energy levels, particle
numbers, or whatever you can imagine. Because of this, the elements of quantum
information theory, to which the EPR-effect belong, are of rather abstract nature.

Let a physical system be is described by an Hilbert space H. A quantum
state of the system is then given by a density operator ω, a positive operator
with finite trace, the latter normalized to be one. Thus every positive trace-class
operator different from the zero operator uniquely defines a state. One only has
to divide it by its trace.

Every vector ψ ∈ H, ψ = 0, defines a vector state, the density operator
of which is the projection operator, say Pψ, onto the 1-dimensional subspace
generated by ψ. It is common use to speak of “the state ψ” if the state can be
described by Pψ. The vector states of our system are called pure if the properties
of linear independent vectors do not coincide.

The quantum version of Boolean Logics is due to Birckhoff and J. von Neu-
mann, [7]. According to them a property, a quantum state can have, is a sub-
space of H or, equivalently, a projection operator onto that subspace. Not every
subspace may be considered a property. The point is, that there are no other
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properties a quantum state can have. This well established postulate excludes
some hidden parameter dreams.

Here we shall assume that every subspace defines a property, and that two
different subspaces encode different properties.

Looking at these two concepts, states and properties, there is a certain “de-
generacy”. A vector can denote a state or a property. A (properly) minimal
projection operator represents either a maximal property or the density oper-
ator of a pure state. What applies depends on the context. The existence of
maximal properties is a special feature of physical systems with a finite number
of degrees of freedom.

Let H0 be a subspace of H denoting a property. A state, given by a density
operator ω, possesses property H0, if and only if its support is in H0. That is, ω
must annihilate the orthogonal complement of H0. If ω = Pψ is a vector state,
this is equivalent to ψ ∈ H0.

Let P0 denote the ortho-projection onto H0. A test, whether ω has property
P0 results in one bit of information: Either the answer is YES or it is NO.

i) The probability of outputting the answer YES is p := Tr P0ω.
ii) If p is not zero, and if the answer is YES, then the test has prepared the new
state P0ωP0. Multiplying by p−1 gives its density operator.

As p is the probability of the change from ω to P0ωP0, it is the transition
probability between the two states in question.

An executable measurement within H must be a finite orthogonal decomposi-
tion of H into subspaces. The subspaces have to be properties. Denoting by Pj
the orthogonal projections onto the subspaces, the requirement reads

m∑
j=1

Pj = 1, PiPk = 0 if i = k . (1)

Remark: The phrase “executable” asserts the possible existence of an appara-
tus doing the measurement. A general observable can be approximated (weakly)
by such devises. Important physical quantities like energy, momentum, and po-
sition in Schrödinger theory represent examples of observables, which can be
approximated by executable ones without being executable themselves.

Remark: In saying that the measurement is “in” H we exclude measurements
in an upper-system containing the system in question as a sub-system. A larger
system allows for properties not present in the smaller one. Measuring properties
of a larger system is reflected in the smaller one by so-called POVMs, “positive
operator valued measures”.

To be a measurement, the device testing the properties Pj should output
a definite signal aj if it decides to prepare the state PjωPj . Well, a1, . . . , am
constitute the letters of an alphabet. The device randomly decides what letter
to choose. The probability of a decision in favor of the letter aj is TrPjω with
ω the density operator of the system’s state. Thus, the classical information per
probing the properties (1) is
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H(p1, . . . , pn) = −
∑

pj log2 pj , pj = Tr Pjω .

A little more physics come into the game in assuming that the alphabet consists
of m different complex numbers. Then the operator

A :=
n∑
1

ajPj (2)

is an observable for the measurement of the properties (1). Clearly, executable
observables are normal operators, AA∗ = A∗A, and their spectra are finite sets.

One observes that information theory is not interested in the nature of the
alphabet that distinguishes the outcomes of a measurement. It suffices for its
purposes to discriminate the outcomes and to know the state that is prepared.
Portability is gained that way.

It is standard that two properties can be checked simultaneously if and only
if their ortho-projections commute. Otherwise one gets in trouble with the prob-
ability interpretation. Two observables, A and B, can be measured (or approx-
imated by such procedures) simultaneously provided they commute. Executing
a set A1, . . . , An of mutually commuting observables will be called a distributed
measurement.

Non-relativistically a distributed measurement may consist of several measur-
ing devices, sitting on different (possibly overlapping) places in space, but being
triggered at the same time.

Relativistically, every measurement is done in a certain space-time or “world”
region. A particular case of a distributed measurement consists of devices doing
their jobs in disjunct, mutually space-like world regions: Quantum theory does
not enforce restrictions for measurements (or “interventions” a la A. Peres) for
space-like separated world regions. EPR and quantum teleportation make use of
it in an ingenious way.

Thinking in terms of the evolution of states in the course of time, these tasks
update the initial conditions of the evolution. The choice of the new Cauchy
data is done randomly and governed by transition probabilities.

In Minkowski space the problem is somehow delicate. According to Hellwig
and Kraus [8] it is consistent to let take place the state change at the boundary of
the past of the region. The past of the world region is the union of all backward
light-cones terminating in one of the world points of the region the measurement
is done. Finkelstein [9] has argued that it is also possible to allow the change
at the light-like future of the world region in question. We, [11], think it even
consistent to assume a slightly stronger rule: The state changes accompanied
by a measurement in a space-time region takes place at the set of those points,
which are neither in the past nor in the future of that region. The assumed region
of influence is bounded to the past a la Hellwig and Kraus and to the future
according to Finkelstein. The remarkable experiments of Zbinden et al [10] agree
with it.
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3 EPR

Let us consider a bi-partite quantum system composed of two Hilbert spaces Ha
and Hb and one of its vectors

H := Ha ⊗Hb, ψ ∈ H . (3)

In such a bi-partite system Ha characterizes a subsystem, the a-system, which is
embedded in the system of the Hilbert space H. The same is with the b-system.

We assume the state of the composed system is the vector state defined by ψ.
We are interested in what is happening if a property is checked in the a-system.
A local subspace of H is a direct product of two subspaces, one of Ha, the other
one of Hb. A local property of H is, therefore, a projection operator of the form
Pa ⊗ Pb. Pa and Pb are projectors from the subsystems. Similarly one proceeds
in multi-partite systems.

If Pa is a property of Ha, the local property in the composed system that
checks nothing in the b-system reads Pa⊗1b. If so, and if the test of Pa outputs
YES, the newly prepared state is again a vector state. The state change is

ψ �→ (Pa ⊗ 1b)ψ . (4)

Is something to be seen in the b-system by such a change? Posing and answering
the question is an essentially part of the EPR problem. In pointing out the
intrinsic anti-linearity in the EPR problem we follow [12] and [13].

Let us consider maximal properties, i. e. rank one projection operators, of the
a-system,

Pa =
|φa〉〈φa|
〈φa, φa〉 , φa ∈ Ha . (5)

Then the state prepared in (4) must be a product vector, the first factor being
a multiple of φa. Therefore, given ψ, there must be a map from Ha into Hb
associating to any given φa its partner in the product state. Let us denote this
map by

Ha ' φa �→ sbaψ φ
a ∈ Hb .

It is defined by (
|φa〉〈φa| ⊗ 1b

)
ψ = φa ⊗ sbaψ φ

a, ∀φa ∈ Ha . (6)

We see: If in testing the property φa the answer is YES, the same is true with
certainty if in the b-system one is asking for the property sbaψ φ

a.
It becomes clear by inspection of (6) that sbaψ is an anti-linear map from Ha

into Hb which depends linearly on ψ. We also may ask the same question starting
from the b-system, resulting in an anti-linear map sabψ from Hb into Ha,(

1a ⊗ |φb〉〈φb|
)
ψ = sabψ φ

b ⊗ φb, ∀φb ∈ Hb . (7)

Let us go back to (6) and let us choose a vector φb in Hb. Taking the scalar
product (6) with φa ⊗ φb, one easily finds

〈φa ⊗ φb, ψ〉 = 〈φb, sbaψ φa〉.
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By symmetry, or by using (7) appropriately, one finally arrives at the identity

〈φa ⊗ φb, ψ〉 = 〈φb, sbaψ φa〉 = 〈φa, sabψ φb〉 (8)

which is valid for all φa ∈ Ha and φb ∈ Hb. Obviously, taking into account their
anti-linearity, the two maps between the Hilbert spaces of the subsystems are
Hermitian adjoints one from another.

(sabψ )∗ = sbaψ , (sbaψ )∗ = sabψ

Finally, by the linearity of the s-maps with respect to ψ ∈ H, one arrives at the
following recipe for their construction:

ψ =
∑

ajkφ
a
j ⊗ φbk ⇒ sbaψ φ

a =
∑

ajk〈φa, φaj 〉φbk (9)

⇒ sabψ φ
b =

∑
ajk〈φb, φbk〉φbj

The s-maps obey some simple rules if local operations are applied to them.
The most obvious is

ϕ = (A⊗B)ψ ↔ sabϕ = A sabψ B∗ . (10)

Let us now escape from the formalism to a short discussion. We assume, as
starting point, the bi-partite system in a pure state ψ ∈ H. We can assume
that ψ and an arbitrarily chosen φa are unit vectors. Pa denotes the projection
operator of the 1-dimensional subspace generated in Ha by φa.

What can be seen from ψ in the subsystems? This is encoded in the reduced
states, in the density operators �aψ and �bψ respectively. In more general terms:
The state of a subsystem is given by the expectation values of the operators
accessible within the subsystem. All what an owner, say Bob, can learn within
his subsystem Hb without resources from outside, he has to learn from �b. Any
belief, he could learn anything else from its quantum system alone, is nothing
than a reanimation of the hidden parameter story.

The reduced density operators can be calculated by partial traces. In the case
at hand a definition for the b-system is

〈ψ, (1a ⊗B)ψ〉 = Tr �bψB, ∀B ∈ B(Hb) .

The reduced density operators can also be expressed by the s-maps,

�aψ = sabψ sbaψ , �bψ = sbaψ sabψ (11)

The probability, p, for a successful test of φa is 〈φa, �aψφa〉. The maximal possible
probability appears if φa is an eigenvector to the largest eigenvalue of �aψ.

The square roots of the eigenvalues pi > 0 of �aψ are the Schmidt-coefficients of
the Schmidt decomposition of ψ and, according to (11), also the singular values
of sabψ .
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Let {φaj } be the vectors of a basis and P ja the ortho-projection onto the space
generated by φaj . Let us now ask what is going on if we test the properties P ja .
We can use any operator

A =
∑

ajP
j
a

with mutually different numbers aj . The probability p′j of preparing φaj is
〈φja, �aψφja〉. It is well known, that the probability vector {p′j} is majorized by
the set of eigenvalues {pj} of �a. Any probability vector, which is majorized by
the vector of its eigenvalues, can be gained this way by the use of a suitable
basis of Ha. Consequently, in measuring A, one can produce a message with an
entropy not less than the entropy of the eigenvalue distribution of �aψ. If and
only if the chosen basis is an eigen-basis of �aψ , we get the minimally possible
entropy.

Enhancing the entropy of Alice’s side is not useful for Bob. Though his sys-
tem will definitely be in the state φbj = sbaφaj if on Alice’s side the state φaj is
prepared, he cannot always make too much use of it. While Alice is preparing
states which must be mutually orthogonal, and hence distinguishable, the vector
states on Bob’s side do not share this necessarily. Indeed, Bob’s state are mu-
tually orthogonal if and only if Alice had minimized the entropy, i. e. if she had
chosen an eigen-basis of her density operator.

Let us repeat it from another perspective. Let Alice perform some measure-
ments using the observable A. Assume that just before any measurement, the
state of the bi-partite system is the vector state ψ. Then, whenever the device
answers “aj”, the state of the a-system changes to φaj . The state of the b-system
becomes φbj = sbaφaj . Bob knows this state iff he knows ψ and which of the val-
ues aj the measuring device has given to Alice. Now, if Alice uses an eigen-basis
of the density operator �aψ then Bob himself is able to measure which state he
get and, therefore, which aj Alice has obtained. On the contrary, if Alice does
not use a basis of eigenvectors, Bob’s possible states are not orthogonal and he
cannot distinguish exactly between them. Therefore, the gain in entropy in the
a-system by using a measurement basis distinct from the eigenvector basis is
compensated by a loss of Bob’s possibility to distinguish between the states he
gets.

One can prove the assertion by calculating

〈φbj , φbk〉 = 〈sbaφaj , sbaφak〉 = 〈φak, sabsbaφaj 〉

or, by (11),
〈φbj , φbk〉 = 〈φak, �aψφaj 〉 . (12)

If all von Neumann measurements of Alice are on equal footing, and Bob can
always discover the state prepared by Alice within his system to any precision,
the EPR settings is “perfect” or “tight”. In the tight case the reduced density
operator �aψ of Alice is equal to (dimHa)−11a, i.e. to the unique tracial state
of her system. This state is like “white quantum paper”, there is no quantum
information at all in it. The “more white” Alice’s “quantum paper” �aψ is, the
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better EPR is working. That somewhat fabulous language can be made precise
substituting “more mixed” or “less pure” for “more white”.

A further remark should be added to our short and incomplete account of
the EPR mechanism. It is a well known theorem that Ha ⊗ Hb is canonically
isomorph to the space L2(Ha,H∗b ) of Hilbert-Schmidt mappings form Ha into
H∗b . On the other hand, H∗b is canonically anti-linearly isomorphic to Hb, a fact
used by P. A. Dirac to establish his bra-ket correspondence |.〉 ↔ 〈.| Composing
both maps one immediately see the isomorphism between Ha ⊗ Hb and the
space of anti-linear Hilbert-Schmidt maps L2(Ha,Hb)anti. The isomorphism is
an isometry expressed by

〈ϕ, ψ〉 = Tr sabψ sbaϕ = Tr sbaψ sabϕ (13)

with ψ and ϕ from H = Ha ⊗Hb.

4 “Inverse” EPR

In the preceding section we have considered three vectors: ψ from the composite
Hilbert space (3) and φa, φb from its constituents. In the EPR setting ψ is a
given pure state which is to test whether it enjoys the local properties defined
either by φa, by φb, or by both. In the “dual” or “inverse” EPR setting their roles
are just reversed: ψ appears as a non-local property which is to check. φa ⊗ φb

is the state to be tested for the property ψ. Because transition probabilities are
symmetric in their arguments, one can enroll the EPR setting backwards. The
trick has been clearly seen and used by C. Bennett, G. Brassard, C. Crepeau,
R. Jozsa, A. Peres, and W. Wootters in their famous quantum teleportation
paper [18], see also [25].

To demonstrate what is going on, let us consider a simple but instructive
example. Here H is of dimension four, and its two factors 2-dimensional. Dirac’s
bra-ket notation is used, but anti-linear maps should be applied to kets only! In
the example we choose the vectors

ψ =
1√
2
(|00〉 + |11〉), φa = |x〉, φb = |0〉

with x = 0, 1. Alice is trying to send a bit-encoded message to Bob by choosing
|x〉 accordingly one after the other. Bob’s input is always |0〉. By doing so, they
enforce the bi-partite system into the state

|x 0〉 = |x〉 ⊗ |0〉, x = 0, 1

Then it is checked whether it has the property ψ. If x = 1, the measuring
apparatus will necessarily answer the question with NO because the state is
orthogonal to ψ. If, however, x = 0, the answer is YES with probability 0.5 and
NO with the same probability. The input state |00〉 of the bi-partite system now
has changed as follows:

YES �→ ψ, NO �→ ψ′ =
1√
2
(|00〉 − |11〉) .
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Let now q be the probability of an input x = 0. Then the input ensemble is
transformed by the measurement in the following way:

{|00〉, |10〉; q, 1− q} → {ψ, ψ′, |10〉; q
2
,
q

2
, 1 − q}

The classical information encoded in the input state is not lost. It could be
regained by measuring the property

|ψ〉〈ψ| + |ψ′〉〈ψ′|,

a task which does not change the states involved. Now, next, Bob and Alice
perform local measurements by testing the properties

Pb := |0〉〈0|b, Pa := |0〉〈0|a .

If ψ or ψ′ is the state of H, the states of the local parts will be (1/2)1a and
(1/2)1b respectively. The answer is either YES or NO with equal property 1/2
as seen from

(|0〉〈0|a ⊗ 1b)ψ =
1√
2
|00〉 = (1a ⊗ |0〉〈0|b)ψ

and from the similar relation with ψ′. There is a strong correlation: Either both
devices return YES or both say NO. Therefore, if the input of Alice is |0〉, the
output is either YES for Alice as well as for Bob, or it is NO for both. If, however,
|1〉 is the input of Alice, then |10〉 becomes the state of H. It follows that Alice
gets necessarily NO and Bob YES.

We see that Bob and Alice would have the full information of the message, Al-
ice had encoded in her system, if both parties could communicate their measure-
ment results – even if Alice has forgotten her original message. No information
is lost, but it is non-locally distributed after testing the property ψ.

A particular interesting case is the transmission of information from Alice to
Bob, who knows neither the result of testing the property ψ nor has he obtained
any information from Alice. He knows, which property has been checked, but
does not know the result.

Though there is no classical information transfer, Bob gets some information
from Alice by testing in his system property Pb. Considering all intermediate
state changes as done by a quantum black box, the process is stepwise described
by

{|0〉〈0|a, |1〉〈1|a} �→ {1
2
1b, |0〉〈0|b}

and can be represented as an application of the stochastic cp-map

T :
(
ω00 ω01

ω10 ω11

)
a

�→ 1
2

(
ω00 + 2ω11 0

0 ω00

)
b

.

A message encoded by Alice with probabilities q or 1−q per letters 0 or 1 carries
an information H(q, 1 − q). The Holevo bound for the quantum message Bob
obtains by measuring Pb can be calculated to be

H(1 − 1
2
q,

1
2
q) − q .
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Its maximum is reached at q = (2/5). In that case Bob receives approximately
0.322 bit per letter, while Alice has encoded her message with 0.962 bit per
letter.

The channel is rotationally symmetric. From this and standard convexity
reasoning one gets: The Holevo (“one-shot”) capacity of the channel will be
reached with a diagonal ensemble at q = 2/5. Therefore,

χ∗(T ) = H(
4
5
,
1
5
) − 2

5

What we have just discussed above is a slight variation of protocols invented in-
dependently by Aharonov and Albert, [14], and by R. D. Sorkin [15]. The latter
claimed it to be an example of a measurement “forbidden by Einstein causality”.
More recently Beckman et al [16], adding a remarkable collection of similar mea-
surements, have extended and sharpened Sorkin’s assertion. On the other hand,
Vaidman [17] presented teleportation protocols of non-local measurements. We,
B. Crell and me, [11], think the causality considerations of Sorkin and Beckmann
et al not conclusive: While a measurement allows for instantaneous changes of
states, the output of an apparatus includes classical information processing which
has to go on in the world region the device is working. To detect the output of
the signal can only be possible in the intersection of all future cones originating
in world points of the measuring region. Bob can detect Alice’s message not
before his world lines have crossed all the future light cones originating from
the world points at which the measuring process is going on. Hence, though the
state change has taken place, Bob can be informed only after a time delay of the
order “radius of the measuring device / velocity of light”. Before that time has
elapsed, the state change is hidden to Bob – as required by causality.

Generally, [11], the rule with which quantum theory outlines the defect of
being not causal, is as follows. Let A and B be two non-commuting observables
which we like to measure sequentially, say A before B. Let GA and GB denote
the world region at which the measurements should take place. Then GB must
be in the complete future of GA, that is GB must be in the intersection of all
forward cones originating in the world points of GA. Similar it is with unitary
moves if combined with measurements not commuting with them.

The return to the general case of inverse EPR with ψ an arbitrary vector of
a bi-partite system with Hilbert space H is formally straightforward: Checking
the property ψ if the system is in a product state φa1 ⊗ φb1 one comes across

|ψ〉〈ψ|φa1 ⊗ φb1 = 〈ψ, φa1 ⊗ φb1〉ψ .

If Alice and Bob can communicate, and they can check with which probabil-
ity their states enjoy the property φa2 ⊗ φb2. The transition amplitude for an
affirmative answer can be expressed, according to (8), by

〈ψ, φa1 ⊗ φb1〉 〈φa2 ⊗ φb2, ψ〉 = 〈φa1 , sabψ φb1〉∗ 〈φa2 , sabψ φb2〉 .
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5 Imperfect Quantum Teleportation

Quantum teleportation has been invented by Bennett et al [18]. “Perfect” or
faithful quantum teleportation starts within a product of three Hilbert spaces of
equal finite dimension and with a maximal entangled vector in the last two. It is
triggered by a von Neumann measurement in the first two spaces using a basis of
maximally entangled vectors. The measurement randomly chooses one of several
quantum channels. The information, which quantum channel has been activated,
is carried by the classical channel. It serves to reconstruct, by a unitary move,
the desired state at the destination.

All those possible “perfect” or “tight” schemes, together with their dense
coding counterparts, have been reviewed by R. F. Werner [19].

Following [18] and analyzing their computations, one can decompose the cho-
sen quantum channel into two parts, an inverse EPR and an EPR setting. As one
can identify two particular s-map with them, one is tempted to use two general
s-maps. In doing so one can treat a more general setup. But even in “perfect”
circumstances the explicit use of the mentioned decomposition may be of some
interest.

Let H be a tri-partite Hilbert space

Habc = Ha ⊗Hb ⊗Hc . (14)

There is no restriction on the dimensions of the factor spaces. The input is a
vector φa ∈ Ha, possibly unknown, and a known vector ϕbc, the “ancilla”, out
of Hb ⊗Hc. The teleportation protocol is to start with the initial vector

ϕabc := φa ⊗ ϕbc ∈ Habc . (15)

Now one performs a measurement on Ha ⊗Hb. Instead of a complete von Neu-
mann measurement we ask just whether a property, given by a vector ψab, is
present or not. In doing “nothing” on the c-system, one is checking a local prop-
erty of the abc-system. If the check runs affirmative, the vector state ψab is
prepared in Hab, inducing a state change in the larger abc-system:

(|ψab〉〈ψab| ⊗ 1c)(φa ⊗ ϕbc) = ψab ⊗ φc, (16)

with a vector φc ∈ Hc yet to be determined. Indeed,

φa �→ φc

represents the teleportation channel which is triggered by an affirmative check
of the property defined by ψab. Letting φa as a free variable, we introduce the
teleportation map tca by

tcaφa ≡ tcaψ,ϕφ
a = φc, ψ ≡ ψab, ϕ ≡ ϕbc (17)

The teleportation map tca is governed by the composition rule, [12],

tcaψ,ϕ = scbϕ sbaψ . (18)
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The s-maps being Hilbert-Schmidt, the t-maps must be of trace class and lin-
ear. Indeed, every trace class map from Ha into Hc can be gained as a t-
map, provided its rank does not exceed the dimension of Hb. Of course, this
fact can be obtained also directly, without relying on the decomposition rule,
[27,28,26,29,30,31], where also cases with a mixed ancilla have been studied.

Proof of (18). Let us abbreviate the left hand side of (16) by ψabc. Choosing in
Hb an ortho-normal basis {φbj} gives the opportunity to write

ϕbc =
∑

φbj ⊗ scbϕ φ
b
j

and hence
ψabc = ψab ⊗

∑
j

〈ψab, φa ⊗ φbj〉 scbϕ φbj .

We choose in Ha an ortho-normal basis, {φak}, to resolve the scalar product in
the last equation:

ψabc = ψab ⊗
∑
jk

〈φak, φa〉 〈sbaψ φak, φbj〉 scbϕ φbj .

Using anti-linearity,

ψabc = ψab ⊗ scbϕ
∑
k

〈φa, φak〉
∑
j

〈φbj , sbaψ φak〉φbj

The summation over j results in sbaψ φ
a
k. Next, again by anti-linearity, the sum

over k comes down to
sbaψ

∑
k

〈φak, φa〉φak = sbaψ φ
a

and we get finally
ψabc = ψab ⊗ scbϕ sbaψ φ

a

and the composition rule is proved.

Distributed measurements
The next aim is to present an extension of the composition rule to multi-partite
systems. In a multi-partite system one can distribute the measurements and the
entanglement resources over some pairs of subsystems. With an odd number of
subsystems we get distributed teleportation, with an even number something like
distributed EPR.

At first let us see, as an example, distributed teleportation with five subsys-
tems.

H = Ha ⊗Hb ⊗Hc ⊗Hd ⊗He . (19)

The input is an unknown vector φa ∈ Ha, the ancillary vectors are selected from
the bc- and the de-system,

ϕbc ∈ Hbc = Hb ⊗Hc, ϕde ∈ Hde = Hd ⊗He, (20)
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and the vector of the total system we are starting with is

ϕabcde = φa ⊗ ϕbc ⊗ ϕde . (21)

The channel is triggered by measurements in the ab- and in the cd-system. Sup-
pose these measurements are successful and they prepare the vector states

ψab ∈ Hab = Ha ⊗Hb, ψcd ∈ Hcd = Hc ⊗Hd . (22)

Then we get the relation

(|ψab〉〈ψab| ⊗ |ψcd〉〈ψcd| ⊗ 1e)ϕabcde = ψab ⊗ ψcd ⊗ φe (23)

and the vector φa is mapped onto φe. Introducing the s-maps corresponding to
the vectors

ψab → sba, ϕbc → scb, ψcd → sdc, . . . ,

the factorization rule becomes

φe = teaφa, tea = sed sdc scb sba . (24)

Next we consider a setting with four Hilbert spaces, Hb to He. The input
state is

ϕbcde = ϕbc ⊗ ϕde

and we perform a test to check whether the property ψcd is present or not.
Let the answer be YES. Then the subsystems bc and de become disentangled.
The cd system gets ψcd and, hence, the entanglement of this vector state. The
previously unentangled systems Hb and He will now be entangled.

The newly prepared state is

χbcde := (1b ⊗ |ψcd〉〈ψcd| ⊗ 1e)ϕbcde . (25)

With
ψcd =

∑
λjφ

c
j ⊗ φdj

we obtain

χbcde =
∑

λjλk[(1b ⊗ |φcj〉〈φcj |)ϕbc] ⊗ [(|φdj 〉〈φdj | ⊗ 1e)ϕde] .

Let us denote just by sbc and sde the s-maps of ϕbc and ϕde respectively. They
allow to rewrite χbcde as

χbcde =
∑

λjλk(sbcφck ⊗ φcj) ⊗ (φdj ⊗ sedφdk)

which is equal to

χbcde =
∑

λk(sbcφck) ⊗ ψcd ⊗ (sedφcd) . (26)
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The Hilbert space Hc ⊗ Hd is decoupled from Hb and He. The vector state of
the latter can be characterized by a map from Hc ⊗Hd into Hb ⊗He.

ϕbe := (sbc ⊗ sed)ψcd (27)

is indicating how the entanglement within the be-system is produced by entangle-
ment swapping, and how the three vectors involved come together to achieve it.

Addendum: A rearrangement lemma.
The starting point is a collection of bi-partite spaces and vectors,

ψj ∈ Hjab, Hjab = Hja ⊗Hjb, j = 1, . . . ,m (28)

from which we build

Hab = H1
ab ⊗ · · · ⊗ Hjab, ψ = ψ1 ⊗ · · · ⊗ ψm . (29)

We abbreviate the s-maps accordingly,

ψj ↔ sabj ↔ sbaj (30)

We now change to the rearranged Hilbert space

HAB = HA ⊗HB = (H1
a ⊗ . . .Hma ) ⊗ (H1

b ⊗ . . .Hmb ) . (31)

The Hilbert spaces (29) and (31) are unitarily equivalent in a canonical way:

V : Hab �→ HAB (32)

is defined to be the linear map satisfying

V (φa1 ⊗ φb1 ⊗ · · · ⊗ φam ⊗ φbm) = (φa1 ⊗ · · · ⊗ φam) ⊗ (φb1 ⊗ · · · ⊗ φbm) (33)

This is a unitary map, V −1 = V ∗.
Assume we need the s-maps of

ϕ := V ψ (34)

with ψ given by (29). The rearrangement lemma we have in mind reads

sABϕ = V (sab1 ⊗ · · · ⊗ sabm )V −1 . (35)

The proof uses the fact that both sides are multi-linear in the vectors ψj . There-
fore, it suffices to establish the assertion in the case, the ψj are product vectors.
But then the proof consists of some lengthy but easy to handle identities.

6 Polar Decompositions

Let us come back to the s-maps. It is worthwhile to study their polar decompo-
sitions. As we already know (11) it is evident that we should have

sbaψ = (�bψ)1/2jbaψ = jbaψ (�aψ)1/2, (36)
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sabψ = (�aψ)1/2jabψ = jabψ (�bψ)1/2 .

The j-maps are anti-linear partial isometries with left (right) supports equal
to the support of their left (right) positive factor. From Alice’s point of view,
who can know her reduced density operator but not the state from which it is
reduced, jabψ is a non-commutative phase. It is in discussion whether and how
relative phases of this kind can be detected experimentally.

One outcome of the polar decomposition is a unique labelling of purifications.
If �a denotes a density operator on Ha, then all its purifications can be gained
by the chain

�a �→ jba(�a)1/2 = sbaψ �→ ψ

where jba runs through all those anti-linear isometries from a to b whose right
supports are equal to the support of �a.

The uniqueness of the polar decomposition and (11) yields

(jbaψ )∗ = jabψ , �bψ = jbaψ �aψ jabψ . (37)

Now we can relate the expectation values of the reduced density operators: As-
sume the bounded operators A and B on Ha and Hb are such that

B∗ jbaψ = jbaψ A . (38)

Then one gets, as a little exercise in anti-linearity,

Tr �aψA = Tr �bψB . (39)

It is possible to express the condition (38) for the validity of (39) by an anti-
linear operator Jψ acting on Ha⊗Hb. To this end we define Jψ as the anti-linear
extension of

Jψ(φa ⊗ φb) = jabψ φ
b ⊗ jbaψ φ

a . (40)

With this definition it is to be seen that (38) is as strong as

Jψ(A⊗ B) = (A⊗B)∗Jψ . (41)

(40) is a crossed tensor product, ⊗̃. With every pair of maps, one from Ha to
Hb and one in the opposite direction, and both either linear or anti-linear, one
can build the crossed tensor product ⊗̃. An important example is (40), where
the two factors are j-maps. We may formally write

Jψ = jabψ ⊗̃ jbaψ

for the just defined anti-linear operator acting on Hab.
Now let the factors of Hab be of equal dimension and ψ “completely en-

tangled”. In a more mathematical language ψ is called a cyclic and separating
vector, a so-called GNS-vector2 or a “GNS vacuum”, for the representation

A �→ A⊗ 1b

2 GNS stands for I. M. Gelfand, M. A. Naimark, I. E. Segal.
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of the algebra B(Ha). In this context, Jψ is an elementary example of Tomita-
Takeski’s modular conjugation. That ψ is completely entangled can be expressed
also in terms of s-maps: sabψ must be invertible. (Its inverse, if it exists, must be
unbounded for infinite dimensional Hilbert spaces.)

There are two further operators, particularly tied to the modular conjugation.
The first is introduced by

(A⊗ 1b)ψ = Sψ(A∗ ⊗ 1b)ψ . (42)

Sψ can also be gained by the help of the twisted cross product

Sψ = (sbaψ )−1 ⊗̃ sbaψ . (43)

It is standard to write the polar decomposition of the anti-linear S-operator

Sψ = Jψ
√
∆ψ . (44)

∆ψ is called the Tomita-Takesaki modular operator. The distinguished role of
these and similar “modular objects” becomes apparent in the theory of general
von Neumann algebras where they play an exposed and quite natural role. From
them I borrowed the notations for the s- and the j-maps. In the elementary case
we are dealing with, one has

∆ψ = �aψ ⊗ (�bψ)−1 .

See [32] for a physically motivated introduction. Further relations between the
s- and j-maps and to modular objects can be found in [12] and [13].

7 From Vectors to State

With � ≡ �ab we may write similar to (6),

(|φa〉〈φa| ⊗ 1b) �ab(|φa〉〈φa| ⊗ 1b) = |φa〉〈φa| ⊗ Φba� (|φa〉〈φa|), ∀φa ∈ Ha (45)

For every decomposition

�ab =
∑

cjk|ψj〉〈ψk|, Hab ' ψj ↔ sabj (46)

there is a representation

Φba� (|φa〉〈φa|) =
∑

cjksbaj |φa〉〈φa|)sabk . (47)

Similarly one defines Φab� . The maps are linear in �ab and can be defined for every
trace class operator �. Moreover, their domain of definition can be extended
to the bounded operators of the subsystems: Let X and Y denote bounded
operators on Ha and Hb respectively, then

X �→ Φba� (X), Y �→ Φab� (Y ) (48)
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are well defined and anti-linear in X or Y . The equation

Tr XΦab� (Y ∗) = Tr Y Φba� (X∗) = Tr � (X ⊗ Y ) (49)

is valid. Proving them at first for finite linear combinations of rank one operators,
one finds the maps (48) mapping the bounded operators of one subsystem into
the trace class operators of the other one. Indeed, the finite version of (49)
provides us with estimates like

‖ Φba� (X∗) ‖1 ≤‖ X ‖∞ ‖ � ‖1 . (50)

We now have a one-to one correspondence

Φab� ↔ Φba� ↔ � (51)

That we have a map from the bounded operators of Ha into the trace class
operators of Hb is physically quite nice. It is an opportunity to reflect on testing
a property Pa of Ha once more, but under the condition that � ≡ �ab is in
any (normal) state. The rank of Pa is not necessarily finite. The rule of Lüders,
[33], says that the prepared state is ωa := Pa�

aPa if one finds the property
Pa valid and �a is the reduced density matrix of � in the a-system before the
test. The EPR channel asks for ωb, the density operator of the b-system after
an affirmative checking of the property Pa. This density operator is given by a
Φ-map:

If � is the density operator of Hab and if a local measurement establishes
property Pa, then the state ωb of the b-system is given by

ωb = Φba� (Pa) . (52)

The proof is by looking at the effect in the bi-partite system resulting from a
local measurement. Let φaj be a basis of the support space of Pa. One obtains

(Pa ⊗ 1b) |ψ〉〈ψ| (Pa ⊗ 1b) =
∑

|φaj 〉〈φbk| ⊗ sbaψ |φak〉〈φaj | sabψ

and this is, up to normalization, the state prepared by the local measurement.
Next we sandwich the equation between 1a ⊗ B and take the trace. At the
left hand we get Tr ωbB. On the right we obtain Φba� (Pa). Now we have seen
from (49) that (52) is correct for pure states. By linearity and (50) we get the
assertion.

It may be worthwhile to compare (49) with the now well known “duality”
between super-operators T of Ha and operators on Ha ⊗ Hb. Here the Hilbert
spaces are of equal finite dimension. One selects a maximally entangled vector
ψ and defines

ρ := (T ⊗ idb)(|ψ〉〈ψ|) (53)

to express the structure of T by that of ρ. This trick is due to A. Jamiolkowski,
[34], and is now refined and much in use after the papers of B. Terhal [36] and of
Horodecki et al [35]. Comparing (47) and (48), one can connect both approaches
as follows:
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From � we get a map Φab� . From a maximally entangled ψ we get an anti-linear
map sabψ , enabling the correspondence (53) to be expressed by

� ↔ T, T (X) = sabψ Φba� (X) sbaψ (54)

In a certain way, anti-linearity is the prize for eliminating the reference state ψ
in Jamiolkowski’s approach.
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On Rank Two Channels

A. Uhlmann

Abstract. Based on some identities for the determinant of completely
positive maps of rank two, concurrences are calculated or estimated from
below.

1 Introduction

In the paper I present some identities which are useful in the study of rank
two completely positive maps, including attempts to calculate concurrences. It
complements my earlier papers [8] and [13].

Let us consider a map, Φ, from the algebra Mm of m × m–matrices into
another matrix algebra. Φ is of rank k if the rank of the matrix Φ(X) never
exceeds k. Then one can reduce Φ to a map into a matrix algebra Mk. If Φ is of
rank two, then the trace and the determinant characterize Φ(X) up to unitary
transformations. Thus, for trace preserving maps one essentially remains with
detΦ(X). As shown in the next section, there is a remarkable and, perhaps, not
completely evident way to express that quantity.

The bridge to higher ranks is provided by the use of the second symmetric
function, which seems, because of the identity

2 detZ = (trZ)2 − trZ2, Z ∈ M2 (1)

quite natural, see Rungta et al [12]. These, and several other authors restrict
themselves to trace preserving channels, resulting in trZ = 1, Z = Φ(X). A
review, pointing to the main definitions and most applications is by Wootters
[10]. Mintert et al [11] recently derived a lower bound for the concurrence. It
seems to be equivalent, though expressed quite differently, with our estimate
(44) in case of rank two.

To consider detΦ is most efficient for completely positive map of length two.
The length of a cp-map Φ is the minimal number of Kraus operators, necessary
to write down Φ as a Kraus representation. Now, if

Φ(X) =
∑

AjXA∗j (2)

is any Kraus representation of Φ, then the linear space, generated by the Kraus
operators Aj , depends on Φ only. The linear space will be called the Kraus space
of Φ, and it is denoted by Kraus(Φ). Clearly, the dimension of the Kraus space
is the length of Φ.

We devote a section to compute explicitly detΦ for some channels of rank two
and, with one exception, of length two, and the last section to concurrences.

For instance, in tracing out the 2-dimensional part, the partial trace of a 2×m
quantum system is a channel of rank m and of length 2. In the example (see

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 413–424, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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below) the partial trace is embedded in a one parameter family (7) of channels.
Later on we shall see in the 2 ⊗ 2 case, how the whole family can be treated
straightforwardly and similar to the way opened by Wootters, partly together
with Hill, in their beautiful papers [4] and [6] which has their roots already in
Bennett et al [5].

Example 1a: A prominent example of a trace-preserving cp-map of rank m and
length two is the partial trace of a 2×m quantum system into its m-dimensional
subsystem,

tr2 : M2m = M2 ⊗Mm �→ Mm. (3)

Writing the matrices in block format,

tr2 X ≡ tr2

(
X00 X01

X10 X11

)
= X00 +X11, (4)

a valid Kraus representation reads

tr2(X) = A1XA∗1 +A2XA∗2, A1 =
(
1 0

)
, A2 =

(
0 1

)
, (5)

with 0 and 1 the (m×m)-null and -identity matrices. The Kraus space consists
of (2 × 2m)-matrices

(
a1 b1

)
. Alternatively, the Kraus space can be generated

space by
B1 =

(
1m 1m

)
, B2 =

(
1m −1m

)
, (6)

and one can embed tr2 within the trace preserving cp-maps

X �→ (1 − p)B1XB∗1 + pB2XB∗2 = X00 +X11 + (1 − 2p)(X01 +X10). (7)

With 0 < p < 1 one gets “phase-damped” partial traces. �

2 The Determinant

What are the merits of the rank two property of a channel? As already men-
tioned, these trace-preserving cp–maps are governed by just one function on the
input system, by detΦ(X). Wootters, [6], has used this fact efficiently to cal-
culate the 2 × 2 entanglement of formation. His proof is based on the so-called
concurrence constructions, see next section. While there is a richness of variants
in extending the original concept of concurrence for higher ranks, there seems
to be a quite canonical one for rank two cp-maps.

In a 2-dimensional Hilbert space there is, up to a phase factor, an excep-
tional anti-unitary operator, the spin-flip θf . (The index “f” remembers Fermi
and “fermion”.) We choose a reference basis, |0〉, |1〉, to fix the phase factor
according to

θf (c0|0〉 + c1|1〉) = c∗1|0〉 − c∗0|1〉, (8)

or, in a self-explaining way, by

θf

(
c0
c1

)
=

(
0 1
−1 0

)
anti

(
c0
c1

)
=

(
c∗1
−c∗0

)
.
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We need θ∗f = θ−1
f = −θf and the well known equation

θfX
∗θfX = −(detX)1. (9)

One remembers that the Hermitian adjoint ϑ∗ of an anti-linear operator ϑ in
any Hilbert space is defined by

〈ψ, ϑ∗ϕ〉 = 〈ϕ, ϑψ〉.

In particular, θf is skew Hermitian.
Applying (9) to a rank two cp-map (2) results in

(detΦ(X))1 = −
∑
jk

θfAjX
∗A∗jθfAkXA∗k

and, taking the trace,

detΦ(X) = −1
2
tr

∑
jk

(A∗kθfAj)X
∗(A∗jθfAk)X (10)

Now we insert X = |ψ〉〈ϕ|. Respecting the anti-linearity rules one obtains

detΦ(|ψ〉〈ϕ|) = −
∑
j<k

〈ϕ, (A∗kθfAj)ϕ〉 · 〈(A∗jθfAk)ψ, ψ〉.

This bilinear expression we rewrite further. Consider

〈ϕ,A∗kθfAjϕ〉 = 〈Akϕ, θfAjϕ〉 = −〈Ajϕ, θfAkϕ〉,

where θ∗f = −θf has been used. The last relation tells us that only the Hermitian
part of the operator sandwiched by ϕ is important. This offers to define the
Hermitian anti-linear operators

ϑjk =
1
2
(
A∗jθfAk −A∗kθfAj

)
. (11)

Inserting in the determinant expression and adsorbing the minus sign yields

detΦ(|ψ〉〈ϕ|) =
∑
j<k

〈ϕ, ϑjkϕ〉〈ϑjkψ, ψ〉 =
∑
j<k

〈ψ, ϑjkψ〉∗ 〈ϕ, ϑjkϕ〉 (12)

Before becoming more acquainted with ϑjk by examples, let us discuss some
of their invariance properties. Taking care with the anti-linearity, one gets

(
∑

ajAj)∗θf (
∑

bkAk) − (
∑

bkBk)∗θf (
∑

ajBj) =
∑
jk

a∗jb
∗
kϑjk (13)

First conclusion
The linear space generated by the anti-linear operators θjk does not depend on
the chosen Kraus operators.
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Let us call this space the derived Kraus space of Φ, denoted by Kraus’(Φ). (No-
tice: The set of Hermitian anti-linear operators form a complex-linear space.
Kraus’(Φ) is one of its subspaces.) In particular,

A,B ∈ Kraus(Φ) =⇒ A∗θfB −B∗θfA ∈ Kraus′(Φ), (14)

and, consequently,

If Kraus(Φ1) = Kraus(Φ2), then Kraus′(Φ1) = Kraus′(Φ2) (15)

The following items are mutually equivalent for rank two cp-maps Φ.

– The vector |in〉 obeys Φ(|in〉〈in|) = |out〉〈out|.
– With a unique C ∈ Kraus(Φ) it holds A|in〉 = (trAC∗) |out〉 for all
A ∈ Kraus(Φ).

– For all ϑ ∈ Kraus’(Φ) it holds |in〉 ⊥ ϑ |in〉.

The second item is valid for all cp-maps. It does not depend on the rank.
From a Kraus representation of Φ with operators Aj one gets the numbers λj
from Aj |in〉 = λj |out〉. These relations define a linear form over Kraus(Φ) which
can be uniquely written as indicated in the second item. Because item one can
take place if and only if the determinant of Φ(|in〉〈in|) vanishes, the third item
is a simple consequence of (12). )

Let us now consider the case of two different sets, {Aj} and {Ãj}, of Kraus
operators belonging both to Φ. This aim is reached by

Ãk =
∑
j

ujkAj

if and only if the ujk are the entries of a unitary matrix. The induced transfor-
mation of the operators (11) reads

ϑ̃mn =
∑
jk

ujmuknϑjk

We now see, by anti-linearity of the ϑ operators,∑
ϑ̃mnXϑ̃mn =

∑
ujmuknu

∗
rmu

∗
snϑjkXϑrs.

By the unitarity condition it becomes evident that∑
ϑ̃mnXϑ̃mn =

∑
ϑjkXϑjk

holds. Thus, the anti-linear, completely positive map

Φ′(X) :=
∑
j<k

ϑjkXϑjk (16)
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is uniquely associated to Φ. Let us call Φ′ the (first) derivative of Φ. If one needs
linearity, Φ′(X∗) is offered, a completely co-positive map. As one can see from
(12),

detΦ(|ψ〉〈ϕ|) = 〈ϕ,Φ′(|ϕ〉〈ψ|)ψ〉 (17)

Another way to express the same is by Gram matrices Gϕ with matrix entries
〈ϕ, ϑjkϕ〉,

detΦ(|ψ〉〈ϕ|) = −1
2

trGϕG∗ψ (18)

There may be further useful quantities by replacing the trace by other algebraic
invariant operations.

3 Examples

At first we continue with example 1a to show the automatic appearance of
Wootters’ conjugation, and to see what happens with the phase-damped partial
trace of a 2× 2–system. Next we look at a Kraus space of dimension three. The
channels belonging to it describe certain “inverse EPR” tasks: Alice and Bob
input pure states |0x〉, and a device tests “a la Lüders” whether the system is
in a certain maximally entangled state or not. Then Alice is asking whether her
state is |0〉 or |1〉. In the third collection of examples we treat 1-qubit cp-maps
of length two. As in the first example there is, essentially, only one ϑ12, denoted
simply by ϑ.

Example 1b: Here we call attention to Example 1a, restricted, however, to
m = 2. Then tr2 is of rank and of length two. Applying the recipe (11) and
using the operators Bj of (6), we start calculating

ϑ =

√
p(1 − p)

2
(B∗1θfB2 −B∗2θfB1).

At first, we see
1 0
0 1
1 0
0 1

(
0 −1
1 0

)
anti

(
1 0 −1 0
0 1 0 −1

)
=


0 1 0 −1
−1 0 1 0
0 1 0 −1
−1 0 1 0


anti

We have to take the Hermitian part. An anti-linear operator is Hermitian if every
matrix representations is a symmetric matrix. We obtain, up a factor, Wootters’
conjugation

ϑ =
√
p(1 − p)


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


anti

= −
√
p(1 − p)θf ⊗ θf (19)

We infer from the last equation: The derived Kraus space of the phase-damped
partial traces in 2 × 2-systems is generated by Wootters conjugation. �
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Example 2: Consider the 1-qubit-channels

Φq
((x00 x01

x10 x11

))
=

(
(1 − q)x00 0

0 x11 + qx00

)
. (20)

with 0 < q < 1. We easily see

detΦ(X) = (1 − q)x00(x11 + qx00).

The channels are entanglement breaking and of length three. The operators

A1 =
(

0 0
0 1

)
, A2 =

√
1 − q

(
1 0
0 0

)
, A3 =

√
q

(
0 0
1 0

)
(21)

can be used to Kraus represent the channels:

Φq(X) = A1XA1 +A2XA2 +A3XA∗3,

where the dependence on q of the Aj has not been made explicit. (A1 and A2 are
Hermitian.) |1〉〈1| is a fix-point of (20) All Φq belong to the same Kraus space
which consists of all operators A satisfying 〈1|A|1〉 = 0. See also Verstraede and
Verschelde, [3], (theorem5).

A straightforward calculation yields

ϑ12 = −1
2

√
1 − q

(
0 1
1 0

)
anti

, ϑ23 =
√
q(1 − q)

(
1 0
0 0

)
anti

. (22)

and ϑ13 = 0. Therefore, the first derivative of Φq becomes

Φ′q(X
∗) =

1 − q

4

(
x11 + 4qx00 x01

x10 x00

)
, (23)

and, after some elementary calculations, we get

trXΦ′(X∗) = detΦq(X) − 1 − q

2
detX. (24)

This also makes sense for q = 0, getting the identity map, and for q = 1, resulting
in a degenerate length two channel. The deviation from being of length two is
indicated by the commutator

ϑ12ϑ23 − ϑ23ϑ12 =
1 − q

2
√
q

(
0 1
−1 0

)
. (25)

One may wonder whether it is useful to examine more generally the space of
linear operators generated by the commutators of the operators ϑjk. Howev-
er, I do not know the meaning of it. Is it an indication of a co-homology like
sequence? �

Example 3: Let us now turn to completely positive 1-qubit–maps of length two.
The reader may consult [8] and [13] for other proofs and aspects.
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In the case at hand, we get a Kraus space generated by two operators, say A
and B. For our next purpose we rewrite (11),

ϑ =
1
2
(
A∗θfB −B∗θfA

)
=

(
α00 α01

α10 α11

)
anti

, (26)

and obtain the following matrix entries:

α∗00 = a00b10 − a10b00, α∗11 = a01b11 − a11b01,

α∗01 = α∗10 =
1
2
(a00b11 + a01b10 − a10b01 − a11b00). (27)

There are a lot of possibilities in choosing A and B in order to obtain a pre-
described ϑ. For instance, setting B = 1 in (27), one arrives at

B = 1 ⇒ ϑ =
(

−a∗10 1
2 (a00 − a11)∗

1
2 (a00 − a11)∗ a∗01

)
anti

.

Therefore, every anti-linear and Hermitian ϑ can be gained via (26) with a
suitable A and with B = 1.

More general cases can be seen better after a unitary change of Φ. Φ̃ is unitarily
equivalent to Φ, if for all X

Φ̃(X) = U1Φ(U2XU∗2 )U∗1 , ϑ̃ = U∗2ϑU2

with a special unitary U1 and a unitary U2. (The the unitaries with detU = 1
commute with θf .) As is known, see Ruskai et al [1] and the early paper of Gorini
and Sudarshan [2], every 1-qubit–channel of length two is unitarily equivalent
to a “normal form” with Kraus operators

A =
(
a00 0
0 a11

)
, B =

(
0 b01
b10 0

)
, (28)

and these Kraus operators imply

ϑ =
(
z2
0 0
0 −z2

1

)
anti

, z2
0 = (b10a00)∗, z2

1 = (b01a11)∗ (29)

The map Φ is called non-degenerate if detϑ2 = 0. Then z0z1 = 0. There are two
cases if Φ is degenerate. Either one of the numbers z1, z2 is zero, but the other
one not. Or, both are zero. (An example is a11 = b10 = 0 but a00b01 = 0.)

4 Concurrence

Concurrence, originally introduced with respect to partial traces, can be con-
sistently defined for all channels, and even for all positive maps. For trace-
preserving cp-map this fact can be understood by the the Stinespring dilatation
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theorem. If Φ is not of rank two, one replaces in the definitions below detΦ
according to

detΦ(X) =⇒ 1
2
(
(trX)2 − trX2

)
, (30)

which does not change anything if Φ(X) is 2 × 2. In some cases one can replace
the condition of being rank two by demanding Φ(X) to possess not more than
two different, but degenerated, eigenvalues. See [15].

After repeating, for convenience, the definition and some general knowledge,
a more detailed treatment for rank two (and length two) cp-maps will be given,
though not exhaustive.

Let Φ be a positive map of rank two. C(Φ;X), the Φ-concurrence, is defined
for all positive operators X of the input space by the following properties:

(i) C(Φ;X) is homogeneous of degree one,

C(Φ;λX) = λC(Φ;X), λ ≥ 0.

(ii) C(Φ;X) is sub-additive,

C(Φ;X + Y ) ≤ C(Φ;X) + C(Φ;Y )

(iii) C(Φ;X) is the largest function with properties (i) and (ii) above, satisfying
for all vectors ψ of the input space

C(Φ; |ψ〉〈ψ|) =
√

detΦ(|ψ〉〈ψ|) (31)

Let us draw a conclusion. Let be Z1 an operator on the input and Z2 one on the
output space. Then

Φ̃(X) = Z2Φ(Z1XZ∗1 )Z∗2 ⇒ C(Φ̃;X) = | detZ2|2C(Φ;Z1XZ∗1 ). (32)

Indeed, the concurrence of Φ̃ as given by (32) fulfills (i) and (ii), and both
functions coincide for positive operators of rank one. �

There are other, equivalent possibilities to define C. It is not difficult to show
that

C(Φ;X) = inf{
∑√

detΦ(|ψj〉〈ψj |),
∑

|ψj〉〈ψj | = X}. (33)

holds. Next, just because the square root of the determinant is a concave function
in dimension two, a further valid representation is given by

C(Φ;X) = inf{
∑√

detΦ(Xj),
∑

Xj = X}, (34)

so that the Xj ≥ 0 can be arbitrarily chosen up to the constraint of summing up
to X . Notice, that a similar trick with the determinant (or the second symmetric
function) in the definition of concurrence would fail because the determinant is
not concave on the cone of positive operators.

For cp-maps of rank and length two more can be said about the variation-
al problem involved in the definitions above. This is due to the fact that the
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derived Kraus space is 1-dimensional, as explained in the preceding section. The
appropriate extension of Wootters procedure goes this way:

Step 1. For two positive operators, X and Y , of the input space we need

{λ1 ≥ λ2 ≥ . . . } = eigenvalues of (X1/2Y X1/2)1/2 (35)

to define
C(X,Y ) := max{0, λ1 −

∑
j>1

λj}. (36)

Step 2. We replace Y by ϑXϑ,

C(Φ;X) = C(X,ϑXϑ), (37)

and we are done, [9].

To see a first use, let us return to the 2 ⊗ 2 case, Φ being a partial trace.
It was shown, see example 1b, that Wootters’ ϑ = −θf ⊗ θf must be replaced
by

√
p(1 − p)ϑ for the phase-damped partial traces of example 1a. The relevant

eigenvalues (35), which give (37) vie (36), have to be multiplied accordingly.
Therefore, the concurrence of the phase-damped partial trace is Wootters’ con-
currence multiplied by the factor

√
p(1 − p).

A similar reasoning applies for all length two, rank two channels: All cp-
maps with the same Kraus space induce, up to a numerical factor, the same
concurrence. Many details can be seen for length two 1-qubit cp-maps by further
discussing example 3 of the preceding section.

Example 3a: In dimension two there are only two eigenvalues, λ1, λ2, to be
respected in (35). Therefore, the right hand side of (36) is equal to λ1 − λ2.
However, combining

(λ1 − λ2)2 = (tr ξ)2 − 4 det ξ, ξ = (X1/2Y X1/2)1/2

with the identity
(tr ξ)2 = tr ξ2 + 2 det ξ,

yields
(λ1 − λ2)2 = tr ξ2 − 2 det ξ.

Finally, removing the auxiliary operator ξ, we obtain

C(X,Y )2 = tr (XY ) − 2
√

det(XY ). (38)

With the Kraus operators A,B of Φ, and with ϑ given by (26), the relation (38)
provides us with

C(Φ;X)2 = tr (XϑXϑ) − 2(detX) (detϑ2)1/2. (39)

Let Φ be in the normal form (29) so that ϑ is diagonal with entries z2
0 and −z2

1

as in (29). Then we arrive at

trXϑXϑ = (z∗0x00z0)2 − (z∗0x01z1)2 − (z0x10z
∗
1)2 + (z∗1x11z1)2,

(detX) (detϑ2)1/2 = (z0z∗0z1z
∗
1)(x00x11 − x01x10).
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Combining these two expressions as dictated by (39) results in

C(Φ;X)2 = (z0z∗0x00 − z1z
∗
1x11)2 − (z0z∗1x10 − z1z

∗
0x01)2. (40)

The number within the second delimiter is purely imaginary and, therefore, C
is the sum of two positive quadratic terms. This observation remains true if we
allow for any Hermitian operator in (40).

The square of the concurrence (39) is a positive semi-definite quadratic form
of maximal rank two on the real-linear space of Hermitian Operators. The con-
currence is a Hilbert semi-norm.

There is a further curious observation: The concurrence of our 1-qubit cp-map
in normal form is equal to the absolute value of the complex number

c(X) := z0z
∗
0x00 − z1z

∗
1x11 + z0z

∗
1x10 − z1z

∗
0x01

Following Kossakowski [14], it is tempting to ask, whether c(X) is to replaced
by a Quaternion for positive, but not completely positive maps of rank two.

Given X = X∗, its squared concurrence is

C2(Φ;X)2 = l21(X) + l22(X) (41)

with real

l1(X) = z0z
∗
0x00 − z1z

∗
1x11, l2(X) = i(z0z∗1x10 − z1z

∗
0x01) (42)

The value of l1, together with the trace of X , determine x00 and x11 uniquely.
(We exclude the trivial case z1 = z2 = 0.) The value of l2 now determines a line
of constant squared concurrence crossing X . Along this line only the off-diagonal
entries of X vary. Explicitly, along

y01 = z0z
∗
1t+ x01, y10 = z∗0z1t+ x10 (43)

we get l2(Y ) = l2(X), yjk denote the matrix entries of Y . For positive X we
know C ≥ 0, and there is no ambiguity in taking the square root in (41). It is
a particular property of every rank two, length two cp-map that its concurrence
remains constant along a certain bundle of parallel lines.

In the degenerate case, z1z2 = 0, it holds l2 = 0 always: After fixing x00 and
x11 we get planes of constant C2. �

If Φ is not of length two, there are lines, crossing a given positive X , along which
the concurrence is a linear function, but not necessarily a constant one. By this
reason, and by the possibility of bifurcations, [7] general expressions similar to
(37) seem to be unknown. However, an estimation from below is available. To
this end let us look at (∑

C(X,ϑjkXϑjk)2
)1/2

The terms within the sum can be seen as squared concurrences of length two
channels. Therefore, every term is the square of a Hilbert semi-norm, and the
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whole expression fulfills again the requirements (i) and (ii) in the definition of
Φ-concurrence at the beginning of the present section. Because of (12), and by
its very construction, the expression coincides for positive rank one operators
with C(Φ;X). But the latter is the largest function with these properties. This
proves the inequality

C(Φ;X)2 ≥
∑
j>k

C(X,ϑjkXϑjk)2, X ≥ 0 (44)

Sometimes one can say more, as the further treatment of example 2 shall show.

Example 2a: Remembering (20)

Φq
((x00 x01

x10 x11

))
=

(
(1 − q)x00 0

0 x11 + qx00

)
and (22)

ϑ12 = −1
4

√
1 − q

(
0 1
1 0

)
anti

, ϑ23 =
1
2

√
q(1 − q)

(
1 0
0 0

)
anti

,

we need to know
C(X,ϑ12Xϑ12), C(X,ϑ23Xϑ23). (45)

The first one belongs to the phase-damping 1-qubit channels. As it is not in
normal form, we compute it directly:

trXϑ12Xϑ12 =
1 − q

8
(|x01|2 + x00x11),

√
ϑ2

12 =
1 − q

16
,

yielding
C(X,ϑ12Xϑ12)2 = (1 − q)|x01|2/4. (46)

For the other C we simply specify (40) and get

C(X,ϑ23Xϑ23)2 = q(1 − q)x2
00/4. (47)

As a particular case of (44), we arrive at the inequality

C(Φq ;X) ≥ 1
2

√
(1 − q)

√
(qx2

00 + |x01|2) (48)

for positive X . If x01 = 0, the right hand side of (48) becomes linear. Therefore,
by convexity of C, equality must hold, i.e.

C(Φq ;
(
x00 0
0 x11

)
) =

1
2

√
q(1 − q) x00.
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Universal Sets of Quantum Information

Processing Primitives and Their Optimal Use

J. Gruska�

Progress in science is often done by pessimists
Progress in technology is always done by optimists

Abstract. This paper considers several concepts of universality in quan-
tum information processing and deals with various (sometimes surpris-
ing) universal sets of quantum primitives as well as with their optimal
use.

1 Introduction

Nature offers enormous variety of ways – let us call them technologies – sev-
eral, more or less powerful, quantum information processing primitives can be
exhibited, implemented and used.

Since it appears to be very difficult to exploit the potential of nature for quan-
tum information processing, it is of major importance for quantum information
processing to explore which kind of quantum primitives form sets that are uni-
versal, in some relevant sense, and that are reasonably easy to implement with
some available or potential technologies. Moreover, also from the point of view
of understanding the laws and limitations of quantum information processing
and communication as well as of quantum mechanics itself, the problems of find-
ing rudimentary and yet powerful quantum information processing primitives,
as well as methods for their optimal use, are of large experimental and also
fundamental importance.

The search for such quantum computation universal primitives, and for their
optimal use, is therefore one of the major tasks of the current quantum infor-
mation processing research (both theoretical and experimental) that starts to
attack the task of building processors for few, or not so few, qubits applications.

The search for sets of elementary, or even very rudimentary, but powerful,
quantum computational primitives and for their optimal use, has brought a
variety of deep and surprising results that are much encouraging for some of
the main current challenges of the field – i.e. the design of powerful quantum
information processing processors.

One of the outcomes that looked very surprising at first, has been the discov-
ery of the high computational power of quantum projective measurements, and
� Paper was written partially during the author’s stay with the Imai Quantum Com-

puting Project, Tokyo in 2004 and their support, as well as support of the grant
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the understanding that a small set of measurements (observables) is sufficient to
simulate any quantum (unitary) operation. It has then turned out that it is ac-
tually quite natural that quantum projective measurements are a proper way to
realize quantum unitary operations (in a special but meaningful and interesting
way). This in turn led to the design of two new abstract models for quantum
computing: projective measurement based quantum circuits and quantum Tur-
ing machines.

A problem related to the search for universal sets of quantum computation
primitives, which is also crucial for quantum computing, is how to synthesize any
arbitrary unitary transformation using primitives of some given universal set.
This problem is often decomposed into a couple of subproblems. One of them
is the synthesis of arbitrary unitary transformations from one- and two-qubit
unitary transformations, or measurements. Second problem is that of synthesis
of arbitrary two-qubit and one-qubit transformations from a simpler set of (el-
ementary, in some sense), unitary one- and two-qubit transformations. Another
problem is that of the synthesis of one- and two-qubit transformations using
primitives provided by a particular technology. For example, from RF-pulses in
the case of NMR information processing. Yet another possibility is to simulate
unitary operations through projective measurements.

Concerning primitives for quantum communication several surprising discov-
eries have been made. For example, an addition of a simple state as a given
resource can transform a non-universal set of primitives to a universal set. More-
over, the high computational power of the nearest neighbor exchange interactions
has been discovered.

It is also quite clear that optimization of quantum circuits will be of similar
importance as in the case of classical circuits. This time, however, optimization
seems to be a much more difficult task. In spite of that, several interesting and
important results have already been obtained concerning optimization of special
circuits – e.g. the circuits for two- and three-qubit unitary gates.

In this paper we assume a basic knowledge of quantum information processing
concepts. For example, on the level of Gruska (1999, 2003).

2 Universality and Optimality in Classical Computing

In classical computing, the most widely used set of gates, i.e. AND-, OR- and
NOT-gates, is universal and so is also the set consisting of AND- and NOT-gates,
or even the set consisting of only a single NOR- or NAND-gate.

The problem of optimality for classical circuits with such sets of gates has
been solved quite satisfactorily. Optimization methods for classical circuits are
heavily used and have major applications.

In the case of classical reversible computing, both the Toffoli gate T (x, y, z) =
(x, y, (x ∧ y) ⊕ z) and the Fredkin gate F (x, y, z) = (x, x̄y + xz, x̄z + xy) are
universal, if constant inputs are allowed, as well as additional (ancilla) “wires”
with identity gates. Otherwise, a slightly more convenient universal set is that
of gates T, CNOT and NOT and auxiliary ancilla wires. Actually, CNOT can
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be deleted because it can be realized by a circuit with two Toffoli gates and two
NOT gates and one ancilla wire.

Perhaps the most useful definition of universality for sets of reversible gates
reads as follows:

Definition 1. A set of reversible gates G is universal if for every n and all
permutations π ∈ S2n there exists a constant an such that some circuit consisting
of the gates from G computes π using at most an ancilla wires.

Interesting enough, there is neither one- nor two-inputs classical universal re-
versible gate. However, as discussed later, there are universal two inputs quan-
tum gates.

Reversible classical circuits started to be of importance recently for several
reasons: (a) they are useful in some applications, like signal processing, com-
munication, cryptography, where circuits should be information lossless; (b) In
some technologies (see Shende et al. (2002)), the loss of information due to ir-
reversibility implies energy loss and in nanotechnologies switching devices with
gain are not easy to build; (c) reversible classical circuits are special cases of
quantum circuits.

Synthesis of reversible circuits from reversible elements and their optimization
are also interesting problems. The goal is to minimize either the number of ancilla
wires (for minimizing auxiliary storage), or the total number of gates from some
universal set, or, still, the depth of the circuits.

Toffoli (1982) provided a synthesizing algorithm, but it needed a lot of ancilla
wires (up to n−3 for n-input circuits using TOFFOLI, CNOT and NOT gates).
However, Shende et al. (2002) showed that every even (odd) permutation1 can be
implemented without any (with one) ancilla using the gates TOFFOLI, CNOT
and NOT.

An optimization problem for an important class of CNOT-circuits has been
solved by Patel et al. (2002). The basic observation is that each circuit consisting
of CNOT-gates realizes a so called xor-linear gate2, and every xor-linear gate can
be realized by a CNOT-circuit. They provide an algorithm that implements any
xor-linear n qubit gate using O(n2/lgn) CNOT-gates and they also show that
this result is asymptotically optimal.

The optimization of {CNOT,NOT } circuits has been solved by Iwama and
Yamashita (2003). They found a complete set of transformation rules that can
transform any {CNOT,NOT }-circuit into an optimal one. However, the time
complexity of this optimization grows exponentially.

The above optimization results are of interest also for quantum computing,
where CNOT gates play an important role while, at the same time, its physical
implementation is highly nontrivial because it can create entangled outputs from
non-entangled inputs.

1 By Toffoli (1982), every reversible circuit with n inputs and no n×n gate implements
an even permutation.

2 An n qubit gate U is called xor-linear if U(x ⊕ y) = U(x) ⊕ U(y) holds for every
x, y ∈ {0, 1}n.
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3 Basic Concepts and Types of Universality

¿From the physical implementation point of view, the most basic requirements
and tools for quantum information processing are the following: (a) to use a
scalable physical system with long decoherence time to implement well specified
qubits; (b) to create a fiducial initial state, say the state |0(n)〉; (c) to implement
all the gates from a universal set (or all primitives from a universal set); (c)
to perform the standard basis projective measurement (or some other projec-
tive measurements, for example the Bell measurement). Additional important
requirements are the ability to perform two-qubit gates on any pair of qubits
and to use maximal parallelism. A search for technologies that meet the above
requirements is of up most importance.

¿From the quantum state evolution point of view, a set of primitives has to
be used for implementing, or at least arbitrarily well approximating, any unitary
transformation. Finally, from the quantum computation point of view, a set of
primitives is needed for simulating a universal classical computer.

3.1 Basic Notations, Concepts and Definitions

Let us first introduce some of the very basic concepts that are used in the
definitions of various notions of universality for quantum information processing.

For a given integer n, U(n) (SU(n)) is used to denote the group of unitary
operators of degree n (with determinants equal to 1).3 Similarly, O(n) (SO(n))
is used to denote the set of real, orthogonal, and therefore unitary, matrices of
degree n (with determinants equal to 1).

By an n-qubit (operation) gate we understand a unitary gate (operation)
over the 2n-dimensional Hilbert space. A gate is called real, or an rgate, if the
corresponding operator matrix in the standard basis contains only real numbers.

Let G be a set of quantum gates. A G-circuit is a quantum circuit where all
gates are from G. A k-qubit G-ancilla is a quantum state C|x〉, where C is a
G-circuit with k qubit inputs and outputs and x ∈ {0, 1}k.

The next important concepts are those of equivalence of two gates and of two
sets of gates, as well as two concepts of approximability.

Definition 2. Two n-qubit gates G1 and G2 are locally equivalent if there are
n one-qubit gates U1, . . . , Un and n one qubit gates V1, . . . , Vn such that G1 =
(
⊗n
i=1 Ui) ⊗G2 ⊗ (

⊗n
i=1 Vi).

That is, two gates are called locally equivalent if any one of them can be imple-
mented using the second one and one-qubit gates (that is using local one qubit
unitary operations only).

In the following, it is assumed that whenever a gate is available, it can be used
also in the reverse way, with “output wires” as the input ones and vice versa.
3 The global phase of a state has no impact on measurement. Therefore, from the

computation point of view global phases can be ignored. As a consequence, any
unitary operator in U(n) can be represented in a normal form by a matrix from
SU(n).
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Definition 3. A set of gates G1 is said to be adequate for a set of gates G2 if
every gate form G2 can be implemented by a G1-circuit. Sets of gates G1 and G2

are called equivalent if G1 is adequate for G2 and vice versa.

Two types of approximability of one gate by another one are of importance. The
most general one is approximability using an ancilla state; the second one, less
general, is without an ancilla (Shi, 2002).

Definition 4. An operator
U : H2r → H2r

is ε-approximated, for an ε > 0, by an operator

Ū : H2n → H2n ,

using an ancilla state |α〉 ∈ H2n−r , if for any state |φ〉 ∈ H2r ,

||Ū(|φ〉 ⊗ |α〉) − U(|φ〉) ⊗ |α〉|| ≤ ε||α||.

Definition 5. An operator

U : H2n → H2n

is ε-wa-approximated (approximated “without an ancilla”) by an operator

Ū : H2n → H2n ,

for an ε > 0, if for any state |φ〉 ∈ H2n ,

||Ū(|φ〉) − U(|φ〉)〉|| ≤ ε.

Types of Universality for Quantum Information Processing. Now we
define several types of universality for sets of quantum gates.

Definition 6. A set of gates G is called fully universal (f-universal) if every
gate can be realized, up to a global phase factor, by a G-circuit.4

Since the number of quantum unitaries has cardinality of continuum, no finite
set of gates can be f-universal. The requirement of f-universality is therefore
practically too strong. The next two concepts of universality are therefore more
appropriate from several points of view.

Definition 7. A set of gates G is called densely universal (d-universal) if there
exists an integer n0 such that for any n ≥ n0, the subgroup generated by G is
dense in SU(2n).

4 The claim that a gate G can be approximated (realized) up to a global phase factor
means that for an appropriate real φ the gate eφiG is approximated (realized).
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Definition 8. A set of gates G is called universal if there is an integer n0 such
that any n-qubit unitary gate with n ≥ n0, can be, for any ε > 0, ε-approximated
by a G-circuit.

From the classical computation point of view a still weaker concept of universality
is sufficient.

Definition 9. A set of real gates G is called computationally universal
(c-universal) if there is an integer n0 such that any n-qubit real unitary gate
with n ≥ n0, can be, for any ε > 0, ε-approximated by a G-circuit.

Of importance is also the concept of efficient universality, see also Ahoronov
(2003).

Definition 10. A gate is efficiently approximable by a set of gates G if it can
be ε-approximated, for any ε > 0, using polylog(1

ε ) gates from G. A set of gates
G is called efficiently universal (e-universal), if it can be used to ε-approximate
with arbitrarily small ε > 0 any quantum circuit having n qubits and t one- and
two-qubit gates, with only poly-logarithmic overhead in (n, t, 1

ε ).

Efficient universality therefore does not mean that any n qubit unitary operation
U can be implemented using a polynomial number (with respect to n and 1

ε ),
for an arbitrary ε > 0, of gates from a given universal set of gates G. This is not
possible to achieve in general. Efficient universality only means that if U can be
implemented using some number of t of one- and two-qubit gates, then the total
number of gates needed from G to implement U is polynomial with respect to
n, t and 1

ε .
Another important concept of universality is that of fault-tolerant universality,

or ft-universality in short. A set of gates G is ft-universal if it is universal and
all gates of G have fault-tolerant implementations.

A set of gates G that is universal in some of the above senses is, in quantum
computing jargon, often called a gate library. A gate is also often called universal
in one of the above senses in case the set consisting of that gate (and it inverse)
is universal provided some constant (in standard bases) inputs are also allowed.

Remark 1. From a practical point of view there is still another notion of univer-
sality. It is related to the problem how reliable have to be our primitives - gates,
channels - so that we can have really universal quantum information processing.
The theory of fault-tolerant computation solved, in some sense, this problem. It
has shown that there are thresholds - values δ with the property that if all prim-
itives, gates and wires, have an error rate smaller than δ, then, using proper
error-correction schemes, computations and communications can be done suffi-
ciently well (stabilized) and we can speak, also from a practical point of view,
about the existence of universal computations. Thresholds δ depend on the er-
ror correction schemes and their estimates vary from 10−6 to 10−4. They are
therefore very hard to achieve. A potential way out that may provide “beatable
thresholds” could be to work with some combination of operations that are error-
less, plus some operations that can be erroneous. See page 433 for an analysis of
one such approach.
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4 Universal Sets of Complex Unitary Gates

We now consider various universal sets of gates. The following gates will play by
that an important role:

– σx = X,σy = Y, σz = Z,K = σ
1
2
z , T = σ

1
4
z . where σ0 = I, σ1 = σx, σ2 = σy

and σ3 = σz are Pauli operators;
– CNOT = Λ1(σx), DCNOT, as well as TOFFOLI = TOF = Λ2(σx), where

DCNOT(x, y) = (y, x⊕ y);
– HADAMARD = H = 1

2 (σx + σz), SWAP and
√

SWAP;
– so called elementary rotation gates

Rα(θ) = cos
θ

2
I − i sin

θ

2
σα, for α ∈ {x, y, z}.

Observe that Λ1(σx) = (H ⊗ I)Λ1(σz)(H ⊗ I). Therefore, gates Λ1(σx) and
Λ1(σz) are locally equivalent. Observe also that for any real α,

σαz =
(

1 0
0 eiπα

)
= Λ0(eiπα).

The first universal gate was discovered by Deutsch (1989). This 3-qubit gate
is a generalization of the Toffoli gate and has the form

UD =


1 0

0

1 0 0 0
0 1 0 0
0 0 i cos θ sin θ
0 0 sin θ i cos θ

 ,

where θ is an irrational multiple of π.
Deutsch’s result has been improved to construct two-qubit universal gates.

For example, Barenco (1995) showed the universality of the following two-qubit
gate

UB =


1 0 0 0
0 1 0 0
0 0 eiα cos θ −iei(α−φ) sin θ
0 0 −iei(α+φ) sin θ eiα cos θ

 ,

where α, θ, φ are irrational multiples of π.
Shortly afterwards, Barenco et al. (1995), Deutsch et al. (1995) and Lloyd

(1995) showed that almost any 2-qubit gate forms, with its inverse, a universal
set of gates.

A simple example of a universal two-qubit gate, due to Tamir (2004), is the
gate (

Ry(α) 0
0 Rz(β)

)
where α, β and π are linearly independent over the rationals.
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The above results are nice and interesting, but the underlying universal gates
are still too complex for implementation. Implementation of one-qubit gates is
not a problem for most of quantum technologies, but this is not the case with
two qubits gates. The first really satisfactory result has been due to Barenco et
al. (1995):

Theorem 1. The CNOT gate with all one-qubit gates form a universal set.

The proof is in principle simple and its basic idea will be discussed and analyzed
in Section 9.

Theorem 1 can be easily improved into the following, also very nice, form:

Theorem 2. The CNOT gate with elementary rotation gates form a universal
set of gates.

This follows from the well known result that any one-qubit gate can be expressed,
up to a phase factor, as a triple product of two of the elementary Rα-gates.

It is natural to ask how it is possible that such a simple two qubit gate as
the CNOT-gate plays a so prominent role and whether in Theorem 1 the CNOT
cannot be replaced by some other gate. This problem was solved by Brylinskis
(2001), as a significant improvement of Theorem 1, using the concept of an
entangling gate, which is a gate that can produce entangled states when applied
to unentangled states.

Theorem 3. Any entangling two-qubit gate with all one-qubit gates (or only all
elementary rotation gates) form a universal set.

Remark 2. Any two qubit gate that is not a product of two one-qubit gates and
is not locally equivalent to the SWAP gate is entangling. An entangling gate is
called a perfect entangler if it can map a product state into a maximally entangled
state. CNOT and

√
SWAP gates are perfect entanglers.

The CNOT gate is an important primitive in optics-based quantum information
processing. In the case of superconductor- and spin-based quantum computing,
basic role is rather played by the gates iSWAP and

√
SWAP. These gates lead

to results similar to those with CNOT concerning the complexity of circuits de-
signed with them and with one-qubit gates. In general, for different technologies,
different two qubit gates or sets of gates eiHt, for different t, and a Hamiltonian
H , are considered as elementary, and the circuit design task is then to decompose
unitaries in terms of these elementary gates and one-qubit gates.

Let us now call a two-qubit gate U locally universal (l-universal) if this gate
and all one-qubit gates form an f-universal set of gates. Clearly, any gate that is
locally equivalent to an entangling gate is locally universal.

Example 1. An interesting example of a locally universal gate is the gate

R =
1√
2


1 0 0 1
0 1 −1 0
0 1 1 0
−1 0 0 1





Universal Sets of Quantum Information Processing Primitives 433

that transforms the standard basis into the Bell basis. This gate is also a solution
of so called Yang-Baxter equation

(R⊗ I2)(I2 ⊗ R)(R⊗ I2) = (I2 ⊗R)(R ⊗ I2)(I2 ⊗R),

see Kauffman and Lomonoco (2004), which is a natural structure for consider-
ing the topology of braids, knots and links.5 This relates quantum topology and
quantum computing.

The following are finite, interesting and important universal sets of gates:

– SHOR={TOF, H, σ
1
2
z }, see Shor (1996).

– KITAEV = {Λ1(σ
1
2
z ), H}, see Kitaev (1997).

– KLZ1 = {CNOT,Λ1(σ
1
2
z ), σ

1
2
z }, see Knill et al. (1998).

– BMPRV={CNOT,H, σ
1
4
z }, see Boykin et al. (1999).

Since sets KITAEV and SHOR are equivalent and gates in SHOR can be
simulated by KLZ1-circuits, the universality of the set KLZ1 follows.

4.1 A Thin Border Between Non-universality and Universality

A border is thin between universality and non-universality in the case of quan-
tum primitives. Indeed, Gottesman-Knill theorem (see Gottesman (1998)) tells,
that quantum circuits with operators in so called Clifford set (or with Clifford
operators) can be simulated on classical computers in polynomial time. However,
if the set of Clifford operators is “slightly enlarged”, by one of special (mixed)
states, we get already an f-universal set of quantum primitives. We deal now
with this quite surprising result, due to Bravyi and Kitaev (2004).

Let us first note that n-qubit circuits with operators from the Clifford set
{CNOT,H,K = σ

1
2
z } generate so called Clifford group Cn of operators that

contains n-qubits Pauli group Pn. (Pauli operators can be generated by Clifford
operators. Indeed, σz = K2, σx = HσzH .)

It has been shown that if the operators of the Clifford set are extended by
the ability to create the state |0〉, by the measurement of eigenvalues of Pauli
operators on qubits, and by one of the states

1. |H〉 = cos π8 |0〉 + sin π8 |1〉;
2. |G〉 = cosβ|0〉 + ei

π
4 sinβ|1〉, where cos(2β) = 1√

3
;

3. or by a one qubit mixed state ρ that is close, with respect to fidelity, to the
H-type or G-type states – states that can be obtained from the state |H〉 or
|G〉 by an operator of the Clifford group; then a universal set of primitives
is again obtained.

5 Let us remind that a knot is an embedding of a circle, taken up to topological
equivalence and a link is an embedding of a collection of circles.
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Let us first illustrate that states |H〉 and |G〉 are not “fallen from the heavens”.
Indeed |H〉 is an eigenvector of the operator H and the state |G〉 is an eigenvector
of the operator G = e

iπ
4 KH . (This operator is actually again a “nice operator”.

Indeed, GσxG† = σz , GσzG† = σy and GσyG
† = σx.)

We explain now how to show the case (1); the case (2) can be shown in a
similar way. The case (3) can be shown by demonstrating that from such a state
ρ one can obtain one of the states |H〉 or |G〉 by a distillation algorithm that
uses the state |0〉, Clifford operators and measurements of eigenvalues of Pauli
operators.

It is easy to verify that HK|H〉 = e
iπ
8 |A−π/4〉, where

|Aθ〉 =
1√
2
(|0〉 + eiθ|1〉,

Claim. If we have sufficiently many copies of the state

|Aθ〉 =
1√
2
(|0〉 + eiθ|1〉,

then we can implement the operator Λ0(eiθ) = Λ(eiθ) using the Clifford set
operations and Pauli operator eigenvalues measurements. Indeed, an application
of this operator on a qubit |ψ〉 can be done by the circuit shown in Figure 1. This
circuit applies randomly one of the operators Λ0(e±iθ) and it is known which
one, due to the classical outcomes of measurements. By repeating the process
several times we get, sooner or later, that the operator Λ0(eiθ) is applied, and
for θ = π

4 we get the operator T that enlarges the Clifford set to a universal set
of operations.

+/− 1

|ψ>

|Α  >φ

ιφ )|ψ>   or Λ(e −ιφ )|ψ>
Μσ    σx xx

(eΛ

Fig. 1. Implementation of the operator Λ0(e
±iθ)

5 Computationally Universal Sets of Gates

The concept of evolutionary universality can be seen as too strong from the com-
putational point of view. Indeed, Bernstein and Vazirani (1993) have first shown
that for having universal quantum computation it is sufficient to work with real
amplitudes. The basic idea is simple. Since each complex number can be seen as
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a pair of real numbers, using one additional ancilla qubit quantum computation
with complex amplitudes can be simulated by quantum computation with real
amplitudes or by quantum circuits with real unitary gates. Moreover, it has been
shown by Adleman et al. (1997) that the set of amplitudes that are really needed
is very small, for example A = {0,±3/5,±4/5,±1}, or B = {0,±1/

√
2,±1}, or

C = {0,± cosθ,± sin θ,±1}, for various θ.
All that led naturally to a new concept of universality, as already mentioned.

A set of real gates G forms a computationally universal set of gates, if it
can approximate with arbitrary precision any real unitary matrix. This holds, for
example, if G generates a dense subgroup in the group of orthogonal matrices.

Rudolph and Grover (2002) have shown that a two-qubit real gate

G =


1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ

 ,

with φ being an irrational multiple of π, is computationally universal.
The next task has been to find a small set of very simple real gates that

would be computationally universal. The main candidates for such a set were
for a long time Toffoli and Hadamard gates, but the proof of that was done only
recently by Shi (2002), see also Aharonov (2003). This has been a surprising
result since Hadamard and CNOT gates do not form a universal set of gates
because computations with such gates can be efficiently simulated classically.
Shi (2002) has also shown another surprising result. The CNOT gate and any
one qubit gate that does not preserve the computational basis and is not the
Hadamard gate form a computationally universal set of gates. Hence, it is not
sufficient to add to the CNOT gate the Hadamard gate, but adding (almost)
any other one-qubit gate is fine – this yields a computationally universal set of
gates. This is a surprising result in spite of the fact that it follows easily from the
results of Barenco et al. (1995) that the CNOT gate plus one one-qubit gate that
rotates by an angle which is not a rational multiple of π form a computationally
universal set of gates. Shi (2003) has actually also shown, in a very nontrivial
way, that:

Theorem 4. – The Toffoli gate and any one-qubit gate changing the compu-
tational basis form a computationally universal set of gates.

– The CNOT gate and any one-qubit gate such that its square does not preserve
the computational basis form a universal set of gates.

Shi’s results are also interesting from several other points of view. Since the
Toffoli gate is universal for classical reversible computing, Shi’s result means
that the full power of quantum computation is obtained by adding just the
Hadamard gate.

Remark 3. There are several ways to see what kind of power the Hadamard
gate represents. On one side, the Hadamard gate is a simple form of the Fourier
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transform, so one can say that, in some sense, quantum Fourier transform is
what distinguishes classical and quantum computing. On the other hand, the
Hadamard gate can be seen as performing a random coin tossing, so one can say
that it is just quantum random bit tossing that needs to be added to get quantum
out of the classical computation.

6 Fault-Tolerantly Universal Sets Gates

Informally, a fault-tolerantly universal set of gates is a universal set of gates such
that all gates of the set can operate well also in a noisy environment. A more
formal requirement is that there exists a quantum error correcting code such
that all gates of the set can be performed on logical qubits without a need to
decode them first and in such a way that the propagation of single-qubit errors
to other qubits in the same codeword is excluded.

The above requirements impose strong restrictions on operations that can be
applied and also on the type of error correcting codes that can be used. Because
of that it has not been easy to design a universal set of fault-tolerant gates. One
reason has been the fact that the first universal sets of gates contained at least
one “irrational” gate, that is a gate performing, in some sense, a rotation by an
irrational multiple of π: and for such gates a direct fault-tolerant implementation
is impossible. On the other hand, some codes are not suitable to carry on their
logical qubits a universal set of gates in a fault-tolerant way. For example, if
Steane’s (7, 1, 3) code is used (Steane, 1995), one can implement a nice set of
operations

CNOT,H, σ
1
2
z ,

but this set of operations is not universal, as discussed above.
The following sets of gates have been shown to be fault-tolerantly universal:

1. SHOR= {T,H, σ
1
2
z }, due to Shor (1996).

2. KITAEV ={Λ1(σ
1
2
z ), H}, due to Kitaev (1997).

3. BMPRV ={CNOT,H, σ
1
4
z }, due to Boykin et al. (1999).

Shor (1996) has shown fault-tolerance of the SHOR basis, which was quite
non-trivial, especially concerning the Toffoli gate. Universality of the SHOR
basis follows from the fact that it is equivalent to KITAEV basis, see Boykin et
al. (1999), which was shown to be universal by Kitaev (1997).

It is not easy to show fault-tolerance of some fault-tolerant gates. One general
method has been developed by Boykin et al. (1999) and can be used, for example,

to show the fault-tolerance of such non-trivial gates as the Toffoli gate and σ
1
4
z .’

Remark 4. The design of fault-tolerant gates is not the only way to fight de-
coherence. Another important way is to search for technologies that allow to
implement some gates in a fault-tolerant way, due to special properties of some
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physical systems. For example, this could be done with sufficient control of any-
ones - quasi-particles with unusual statistics. Special technologies could, in prin-
ciple, realize some sets of operations exactly. However, it is not clear whether
some universal set of operations can be realized exactly. It seems more realistic to
consider important, but not fully universal sets of operations that can be realized
exactly. It is then crucial to find out how many additional, but possibly faulty
operations needs to be added to obtain a universal set of quantum computational
primitives. A very specific version of this problem is discussed in Section 3.

7 Encoded Universality of Heisenberg Exchange
Interactions

Encoded universality refers to the capability to generate, or to approximate, all
unitary matrices on a subspace of a Hilbert space created by some logical qubits.

This new concept of universality, that seems to be connected with the use of
quantum error-correcting codes, is related also to the attempts to find universal
information processing primitives that are yet simpler than unitary operations
and physically even more rudimentary.

One such primitive is Heisenberg physical nearest neighbor exchange interac-
tion. This interaction is not universal for quantum computation in general, but,
surprisingly, it can be universal on properly encoded logical qubits.

An example is the following encoding of the standard basis states of qubits by
a row of 8 qubits, where the first four qubits encode the first basis state |0L〉, and
the next four qubits encode the second basis state |1〉, see Hsieh et al. (2003):

|0L〉 =
1
2
(|01〉 − |10〉) ⊗ (|01〉 − |10〉)

|1L〉 =
1√
3
(|11〉 ⊗ |00〉 − (

1√
2
(|01〉 + |10〉) ⊗ (

1√
2
(|01〉 + |10〉)) + |00〉 ⊗ |11〉).

The exchange of the first two (or the last two) qubits of each logical qubit realizes
the operation |0L〉 → −|0L〉 and |1L〉 → |1L〉, therefore, up to a phase factor, it
actually encodes the σz operation on logical qubits. On this basis one can show
that the Hamiltonian for the σ

1/4
z operation, realized by the nearest neighbors

interaction is
ei

π
8E1,2 ,

where

Ei,i+1 =
1
2
(σx,i ⊗ σx,i+1 + σy,i ⊗ σy,i+1 + σz,i ⊗ σz,i+1 + I ⊗ I) = SWAP-gate

is the interaction between the ith and (i + 1)th qubit. With this notation,
an exact encoded Hadamard gate can be obtained using as Hamiltonian H =

eit1E1,2eit2E2,3eit1E1,2 , where t1 = 1
2 arcsin

√
2
3 and t2 = arccos

√
1
3 . To obtain an

encoded realization of the CNOT gate, numerical methods have been used (with
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27 parallel nearest neighbor exchange interactions, or 50 serial gates). As a con-
sequence, a single two qubit exchange interaction forms a universal set (therefore
no single qubit operations are needed)6 with respect to encoded universality.

8 Efficiency of Universal Sets of Quantum Primitives

The need to minimize the impact of decoherence and to minimize the size of
quantum circuits as well as their depth (computation time) rises as a natural
and important issue with respect to the efficiency of different universal sets of
quantum primitives.

The Solovay-Kitaev theorem, Kitaev et al. (2002), implies that for evolu-
tionary and computational universality, and any fixed and sufficiently large k,
the number of gates from a universal set that are required to approximate any
unitary matrix on k qubits within ε, grows only in polylog(1

ε ) steps. As a conse-
quence, it is not costly to replace one universal basis by another one – it requires
only poly-logarithmic overhead. (However, it is not clear how far this holds for
other concepts of universality.) This implies that any gate from one finite univer-
sal set can be approximated with precision ε using polylog(1

ε ) gates from other
finite universal set of gates.

Of course, the above results are asymptotic and as such they have their limits.

9 Compilation of Unitaries

In principle, any general purpose compiler for unitaries will consist of decomposi-
tion and optimization methods that are technology independent and of methods
that take into the account the specifics of a given technology. Since there is no
clear candidate on a scalable and reliable technology yet, the emphasis in the
research is so far on technology independent decomposition and optimization
methods as discussed below.

Two very basic questions concerning the decomposition of n-qubit unitaries
into one-and two-qubit gates are the following:

– What is the total number of one-and two-qubits gates needed to decompose
an arbitrary n qubit unitary operation, for an arbitrary n?

– What is the total number of CNOT gates (or of some other entangling two
qubit gates) needed to decompose an arbitrary n qubit unitary, for an arbi-
trary n?

Barenco et al. (1995) have shown that any n qubit gate can be realized by
O(n34n) CNOT and one-qubit gates. This has been improved, step by step, to
O(n24n), O(n4n) and, finally, by Vartiainen et al. (2003) and by Möttönen et
al. (2004) to O(4n) gates. More exactly, to 4n − 2n+1 the CNOT gates and 4n

6 Heisenberg interaction is not only very simple, it is also a strong interaction and
therefore it should permit very fast implementation, in the GHZ range, as several
implementation proposals have been suggesting, see Hsieh et al. (2003).
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one-qubit gates. Since an n qubit unitary is represented by a matrix with 4n

elements the above result is clearly asymptotically tight. Concerning the CNOT
gates only, the best known upper bound is O(4n) due to Vartiainen et al. (2003)
and the best lower bound, due to Shende et al. (2003), is 	(4n− 3n− 1)/4
 (the
same lower bound holds also for some other gates.)

The basic idea for decomposition is borrowed from the QR-decomposition in
linear algebra using Given’s rotation matricesGi,j,k that are “two-level matrices”
which operate non-trivially only on the j-th and k-th basis vectors, and nullify
the elements on the i-th column and k-th row. Then the overall decomposition
of a unitary matrix U into a unit matrix has the form 1∏

i=2n−1

2n∏
j=i+1

Gi,j,j−1

U = I.

Each two-level matrix can then be implemented using Λn−1(V ) and Λn−1(NOT)
matrices, where V is a unitary 2 × 2 matrix and Λk(V ) denotes a matrix with
k control bits that control the application of the matrix V . A Λn−1(V ) matrix
can be implemented with O(n2) one- and two-qubit gates. Moreover, O(n) of
Λn−1(NOT) gates are needed between each two Λn−1(V ) gates and this leads
to the total of O(n34n) gates. An improvement to O(4n) has been achieved by
using Gray-code ordering of the basis states.

An optimization method for quantum circuits, which is based on the existence
of the above decomposition, and which concentrates on an optimization of the
Λn−1(NOT)-gates, is due to Aho and Svore (2003).

Fortunately, in some important cases, like the Quantum Fourier Transform,
an n-qubit unitary can be realized by a circuit with a polynomial number (in n)
of one- and two-qubit gates.

The decomposition into one- and two-qubit gates is not always a necessity.
In some technologies, see Wang et al. (2000), Λn−1(V ) gates can be realized in
a straightforward way. It may also be case, with some technologies, that some
other qubit gates can be easily implemented. All that makes the problem of
optimal decomposition of unitary matrices very complex.

10 Optimal Design of Quantum Circuits for Two- and
Three-Qubit Gates

The problem of decomposing unitary gates into one and two qubit gates has
been consider in general by Tucci (1999). However, his decomposition can be
far from optimal for two-qubit unitaries. This case is important because it is
very likely that circuits implemented in the near future will use only one type
of two-qubit gate and that the number of gates used for a given task will be
crucial, especially for experimentalists.

Another general and recursive decomposition method of any unitary matrix
into one- and two-qubit unitary matrices, based on the Cartan decomposition of
the Lie group su(2n), is due to Khaneja and Glaser (2000).
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10.1 Optimal Universal Circuit Schemes for Two-Qubit Gates

There has been significant progress recently toward optimal (in some sense)
realization of two-qubit gates. The main problems in this area can be formulated
as follows:7

– Given an entangling two-qubit gate G, what is the smallest number of gates
G and of one-qubit (elementary) gates of a circuit which would implement
an arbitrary given two-qubit gate? (Find the best possible upper and lower
bounds.)

– Given an entangling gate G, find the smallest possible (with respect to the
number of gates G and one-qubit (elementary) gates), universal circuit for
implementation of any two-qubit gate?

– Solve the above problems for special classes of entangling gates, or for specific
entangling gates, as CNOT, or double CNOT (DCNOT), or

√
SWAP.

– If G is an entangling two-qubit gate and nG is the minimal number of gates
G needed to realize (with one-qubit gates) any two-qubit gate, then, for any
1 ≤ k ≤ nG, determine necessary and sufficient conditions for a two-qubit
gate to be implementable by a circuit with k gates G (and one-qubit gates).

Solutions to these problems should contribute to the realization of few qubits
processors because they provide estimations of the effort and of the overhead for
experimentalists.

Consider first the case that a two-qubit Controlled-U gate G is given for a
one-qubit operation U . Since

U = ei(nxσx+nyσy+nzσz)

the controlled-U operation Uc can be written as

Uc = (I ⊗ e
−iγ
2 σzU †1 )e

iγ
2 σz⊗σz (I ⊗ U1)

for some one-qubit unitary U1 and γ =
√
n2
x + n2

y + n2
z. Without loss of gen-

erality, we can therefore view any Controlled-U gate as having the form Uc =
e

iγ
2 σz⊗σz . It has been shown by Zhang et al. (2003) that the upper bound for the

number of such controlled gates is 	 3π
2γ 
. Zhang et al. (2003) also provide a pro-

cedure for designing near optimal circuits for any two-qubit gate with Uc being
the only two-qubit gate used. Since for any entangling gate G two applications
of the gate are sufficient to design a Controlled-U gate for any one-qubit gate U ,
the above mentioned quantum circuit design procedure provides good solutions
for entangling gates also.

7 For most technologies, and compared with one-qubit gates, two-qubit gates are much
more difficult to implement and much more costly (take longer time, require compli-
cated manipulations and exhibit stronger decoherence). Therefore, concerning the
complexity of one- and two-qubits circuits, only the number of two-qubit gates ac-
tually counts.
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However, the key problem is how many CNOT and one-qubit gates are nec-
essary and sufficient to implement any two-qubit gate. Moreover, since each
one-qubit gate can be expressed as a composition of any two of the elementary
rotation gates Rx, Ry and Rz , it is of interest, and actually of high practical
importance, to determine the minimal number of (elementary) gates Rx, Ry, Rz
and CNOT gates needed to implement an arbitrary two-qubit gate.

Progress in the exploration of efficient realizations of two-qubit gates has been
remarkable in the last few years. We discuss here only the best outcomes, so far,
due to Vidal and Dawson (2003), Shende et al. (2003) and Vatan and Williams
(2003). (References to earlier results can be found in their papers.) The main
result is that 3 CNOT gates and 10 one-qubit and CNOT gates in total are
sufficient to realize any two qubit gate, and that, in general, 3 CNOT gates and
9 gates in total are necessary. Moreover, each two-qubit gate can be realized using
3 CNOT gates, in a total of 18 gates from the set containing the CNOT gate
and any two or the three gates from the set {Rx, Ry, Rz} – with the exception
of gates Ry and Rz, where 19 is the upper bound. The above result is optimal
(see Shende et al., 2003)) if temporary storage is not allowed (because of cost).
The universal two-qubit circuit scheme with three CNOT gates and 10 basic
gates, or 18 gates from the set {CNOT,Ry, Rz} is shown in Figure 2. Moreover,
for gates from SO(4) only 12 gates Ry, Rz are needed (see Vatan and Williams,
2003). For all of these gate libraries the optimal solution can be achieved by a
single universal circuit.

  A

  B

  C

  D  R   R

 R z

 R  y  z  y

Fig. 2. A universal 2-qubit circuit

With the following criterion, due to Shende et al. (2003), it is possible to
determine the number of CNOT gates needed to realize a two-qubit gate with
the help of one-qubit operations:

Theorem 5. Let

E =


0 0 0 −1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,

and for any matrix U ∈ SU(4) let γ(U) = UEUE. Then

1. U can be realized by a circuit with no CNOT gate if and only if γ(U) = I.
2. U can be realized by a circuit with one CNOT gate if and only if Tr(γ(U)) = 0

and γ(U)2 = −I.
3. U can be realized using two CNOT gates if and only if Tr(U)) is real.
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Using this criterion one can show, for example, that the SWAP gate cannot be
realized by a circuit with two CNOT gates and one-qubit gates.

The above results remain valid if the CNOT gate is replaced by any other
maximally entangling gate, for example by the iSWAP- or

√
SWAP-gate. How-

ever, the situation is different (see Vatan and Williams (2004)), if not maximally
entangling gates are used. In such a case it may happen that up to 6 two-qubit
gates are needed.

Remark 5. The above results are based on the following two important and
interesting decompositions:

– Any two-qubit unitary matrix U has a unique decomposition

U = (A1 ⊗B1)ei(θxX⊗X+θyY⊗Y+θzZ⊗Z)(A2 ⊗B2),

where π
4 ≥ θx ≥ θy ≥ |θz|.

– In the magic basis any U ∈ SO(4) is an element of SU(2)⊗SU(2) (see, for
example, Vatan and Williams (2003)).

Open problem 1. (1) Are there two two-qubit gates G1 and G2 such that any
two-qubit gate can be implemented by a circuit with one-qubit gates and at most
two of the gates G1 and G2? (b) Design an algorithm that constructs, for any
two-qubit entangling gate U a minimal universal circuit scheme, with respect to
the number of U -gates, that uses U -gates as the only kind of two qubit gate.

Going a Step Down. Closely related to the above problem of optimal im-
plementation of two qubit gates using a fixed two qubit gate, is the following
problem: what is the minimal time to realize a two-qubit unitary using a fixed
two-qubit entangling Hamiltonian and (fast) one-qubit unitaries?

It has been shown by Childs et al. (2003) (their paper contains further ref-
erences, that if U = eiH0 is a two qubit unitary and H a two-qubit entangling
Hamiltonian, then the minimal time required to simulate U using H and fast
one-qubit unitaries is the minimal t such that there exists a vector m̄ of integers
satisfying

λ(H1) + πm̄ ≺ λ(H + H̃)
2

t,

where λ(A) denotes the vector of eigenvalues of a Hermitian matrix A and H̃ =
(Y ⊗ Y )HT (Y ⊗ Y ) (and ≺ is the majorization of vectors relation).

10.2 Universal Circuit Schemes for 3-Qubits Gates

The optimal realization of 3-qubits gates using a fixed two-qubit gate and one-
qubit gates seems much more complex, but at the same time much more impor-
tant. Indeed, compared with two-qubit gates, 3-qubit gates have quite specific
properties and exhibit different phenomena. For example, the classification of
entanglement and non-locality in the case of 3-qubit states is much more com-
plex and requires special investigations. It is also believed that the 3-qubit case
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allows to get a deeper insight into the difference between non-locality and en-
tanglement.

A universal circuit scheme with 40 the CNOT gates and 98 one-qubit elemen-
tary gates, Ry and Rz , due to Vatan and Williams (2004), is, so far, the most
efficient general way of implementing 3 qubit gates. This circuit scheme has the
form

(T1 ⊗O1)N1(T2 ⊗O2)M(T3 ⊗O3)N2(T4 ⊗O4),

where Oi and Ti are one- and two-qubit gates and the two special 3 qubit gates
N and M are defined as follows:

N(a, b, c) = ei(aσxσx+bσyσy+cσzσz),

M(a, b, c) = ei(aσxσx+bσyσy+cσzσz+dII),

These two gates have simple implementations using 10 and 11 CNOT gates,
respectively.

The above universal 3-qubit circuit has also been obtained using the general,
already mentioned. decomposition method of Khaneja and Glaser (2001) and
therefore it is likely that a more efficient universal circuit can be found. However,
this is still an open problem.

Given a two qubit gate G, there is a way to find out for any other two qubit
gate U whether G and U are locally equivalent and therefore a circuit for U
can be designed that uses G only once (and one-qubit gates). Indeed, Makhlin
(2000) has showed a set of three real polynomial invariants for two qubits gates
that fully characterize the entangling properties of gates in such a way that two
two-qubit gates G and U are locally equivalent if and only if they have the same
values for these invariants. In addition, given G, there exists a procedure for
designing a circuit for U with only one instance of the gate G.

11 Projective Measurements as Universal Primitives

Surprisingly, projective measurements alone are sufficient to create universal sets
of quantum primitives in the sense that they can be used to simulate universal
sets of unitary primitives, in a special way. More precisely, the following results
have been obtained:

– Raussendorf and Briegel (2000) have shown that one-qubit projective mea-
surements applied to a special fixed cluster state form a universal set of
quantum primitives.

– Nielsen (2001) has shown that 4-qubit measurements are sufficient to simu-
late all unitary operations.

– Leung (2001) has shown that (a) almost any maximally entangling 4 qubit
measurement is universal; (b) 2-qubit measurements are sufficient to simulate
all 2 qubit operations.
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– Leung (2003) has shown that there is a finite set of four 2-qubit measure-
ments that can realize all 2-qubit unitary operations, if four ancilla qubits
are available.

– Perdrix (2004) has shown that a set of measurements consisting of one two-
qubit and three one-qubit measurements forms a universal set of quantum
measurements if a one-qubit ancilla as an additional resource is available.
(These resources are clearly minimal.)

The above results imply, very surprisingly, and in contrary to the widespread
belief, that unitary dynamics is not necessary for universal quantum computation
and that projective measurements are sufficient. Actually, Bell measurements
play an important role and the results obtained are actually based upon the
information processing power of quantum teleportation.

Minimal Projective Measurement Resources. In this section the univer-
sality of a simple set of measurements will be illustrated. Two basic facts that
will be used are the following: (a) The operations CNOT, H and T = σ

1/4
z , form

a universal set of unitary operations; (b) teleportation and its simplified version,
called state transfer, can be used to perform unitary operations indirectly.

The basic teleportation scheme is shown in Figure 3a,8 where B stands for
the Bell measurement, which transforms the initial state

|φ〉|EPR〉 =
1
2

3∑
i=0

|Φi〉 ⊗ (σi|φ〉).

where |Φ0〉 = |Φ+〉, |Φ1〉 = |Ψ+〉, |Φ2〉 = |Ψ−〉 and |Φ3〉 = |Φ−〉 are the Bell
states. into a state |Φi〉 ⊗ σi|Φi〉, while information about i is obtained in the
classical world, so that the correction σi can be applied.

A modification of the basic teleportation scheme, see Figure 3b, allows to
perform indirectly, or remotely, (and randomly) any unitary 1-qubit operation
U . Indeed, if the Bell measurement is applied to the first two qubits of the initial
state (I ⊗ U)|EPR〉, then, with probability 1

4 , “Bob’s particle” is in the state
U |φ〉 and with probability 3

4 a correction UσjU
† needs to be performed, which

can be done, recursively, again indirectly, until no more corrections are needed.
This way one can expect on average 4 attempts until such a process succeeds.

A small modification of the above scheme is shown in Figure 3c. It is based on
the fact that the states (I⊗Uσj)|EPR〉 form an orthonormal basis and therefore
a single measurement of the first two qubits of the state |φ〉|EPR〉, with respect
to such a basis (denoted here as “BU”), creates an appropriate state – and it
does not matter into which of the above states the measurement collapses.

8 In this figure, double-lined boxes denote measurements, simple lines denote qubits
and bold lines denote measurement outcomes. Gates connected to a measurement
box by a bold line are conditioned on the measurement outcomes. If this is the case,
that is if the applied sequence of gates applied depends on results of measurements,
we speak of adaptive quantum computations.
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Fig. 3. Teleportation of quantum operations

Another variation of the above modified teleportation scheme, see Figure 3d,
allows, in a similar way, to perform indirectly any 2-qubit unitary operation U .
In this case the target state is

I2 ⊗ U(
1
2

1∑
i,j=0

|ijij〉)

Since with the CNOT is the only two-qubit unitary operation we can have
universal computation, the key point is to show that the target 4-qubit state

|φin〉 = I2 ⊗ CNOT(
1∑

i,j=0

|ijij〉 =
1
2
(|0000〉 + |0101〉+ |1011〉+ |1110〉),

can be created using 2-qubit measurements only. This can be done, by Leung
(2003), as follows:

1. With one- and two-qubit measurements create the state

|φ1〉 =
1
2
(|0〉 + |1〉) ⊗ |0〉 ⊗ (|00〉 + |11〉).

2. Apply to |φ1〉 a measurement with two projectors P+ = |Φ0〉〈Φ0| + |Φ1〉〈Φ1|
and P− = |Φ2〉〈Φ2| + |Φ3〉〈Φ3|. If the projector P+ is chosen, the resulting
state is

|φ2〉 =
1

2
√

2
(|0〉 + |1〉)(|000〉 + |011〉+ |101〉+ |110〉).

3. Finally, measure the parity of the 1st and 3rd qubits, In case the outcome is
even, the resulting state is the required target state |φin〉.
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The above results have been improved first by Leung (2003). She showed
that if a four qubit ancilla is available then the following set of four two qubit
measurements, defined by four observables X⊗X , Z⊗Z, X⊗Z and 1√

2
(X+Y ),

is universal.
Leung’s results, based on a generalized form of teleportation, were recently

improved, to get minimal ancilla and measurement resources, by Perdrix (2004),
using another version of teleportation, called state transfer, which captures only
this part of teleportation which is necessary for computation.

In a similar way as above, for any one qubit unitary mappings U and V the
measurements specified by observables shown in Figure 4a, produce the state
V σU †|φ〉, where σ is one of the Pauli operators, chosen randomly. In the special
cases U = H and V = I, the output has the form σH |φ〉 and in the case
U = T and V = H the output has the form σHT |φ〉. In these two cases only the
measurements with observables X , Z, 1√

2
(X+Y ) and X⊗Z are used. Figure 4b

shows how to realize, up to a Pauli matrix, the CNOT operation. Again, no new
observable is used. Since the set of unitaries {CNOT, H,HT } is universal, the
above set of observables/measurements is universal, and they require only one
ancilla qubit.

U*ZU

VZV* Z

 Z

 X

X

Z Z (σ xσ) ΧΝΟΤ|φ>

|φ>

*VXV

U*XU

VσU*|φ> |φ>(a)
(b)

Fig. 4. Two schemes for providing universal state transfer

Measurements are basic operations also in a new measurement based model
of quantum Turing machines, see Perdrix and Jorrand (2004). These Turing
machines operate on tapes of qubits and their (classical) transition functions
map

states × outcomes of measurements → states × observables × movements of heads

The minimal resources needed for universality are one-qubit ancilla and a
similar set of observables as in the case of quantum measurements based circuits.

12 Universal Randomized Quantum Circuits

In classical computing, for every m there is a universal circuit Cm, with m+2m

inputs, such that if the first m inputs get a binary (input) string i and the
remaining inputs a 2m bit a specification pf of a m-nary Boolean function f :
{0, 1}m → {0, 1}m, then the first m output bits contain f(i), see Figure 5a.

A natural question is whether we can also have universal quantum circuits in
the above sense. Since the number of m×m unitary operations is infinite for any
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m, it seems to be intuitively clear that such universal circuits cannot exist. More
exactly, it seems that given an m we cannot have a quantum circuit as shown
in Figure 5b, that would realize a unitary mapping Dm, which would take as an
input an m qubit state |φ〉 and for any unitary operation U on m qubits a state
|sU 〉, for encoding U , and would produce U |φ〉 on the first m qubits. Actually,
we can show that even a stronger claim holds (see Nielsen and Chuang, 1997).

Cm

i

p f

f(i) |φ>

|s
U >

Dm
U |φ>

(a) (b)

Fig. 5. Universal classical and quantum circuits – basic schemes

Indeed, let us assume that such a circuit Dm is universal up to a global phase
at least for a set S of n distinct m×m unitary mappings. Hence, for two different
unitary operations U1 and U2 from S the following should hold, for any m-qubit
state |φ〉:

Dm(|φ〉|sU1〉) = |U1|φ〉〉|g1〉

Dm(|φ〉|sU2〉) = |U2|φ〉〉|g2〉

Since unitary operations preserve scalar product we have

〈sU1 |sU2〉 = 〈g1|g2〉〈φ|U †2U1|φ〉.

Since the left side of the above equation does not depend on |φ〉, if 〈g1|g2〉 = 0,
it has to hold U †2U1 = γI for some complex γ. However, this contradicts the as-
sumption that unitary transformations from S are different up to a global phase
factor. Consequently, it has to hold that 〈g1|g2〉 = 0 and also 〈sU1 |sU2〉 = 0.
Therefore, the program-states |sU1〉 and |sU2〉 have to be mutually orthogonal.
Hence, the circuit Dm can be a universal circuit for a set S of n m-qubit uni-
tary transformations only if it has at least logn qubits to encode the n unitary
transformations from S.

On the other hand, quite surprisingly, we can have, for any m, a randomized
universal quantum device, called a universal programmable array Rm, that can
implement, with a known positive (but exponentially small) probability, any
m-qubit gate.

The basic idea behind Rm is actually another simple modification of the tele-
portation idea, similar to that of Section 11. Let us illustrate the idea for m = 1.
The universal quantum device R1 is shown in Figure 6.
R1 has three-qubit inputs and outputs. The first input qubit is in an arbitrary

state |q〉 and, for any one-qubit unitary transformation U the other two qubits
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B
U|q>|q>

U

Fig. 6. The universal randomized quantum device R1

are in the state (I ⊗U)|EPR〉. It is now easy to verify that the total input state
can be expressed as follows:

|q〉 ⊗ (I ⊗ U)|Φ0〉 =
1
2

3∑
i=0

|Φi〉σiU |q〉.

If the Bell measurement is now performed on the first two qubits, then with
probability 1

4 the last qubit will be in one of the states σiU |q〉, and it will be clear
for which i this has happened. The last three CNOT gates realize the SWAP
operation and make the first output to be in the state U |q〉.

A generalization to a universal circuit for unitary transformations for any m
qubit states is quite straightforward: 2m ancilla qubits are needed and a unitary
transformation U will be encoded by the state

|sU 〉 = (Im ⊗ U)
m⊗
i=1

|Φ+
i,m+i〉,

where |Φ+
i,m+i〉 is the state |Φ+〉 shared between the ith and (m + i)th qubit.

Bell measurements on the first 2m qubits provide U |φ〉 on the last m qubits.

13 Interactions as Primitives

From the Hilbert space view of quantum mechanics, unitaries, entanglement and
measurements are primitives. Going deeper into physics one sees interactions be-
tween quantum systems according to some Hamiltonians as the most fundamen-
tal and universal primitives and resources. An important problem of QIPC then
becomes that of finding efficient ways to convert interactions as primitives and
resources into other resources like unitaries, entanglement and communication
channels for quantum state transfers, with or without the help of local (unitary)
operations. This problem has been recently explored with interesting outcomes.

One such primitive is Heisenberg nearest neighbor exchange interaction. This
interaction is not universal for quantum computation per se, but, surprisingly,
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it can become universal on properly encoded logical qubits as already discussed
in Section 7.

Power of nearest neighbor interactions in a chain of spins with nearest neigh-
bor XY coupling, that is with the Hamiltonian

H =
∑
i,j

ωij
2

(σx,i ⊗ σx,i + σy,j ⊗ σy,j)

has been explored, for example, by Yung et al. (2003). In the case of three
spins, interactions can realize perfect transfer of quantum state from the first
to third spin, can create one ebit among them and can realize simultaneous
communication of one bit in both directions. The creation of entanglement is
possible also in case of longer chains of spins. In the case of quantum state
transfers this can be done only approximately in general.
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An Upper Bound on the Rate of Information

Transfer by Grover’s Oracle

E. Arikan

Abstract. Grover discovered a quantum algorithm for identifying a tar-
get element in an unstructured search universe of N items in approxi-
mately π/4

√
N queries to a quantum oracle. For classical search using

a classical oracle, the search complexity is of order N/2 queries since on
average half of the items must be searched. In work preceding Grover’s,
Bennett et al. had shown that no quantum algorithm can solve the search
problem in fewer than O(

√
N) queries. Thus, Grover’s algorithm has

optimal order of complexity. Here, we present an information-theoretic
analysis of Grover’s algorithm and show that the square-root speed-up
by Grover’s algorithm is the best possible by any algorithm using the
same quantum oracle.

Keywords: Grover’s algorithm, quantum search, entropy.

1 Introduction

Grover [1], [2] discovered a quantum algorithm for identifying a target element
in an unstructured search universe of N items in approximately π/4

√
N queries

to a quantum oracle. For classical search using a classical oracle, the search com-
plexity is clearly of order N/2 queries since on average half of the items must be
searched. It has been proven that this square-root speed-up is the best attain-
able performance gain by any quantum algorithm. In work preceding Grover’s,
Bennett et al. [4] had shown that no quantum algorithm can solve the search
problem in fewer than O(

√
N) queries. Following Grover’s work, Boyer et al.

[5] showed that Grover’s algorithm is optimal asymptotically, and that square-
root speed-up cannot be improved even if one allows, e.g., a 50% probability
of error. Zalka [3] strengthened these results to show that Grover’s algorithm is
optimal exactly (not only asymptotically). In this correspondence we present an
information-theoretic analysis of Grover’s algorithm and show the optimality of
Grover’s algorithm from a different point of view.

2 A General Framework for Quantum Search

We consider the following general framework for quantum search algorithms. We
let X denote the state of the target and Y the output of the search algorithm.
We assume that X is uniformly distributed over the integers 0 through N − 1.
Y is also a random variable distributed over the same set of integers. The event
Y = X signifies that the algorithm correctly identifies the target. The probability
of error for the algorithm is defined as Pe = P (Y = X).
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The state of the target is given by the density matrix

ρT =
N−1∑
x=0

(1/N)|x〉〈x|, (1)

where {|x〉} is an orthonormal set. We assume that this state is accessible to the
search algorithm only through calls to an oracle whose exact specification will be
given later. The algorithm output Y is obtained by a measurement performed on
the state of the quantum computer at the end of the algorithm. We shall denote
the state of the computer at time k = 0, 1, . . . by the density matrix ρC(k). We
assume that the computation begins at time 0 with the state of the computer
given by an initial state ρC(0) independent of the target state. The computer
state evolves to a state of the form

ρC(k) =
N−1∑
x=0

(1/N)ρx(k) (2)

at time k, under the control of the algorithm. Here, ρx(k) is the state of the
computer at time k, conditional on the target value being x. The joint state of
the target and the computer at time k is given by

ρTC(k) =
N−1∑
x=0

(1/N)|x〉〈x| ⊗ ρx(k). (3)

The target state (1) and the computer state (2) can be obtained as partial traces
of this joint state.

We assume that the search algorithm consists of the application of a sequence
of unitary operators on the joint state. Each operator takes one time unit to
complete. The computation starts at time 0 and terminates at a predetermined
timeK, when a measurement is taken on ρC(K) and Y is obtained. In accordance
with these assumptions, we shall assume that the time index k is an integer in
the range 0 to K, unless otherwise specified.

There are two types of unitary operators that may be applied to the joint
state by a search algorithm: oracle and non-oracle. A non-oracle operator is of
the form I ⊗ U and acts on the joint state as

ρTC(k + 1) = (I ⊗ U) ρTC(k) (I ⊗ U)† =
∑
x

(1/N)|x〉〈x| ⊗ Uρx(k)U †. (4)

Under such an operation the computer state is transformed as

ρC(k + 1) = UρC(k)U †. (5)

Thus, non-oracle operators act on the conditional states ρx(k) uniformly; ρx(k+
1) = Uρx(k)U †. Only oracle operators have the capability of acting on condi-
tional states non-uniformly.
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An oracle operator is of the form
∑
x |x〉〈x| ⊗ Ox and takes the joint state

ρTC(k) to
ρTC(k + 1) =

∑
x

(1/N)|x〉〈x| ⊗Oxρx(k)O†x. (6)

The action on the computer state is

ρC(k + 1) =
∑
x

(1/N)Oxρx(k)O†x. (7)

All operators, involving an oracle or not, preserve the entropy of the joint
state ρTC(k). The von Neumann entropy of the joint state remains fixed at
S[ρTC(k)] = logN throughout the algorithm. Non-oracle operators preserve also
the entropy of the computer state; the action (5) is reversible, hence S[ρC(k +
1)] = S[ρC(k)]. Oracle action on the computer state (7), however, does not
preserve entropy; S[ρC(k + 1)] = S[ρC(k)], in general.

Progress towards identifying the target is made only by oracle calls that have
the capability of transferring information from the target state to the computer
state. We illustrate this information transfer in the next section.

3 Grover’s Algorithm

Grover’s algorithm can be described within the above framework as follows. The
initial state of the quantum computer is set to

ρC(0) = |s〉〈s| (8)

where

|s〉 =
N−1∑
x=0

(1/
√
N)|x〉. (9)

Since the initial state is pure, the conditional states ρx(k) will also be pure for
all k ≥ 1.

Grover’s algorithm uses two operators: an oracle operator with

Ox = I − 2|x〉〈x|, (10)

and a non-oracle operator (called ‘inversion about the mean’) given by I ⊗ Us
where

Us = 2|s〉〈s| − I. (11)

Both operators are Hermitian.
Grover’s algorithm interlaces oracle calls with inversion-about-the-mean oper-

ations. So, it is convenient to combine these two operations in a single operation,
called Grover iteration, by defining Gx = UsOx. The Grover iteration takes the
joint state ρTC(k) to

ρTC(k + 1) =
∑
x

(1/N)|x〉〈x| ⊗Gxρx(k)G†x (12)
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In writing this, we assumed, for notational simplicity, thatGx takes one time unit
to complete, although it consists of the succession of two unit-time operators.

Grover’s algorithm consists of K = (π/4)
√
N successive applications of

Grover’s iteration beginning with the initial state (8), followed by a measurement
on ρC(K) to obtain Y . The algorithm works because the operator Gx can be in-
terpreted as a rotation of the x–s plane by an angle θ = arccos(1−2/N) ≈ 2/

√
N

radians. So, in K iterations, the initial vector |s〉, which is almost orthogonal to
|x〉, is brought into alignment with |x〉.

Grover’s algorithm lends itself to exact calculation of the eigenvalues of ρC(k),
hence to computation of its entropy. The eigenvalues of ρC(k) are

λ1(k) = cos2(θk) (13)

of multiplicity 1, and

λ2(k) =
sin2(θk)
N − 1

(14)

of multiplicity N − 1. The entropy of ρC(k) is given by

S(ρC(k)) = −λ1(k) log λ1(k) − (N − 1)λ2(k) log λ2(k) (15)

and is plotted in Fig. 1 for N = 220. (Throughout the paper, the unit of entropy
is bits and log denotes base 2 logarithm.) The entropy S(ρc(k)) has period
π/θ ≈ (π/2)

√
N .

Our main result is the following lower bound on time-complexity.

Proposition 1. Any quantum search algorithm that uses the oracle calls {Ox}
as defined by (10) must call the oracle at least

K ≥
(

1 − Pe
2π

+
1

π logN

)√
N (16)

times to achieve a probability of error Pe.

For the proof we first derive an information-theoretic inequality. For any quan-
tum search algorithm of the type described in section 2, we have by Fano’s
inequality,

H(X |Y ) ≤ H(Pe) + Pe log(N − 1) ≤ H(Pe) + Pe log(N), (17)

where for any 0 ≤ u ≤ 1

H(u) = −δ log δ − (1 − δ) log(1 − δ). (18)

On the other hand,

H(X |Y ) = H(X) − I(X ;Y )
= logN − I(X ;Y )
≥ logN − S(ρC(K)) (19)

where in the last line we used Holevo’s bound [6, p. 531].
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Fig. 1. Evolution of entropy in Grover’s algorithm

Let µk be the largest eigenvalue (sup-norm) of ρC(k). We observe that µk
begins at time 0 with the value 1 and evolves to the final value µK at the
termination of the algorithm. We have

S(ρC(K))≤−µK logµK−(1−µK) log[(1−µK)/(N−1)]≤H(µK)+(1−µK) logN.
(20)

since the entropy is maximized, for a fixed µK , by setting the remaining N − 1
eigenvalues equal to (1 − µK)/(N − 1). Combining (19) and (20),

µK logN ≤ Pe logN + H(Pe) + H(µK) ≤ Pe logN + 2 (21)

Now, let
∆ = sup{|µk+1 − µk| : k = 0, 1, . . . ,K − 1}. (22)

This is the maximum change in the sup norm of ρC(k) per algorithmic step.
Clearly, K ≥ 1−µK

∆ . Using the inequality (21), we obtain

K ≥ 1 − Pe + 2/ logN
∆

. (23)

Thus, any upper bound on ∆ yields a lower bound on K. The proof will be
completed by proving
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Lemma 1. ∆ ≤ 2π/
√
N .

We know that operators that do not involve oracle calls do not change the eigen-
values, hence the sup norm, of ρC(k). So, we should only be interested in bound-
ing the perturbation of the eigenvalues of ρC(k) as a result of an oracle call. We
confine our analysis to the oracle operator (10) that the Grover algorithm uses.

For purposes of this analysis, we shall consider a continuous-time representa-
tion for the operator Ox so that we may break the action of Ox into infinitesimal
time steps. So, we define the Hamiltonian

Hx = −π|x〉〈x| (24)

and an associated evolution operator Ox(τ) = e−iτHx = I+(eiπτ −1)|x〉〈x|. The
operator Ox is related to Ox(τ) by Ox = Ox(1).

We extend the definition of conditional density to continuous time by

ρx(k0 + τ) = Ox(τ)ρx(k0)Ox(τ)† (25)

for 0 ≤ τ ≤ 1. The computer state in continuous-time is defined as

ρC(t) =
∑
x

(1/N)ρx(t). (26)

Let {λn(t), un(t)}, n = 1, . . . , N , be the eigenvalues and associated normalized
eigenvectors of ρC(t). Thus,

ρC(t)|un(t)〉=λn(t)|un(t)〉, 〈un(t)|ρC(t)=λn(t)〈un(t)|, 〈un(t)|um(t)〉=δn,m.
(27)

Since ρC(t) evolves continuously, so do λn(t) and un(t) for each n.
Now let (λ(t), u(t)) be any one of these eigenvalue-eigenvector pairs. By a

general result from linear algebra (see, e.g., Theorem 6.9.8 of Stoer and Bulirsch
[7, p. 389] and the discussion on p. 391 of the same book),

dλ(t)
dt

= 〈u(t)|dρC(t)
dt

|u(t)〉. (28)

To see this, we differentiate the two sides of the identity λ(t) = 〈u(t)|ρC(t)|u(t)〉,
to obtain

dλ(t)
dt

= 〈u′(t)|ρC(t)|u(t)〉 + 〈u(t)|dρC(t)
dt

|u(t)〉 + 〈u(t)|ρC(t)|u′(t)〉

= 〈u(t)|dρC(t)
dt

|u(t)〉 + λ(t)[〈u′(t)|u(t)〉 + 〈u(t)|u′(t)〉]

= 〈u(t)|dρC(t)
dt

|u(t)〉 + λ(t)
d

dt
〈u(t)|u(t)〉

= 〈u(t)|dρC(t)
dt

|u(t)〉

where the last line follows since 〈u(t)|u(t)〉 ≡ 1. Differentiating (26), we obtain

dρC(t)
dt

=
∑
x

−(i/N)[Hx, ρx(t)] (29)



458 E. Arikan

where [·, ·] is the commutation operator. Substituting this into (28), we obtain∣∣∣∣dλ(t)
dt

∣∣∣∣ =

∣∣∣∣∣〈u(t)| − i

N

∑
x

[Hx, ρx(t)] |u(t)〉
∣∣∣∣∣

≤ 2
N

∣∣∣∣∣∑
x

〈u(t)|Hxρx(t)|u(t)〉
∣∣∣∣∣

(a)

≤ 2
N

√∑
x

〈u(t)|H2
x|u(t)〉

√∑
x

〈u(t)|ρ2
x(t)|u(t)〉

(b)
=

2
N

√∑
x

π2 |〈u(t)|x〉|2
√
N〈u(t)|ρC(t)|u(t)〉

=
2π√
N

1 ·
√
λ(t)

≤ 2π√
N

where (a) is the Cauchy-Schwarz inequality, (b) is due to (i) ρ2
x(t) = ρx(t) as it

is a pure state, and (ii) the definition (26). Thus,

|λ(k0 + 1) − λ(k0)| =

∣∣∣∣∣
∫ k0+1

k0

dλ(t)
dt

dt

∣∣∣∣∣ ≤ 2π/
√
N. (30)

Since this bound is true for any eigenvalue, the change in the sup norm of ρC(t)
is also bounded by 2π/

√
N .

4 Discussion

The bound (16) captures the
√
N complexity of Grover’s search algorithm. As

mentioned in the Introduction, lower-bounds on Grover’s algorithm have been
known before; and, in fact, the present bound is not as tight as some of these
earlier ones. The significance of the present bound is that it is largely based on
information-theoretic concepts. Also worth noting is that the probability of error
Pe appears explicitly in (16), unlike other bounds known to us.
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A Strong Converse Theorem for Quantum

Multiple Access Channels

R. Ahlswede and N. Cai

Abstract. With the wringing technique developed by the first author
for classical multiple access channels we show that the strong converse
theorem holds also for quantum multiple access channels, if classical mes-
sages are transmitted.

Keywords: classical quantum multiple access channel; strong converse;
wringing technique; non–stationary memoryless classical quantum
channel.

1 Introduction

The coding theorem for memoryless channels, the most fundamental theorem in
Information Theory, was presented by C.E. Shannon with a sketch of its proof in
his celebrated work [23] of 1948. The first formally satisfactory proof of the cod-
ing theorem appeared in 1954 in [12] by A. Feinstein, who attributed the part
called weak converse of the theorem to R.M. Fano [11] (in 1952). The strong
converse for memoryless channels was first proved by J. Wolfowicz [29] in 1957.
A.S. Holevo [15] and B. Schumacher–M. Westmoreland [22] extended the coding
theorem to quantum memoryless channels for transmission of classical messages.
The theorem is known as HSW Theorem in Quantum Information Theory —
named after the authors — and is one of most important results in Quantum
Information Theory. With the concept of typical subspaces A. Winter [27] suc-
cessfully extended Wolfowitz’s method to a quantum version and proved the
strong converse for quantum memoryless channels. He also presented an elegant
new proof for the direct part of the coding theorem. At the same time a proof
of the strong converse was given by T. Ogawa and H. Nagaoka [18] and their
method of proof may be regarded as an extension of that by S. Arimoto [6].
The coding theorem, direct part and strong converse, for non–stationary mem-
oryless classical quantum channels was proved by A. Winter [28] who extended
Ahlswede’s method of [1] to the quantum case.

A significant difference between Shannon’s Coding Theorem and the HSW
Coding Theorem is that in the terminology of classical Information Theory the
former is a single–letter characterization but the latter is not. Hilbert spaces of
unbounded dimensions are involved in the capacity formula in the HSW Theo-
rem. In fact it is one of the most important and challenging problems in Quantum
Information Theory to get a computable characterization. A family of quan-
tum memoryless channels, known as classical quantum channels, whose HSW
Theorem has single–letter characterization, was introduced by A.S. Holevo [14].
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An observation by A.S. Holevo [16] shows that the HWS Theorem for general
quantum channels can be easily derived from the HWS Theorem for a classical
quantum channel by regarding those channels as a classical quantum channel
with a “super alphabet”. So it seems to be natural to consider classical quantum
multi–user channel when we try to extend the Classical Multi–user Information
Theory to Quantum before a single–letter form of the HWS Theorem is obtained.

C.E. Shannon, the founder of Information Theory, also started Multi–user
Information Theory in [24]. The only multi–user channel whose single–letter
capacity region is completely known is the multiple access channel (MAC). The
Coding Theorem for MAC, the direct part and weak converse, was proved by
R. Ahlswede [2]. Its strong converse theorem was shown by G. Dueck [9] (with
the Ahlswede, Gacs, Körner Blowing Up Lemma and a wringing technique for
mutual Information) and R. Ahlswede [3] (with a stronger wringing technique for
probability alone). To the best of our knowledge the quantum model of the MAC
was first studied by A.E. Allahverdyan and D.B. Saakian [5] and the Coding
Theorem for the classical quantum MAC, the direct part and weak converse,
was shown by A. Winter [26].

However, till now the strong converse resisted all efforts of proof. Already for
the classical MAC the strong converse theorem could not be proved for many
years, because average errors are genuinely used and even nowadays there is
no way to do this via typical sequences and also not via Arimoto’s method.
In the quantum case it gets even worse, because we have no analogue of the
Blowing Up Method for operators (instead for words). Consequently Dueck’s
approach fails also. Fortunately Ahlswede’s wringing method for probabilities,
invented for classification of the role of fundamental methods, works also for
the quantum situation. However the Packing Lemma of [3] requires now a more
demanding analytical proof than the original application of Chebyshev’s inequal-
ity. We present necessary definitions and state formally our results in the next
section and provide the plan to prove the main result in Section 3. In Section
4 we show a strong converse for quantum non–stationary memoryless channels
(slightly stronger than that in [28]), which we need in the proof to the main
theorem. Finally the proof of the main theorem is completed in Section 5.

2 Definitions and Results

Throughout the paper the script letters X ,Y,Z, . . . stand for finite sets and Xn,
Yn,Zn, . . . are their Cartesian powers. We denote their elements and the random
variables taking values in them, by corresponding lower letters, x, y, z, . . . , xn, yn,
zn, . . . and capital letters X,X ′, Y, Ỹ , Z, . . . , Zn, Y n, . . . respectively. The prob-
ability distribution of random variable X , the conditional distribution of random
variables X given Y, . . . are written as PX , PX|Y , . . . . When we speak of PX , we
mean the underlying random variable X is automatically defined and similarly
for PX|Y . As in the standard way (e.g., [17], |i〉, |j〉, |α〉, |β〉, . . . (the “ket”) stand
for normalized column vectors in Hilbert spaces and their dual vectors are writ-
ten as 〈i|, 〈j|, 〈α|, 〈β|, . . . (the “bra”). The density operators or states are denoted
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by Greek letters e.g. ρ, σ, ϕ, . . . . We write von Neumann entropy of state ρ and
the quantum relative entropy of ρ to σ as S(ρ) and D(ρ‖σ), respectively, i.e.,
S(ρ) = −th(ρ log ρ) and D(ρ‖σ) = tr(ρ log ρ) − tr(ρ log σ). Here and through-
out the paper log is the logarithm with base 2 whereas n is the logarithm with
base e. Also throughout the paper we assume all Hilbert spaces in the discussion
are over the complex field and have finite dimensions.

One way to define classical quantum channels is to specify them by a set of
states Φ =

{
ϕ(x) : x ∈ X

}
in the same Hilbert space HH , labelled by a finite

set X . We call Φ a classical quantum channel, or shortly a c − q channel, with
input alphabet X and output space HH . x ∈ X and ϕ(x) are called input letter
and output state, respectively. We assume that the receiver, or decoder, of the
channel receives the state ϕ(x) from the output of the channel, if the sender,
or encoder, of the channel inputs a letter x ∈ X to the channel. The Holevo
quantity of a c − q channel Φ =

{
ϕ(x) : x ∈ X

}
with respect to the input

distribution P is denoted by χ(P ;Φ)

χ(P ;Φ) = S(σ) −
∑
x∈X

P (x)S
(
ϕ(x)

)
=

∑
x∈X

P (x)
[
−tr

(
ϕ(x) log σ

)
+ tr

(
ϕ(x) log ϕ(x)

)]
=

∑
x∈X

P (x)D
(
ϕ(x)‖σ

)
, (2.1)

where σ =
∑
x∈X

P (x)ϕ(x). (Perhaps it should be called ... mutual information.)

A non–stationary memoryless classical quantum channel, or shorter non–
stationary memoryless c− q channel, is specified by a sequence of c− q channels
{Φn}∞n=1 with common input alphabet X and output space HH such that an
output state

ϕ⊗n(xn) = ϕ1(x1) ⊗ ϕ2(x2) ⊗ · · · ⊗ ϕn(xn)

is output from the channel if the sequence xn = (x1, . . . , xn) ∈ Xn is input to
the channel, where Φt =

{
ϕt(x) : x ∈ X

}
for t = 1, 2, . . . , and ⊗ is the tensor

product. An (n,M, λ̄)–code for the non–stationary memoryless c − q channel,
(U ,D) consists of a subset U ⊂ Xn and a measurement D on the outputspace
HH⊗n described by {Dun : un ∈ U}, where Dun corresponds to input un, such
that |U| = M and

M−1
∑
un∈U

tr
[
ϕ⊗n(un)Dun

]
> 1 − λ̄. (2.2)

Here U is called codebook, members of U are called codewords, n is called the
length of the code, or of the codewords, and λ̄ is called the average probability of
error. 1

n logM is called rate of the code. An (n,M, λ̄)–code is used to transmit a
set of classical messages of size M as follows. In the case the encoder has to send
the mth message in the set, he sends the mth codeword, say un(m) ∈ U through
the non–stationary memoryless c−q channel. To decode the message, the decoder
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performs the measurement D to the outputstate and he decodes the output to
the m′th message of the set if the outcome of measurement D is un(m′). Then the
average fidelity of transmission is bounded from below by (2.2). A positive real
number R is said to be λ̄–achievable for a c−q channel if for all ε > 0 there exists
an (n,M, λ̄)–code for the channel with rate 1

n logM > R − ε if n is sufficiently
large. The maximum λ̄–achievable rate for a channel is called its λ̄–capacity,
denoted by C(λ̄). The capacity of the channel is defined as C = inf

λ̄>0
C(λ̄).

Instead of capacity for average probability of error, we have capacity for max-
imum probability of error, if we replace (2.2) by

tr
[
ϕ⊗n(u)Dun

]
> 1 − λ for all un ∈ U . (2.3)

However by the pigeon–hole principle we know that the coding problems for
average probability and maximum probability of error are equivalent for two
terminals channels.

We call a non–stationary memoryless c − q channel specified by {Φn}∞n=1

stationary, or a stationary memoryless c − q channel, if for all n Φn = Φ1.
The coding theorem for stationary memoryless c − q channels is an important
special case of the HSW Theorem. Coding theorem with strong converse for
non–stationary memoryless c− q channels were shown by A. Winter in [28] and
his strong converse has the following form.

Theorem W. (Winter [28]) Given a non–stationary memoryless c− q channel
{Φn}∞n=1, for all 0 < λ < 1 and ε > 0, there is an no = no(λ, ε) (independent
of the channel) such that if there exists an (n,M, λ)–code for the channel with
n > no, then

1
n

logM ≤ 1
n

n∑
t=1

max
Pt

X (Pt;Φt) + ε.

To prove our main result, we need a slightly stronger version of the strong
converse for a non–stationary memoryless c− q channel.

Theorem 1. Let {Φn}∞n=1 be a non–stationary memoryless c − q channel such
that for diagonalizations of ϕn(x), n = 1, 2, . . . , x ∈ X ,

ϕn(x) =
d∑
j=1

Wn(j|x)|jn(x) >< jn(x)| (2.4)

where d = dimHH and HH is the output space,

inf
n,x,j

+ Wn(j|x) = w > 0, (2.5)

where the inf+ is infimum of Wn(j|x) for 1, 2, . . . ,, j = 1, 2, . . . , d and x ∈ X
with Wn(j|x) > 0. Then there exists a function h defined on (0, 1) and depending
on w in (2.5) such that for all (n,M, λ)–codes for the channel {Φn}∞n=1 and
sufficiently large n,
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1
n

logM ≤
n∑
t=1

1
n
χ(PXt ;Φt) +

1√
n
h(λ), (2.6)

where Xn = (X1, X2, . . . , Xn) is the random variable uniformly distributed over
the codebook U . In other words PXn is the empirical distribution over the code-
book and PXt is the marginal distribution of its t–th component.

We shall explain the role of the theorem in the proof of the main result in the
next section and we prove it in Section 4.

Remarks

1. As one can always use a finite set of c − q channels to approach an infinite
set of c − q channels by a quantum version (see Section VII in [28]) of
ε–net techniques in Classical Information Theory and the condition (2.5)
automatically holds, in the case that Φn, n = 1, 2, . . . are taken from a finite
set of c − q channels, the condition (2.5) can be removed from Theorem 1.
Consequently one may replace h by a function independent of w. This can
be done in exactly the same way as in [28]. However the current form of the
theorem is sufficient for our purposes.

2. By considering the previous remark, Theorem W follows from Theorem 1.

Now let us turn to our main object, (stationary) memoryless classical quantum
multiple access channels, or for short c − q MAC. In general, like for classical
MAC, a c− q MAC has more than one sender (or encoder), for simplicity in the
current paper, we consider c − q MAC with two encoders. Thus a c − q MAC
is specified by a set Φ =

{
ϕ(x, y) : x ∈ X , y ∈ Y

}
of states in common Hilbert

space HH labelled by the elements in a Cartesian product X × Y of two finite
sets X and Y. Again HH is called output space and X and Y are called input
alphabets. We address the two encoders as X– and Y–encoders. The decoder
receives the state

ϕ⊗n(xn, yn) = ϕ(x1, y1) ⊗ ϕ(x2, y2) ⊗ · · · ⊗ ϕ(xn, yn) (2.7)

if the X–encoder and the Y–encoder send input sequences xn = (x1, x2, . . . , xn)
∈ Xn and yn = (y1, y2, . . . , yn) ∈ Yn, respectively, over the c − q MAC. An
(n,M,N, λ̄)–code (U ,V ,D) for a c − q MAC Φ consists of a subset U ⊂ Xn,
a subset V ⊂ Xn, with cardinalities |U| = M , |V| = N respectively and a
measurement D = {Dun,vn : un ∈ U , vn ∈ V}, where Dun,vn corresponds an
outcoming (un, vn), such that

M−1N−1
∑
un∈U

∑
vn∈V

tr
[
ϕ⊗n(un, vn)Dun,vn

]
> 1 − λ̄. (2.8)

We call U and V X– and Y–codebooks and their members codewords. λ̄ and
n are called average probability of error and length of code (or of codewords),
respectively.

Define R1 = 1
n log |M | and R2 = 1

n log |N |. (R1, R2) is called pair of rates of
the code. A pair (R1, R2) of positive real numbers is called λ̄–achievable if for
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all ε > 0 and sufficiently larger n there exists an (n,M,N, λ̄)–code for the c− q
MAC with rates 1

nM > R1 − ε and 1
n logN > R2 − ε. The set of achievable

pairs of real numbers is called λ̄–capacity region of the c− q MAC and denoted
by R(λ̄). Then the capacity region of the c− q MAC Φ is defined as

R =
⋂

1>λ̄>0

R(λ̄). (2.9)

As a special case of a c − q MAC Φ =
{
ϕ(x, y) : x ∈ X , y ∈ Y

}
becomes a

classical MAC, when ϕ(x, y) x ∈ X , y ∈ Y can be simultaneously diagonalized
by the same basis. One may define the capacity region (λ–capacity region) for
maximum probability of error in an analogous way by replacing (2.8) by

tr
[
ϕ(un, vn)Dun,vn

]
> 1 − λ

for all un ∈ U , vn ∈ V .
However, it turned out that unlike for two terminal channels capacity regions

for maximum probability of error and average probability of error of the same
c − q MAC may be different even for the special case of a classical MAC (c.f.
[8]).

Throughout the paper for c−q MAC we only consider the average probability
of error and to present the formulas of capacity region of a c− q MAC for it we
introduce the following notation.

For a given c−q MAC Φ with input alphabets X and Y, and a pair of random
variables (X,Y ) distributed on X × Y we write

χ(X,Y ;Φ) = χ(PXY ;Φ), (2.10)

where χ(·; ·) is the Holevo quantity defined in (2.1),

χ(X : Φ|Y ) =
∑
y∈Y

PY (y)χ
(
PX|Y (·|y);Φ(·, y)

)
=

∑
y∈Y

PY (y)

[
S(σXY,2(y)

)
−

∑
x∈X

PX|Y (x|y)S
(
ϕ(x, y)

)]
, (2.11)

where Φ(·, y) =
{
ϕ(x, y) : x ∈ X

}
for all y ∈ Y is a c − q channel with input

alphabet X and σXY,2 =
∑
x
PX|Y (x, y)ϕ(x, y) for all y ∈ Y, and

χ(Y ;Φ|X) =
∑
x∈X

PX(x)χ
(
PY |X(·|x);Φ(x, ·)

)
=

∑
x∈X

PX(x)
[
S(σXY,1(x)

)
−

∑
y∈Y

PY |X(y|x)S
(
ϕ(x, y)

)]
(2.12)

where Φ(x, ·) =
{
ϕ(x, y) : y ∈ Y

}
for all x is a c− q channel with input alphabet

Y and σXY,1(x) =
∑
y
PY |X(y|x)ϕ(x, y).
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Then it immediately follows from (2.1), (2.10) – (2.12) that

χ(X,Y ;Φ) =
∑
x∈X

∑
y∈Y

PXY (x, y)D
(
ϕ(x, y)‖σXY

)
, (2.13)

where σXY =
∑
x∈X

∑
y∈Y

PXY (x, y)ϕ(x, y),

χ(X ;Φ|Y ) =
∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y)D
(
ϕ(x, y)‖σXY,2(y)

)
, (2.14)

and

χ(Y ;Φ|X) =
∑
x∈X

PX(x)
∑
y∈Y

PY |X(y|x)D
(
ϕ(x, y)‖σXY,1(x)

)
. (2.15)

For a pair of random variables (X,Y ) with values in X × Y we let R(X,Y )
be the set of pairs of positive real numbers (R1, R2) satisfying

R1 +R2 ≤ χ(X,Y ;Φ), (2.16)
R1 ≤ χ(X ;Φ|Y ), (2.17)

and
R2 ≤ χ(Y ;Φ|X). (2.18)

Denote by ∂(X ) × ∂(Y) the set of pairs of independent random variables X
taking values on X and Y taking values on Y (i.e. PXY (x, y) = PX(x)PY (y))
and

R∗ = conv

 ⋃
(X,Y )∈∂(X )×∂(Y)

R(X,Y )

 , (2.19)

where conv(A) stand for the convex closure of the set A.
Then the Coding Theorem for the c− q MAC of A. Winter [26] says that

R = R∗. (2.20)

The main contribution of this paper is the strong converse for all c− q MAC.

Theorem 2. Given a c− q M Φ, there exists a function h̃ defined on (0, 1) such
that for all (n,M,N, λ̄)–codes with λ̄ ∈ (0, 1), there exist random variables X̃n =
(X̃1, . . . , X̃n) and Ỹ n = (Ỹ1, . . . , Ỹn) taking values in Xn and Yn, respectively,
with

1
n

logM +
1
n

logN ≤ 1
n

n∑
t=1

χ(X̃t, Ỹt;Φ) +
logn√
n
h̃(λ̄), (2.21)

1
n

logM ≤ 1
n

n∑
t=1

χ(X̃t;Φ|Ỹt) +
logn√
n
h̃(λ̄), (2.22)
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and
1
n

logN ≤ 1
n

n∑
t=1

χ(Ỹt;Φ|X̃t) +
logn√
n
h̃(λ̄), (2.23)

and for all t, X̃t and Ỹt are independent.
But the dependence is not necessary. It is a consequence of the dependence

of h on w in (2.5) in Theorem 1. So by Remark 1 and on inspection of the proof
for Theorem 2, one may obtain an h̃∗ independent of the channel.

3 Outline of Ideas to Extend Ahlswede’s Strong Converse
Proof for Classical MAC to c − q MAC

Roughly speaking, his proof is divided into three steps.
In the first step Ahlswede extended Augustin’s strong converse theorem in [7],

which says that for an arbitrary (n,M, λ) code for a (classical) non–stationary
memoryless channel {Wn}∞n=1

logM ≤
n∑
t=1

I(Xt;Yt) +
3

1 − λ
|X |

√
n,

where Xn = (X1, . . . , Xn) is random variable uniformly distributed on the code-
book. Y n = (X1, . . . , Yn) is the output random variable for input Xn, and I is
Shannon’s mutual information.

By applying the strong converse in the first step to the classical MAC, one
may obtain an outer bound for the achievable rate pair (R1, R2) such that

R1 +R1 <∼

1
n

n∑
t=1

I(XtYt;Zt)

R1 <
∼

1
n

n∑
t=1

I(Xt;Zt|Yt)

and

R2 ≤ 1
n

n∑
t=1

I(Yt;Zt|Xt),

formally like the capacity region. But now (Xt, Yt) may not be independent! So
the outer bound is not tight.

The reason is due to application of the strong converse of non–stationary
channels in step 1 requiring the maximum error criterion, whereas for MAC the
capacity regions of maximum and average error criteria may be different [8]. By
the Markov inequality one may obtain a subcode A from the original code for
MAC. But the uniform distributions over A are not independent. To solve the
problem R. Ahlswede discovered the following technique for the second step.

Lemma A. (Wringing Technique [3]) Let P and Q be probability distributions
over a Cartesian power Zn of a finite set Z such that for a positive constant c
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P (zn) ≤ (1 + c)Q(zn) for all zn ∈ Zn,

then for any 0 < γ < c, 0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, 2, . . . , n}, where
0 ≤ k ≤ c

γ such that for some z̄t1 , . . . , z̄tk ,

P (zt|z̄t1 , . . . , z̄tk) ≤ max
[
(1 + γ)Q(zt|z̄t1 , . . . , z̄tk), ε

]
and

P (z̄t1 , . . . , z̄tk) ≥ εk.

With the lemma Ahlswede obtained a further subcode B from the subcode A
(without loosing too much rate) such that the uniform distribution over the
codebook for it is nearly componentwise independent. Notice that the uniform
distribution for B is not necessarily independent, but componentwise indepen-
dence is sufficient for the purpose.

In the third step Ahlswede first combined the results in the first two steps
to obtain an outer bound in terms of nearly componentwise independent input
distributions and then by some calculation based on the continuity of Shannon
information quantities showed the outer bound is arbitrarily close to the capacity
region of the classical MAC.

We now plan to finish our proof for Theorem 2 paralleling these three steps.
We first inspect the second step, the wringing technique, and find that we can
take it into our proof almost without doing additional work, because the wringing
technique is only applied in the input space and by definition our input space
is classical. That means the only thing, which we need to do, is replace the
codebook for the classical MAC by one for the c − q MAC, and then consider
the consequence at the output.

As by Fannes inequality [10] von Neumann entropy is continuous the extension
to the quantum version in the third step is not so difficult. The only difficult
part for the extension is the first part. Winter’s strong converse (Theorem W)
in [28] for non–stationary c−q channels is in terms of optimal input distribution
whereas the strong converse, which we need, is in terms of empirical distributions
over codebooks. Hayashi and Nagaoka [13] extended a general capacity formula
due to Verdu and Han [25] to classical quantum channels. But it turned out that
they obtained a “ratewise” strong converse for stationary c−q channels in terms
of optimal input distributions by applying their formula.

So to prove our strong converse for c− q MAC, Theorem 2, we have to show
a strong converse for non–stationary c − q channels in terms of the uniform
distribution over the codebook i.e. our Theorem 1. In summary we state our
plan as follows.

In the first step we prove Theorem 1 as an auxiliary result.
In the second step we apply the wringing technique to our codebook to obtain

a subcode whose uniform distribution PX̃nỸ is nearly componentwise indepen-
dent (i.e. PX̃tỸt

(x, y) is arbitrarily close to PX̃t
(x)PỸt

(y) for all x ∈ X , y ∈ Y).
Finally we finish our proof in the third step by calculation based on continuity

of von Neumann entropy.
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4 A Strong Converse for Classical Quantum
Non–stationary Channels

We begin with our proof to Theorem 1 with a lemma which can be considered
as a quantum analogue of Lemma 1 in [3].

Let U be a finite index set and let{
ρ(u) : u ∈ U

}
(4.1)

be a set of states labelled by indices in U in a given complex Hilbert space HH
of finite dimension d. Further let σ be a state in HH . For a given real number
r(u) we denote the projector of HH onto subspace

ρ(u) − 2r(u)σ ≥ 0 (4.2)

by P+
(
u, σ, r(u)

)
. That is, P+(u, σ, r) is the projector with

P+
(
u, σ, r(u)

)
=

∑
αj(u)≥0

|ej(u) >< ej(u)| (4.3)

if ρ(u) − 2r(u)σ is diagonalized as

ρ(u) − 2r(u)σ =
d−1∑
j=0

αj(u)|ej(u) >< ej(u)|. (4.4)

Then we have

Lemma 1. Let U ,
{
ρ(u) : u ∈ U

}
, σ, and P+

(
u, σ, r(u)

)
be defined as above

and let {Du : u ∈ U} be a measurement in HH (i.e., 0 ≤ Du ≤ I for all u ∈ U ,∑
u∈Du

Du = I, and Du corresponds to the outcome “u”, where I is the identity

operator in HH) such that for a positive real number δ

trρ(u)Du − trρ(u)P+
(
u, σ, r(u)

)
≥ δ (4.5)

for all u ∈ U . Then

|U| ≤ δ−12
|U|−1 ∑

u∈U
r(u)

. (4.6)

Proof: For all u ∈ U , by (4.3), (4.4) and (4.5),

2r(u)trσDu = trρ(u)Du − tr
[
ρ(u) − 2r(u)σ

]
Du

≥ trρ(u)Du − tr
[
ρ(u) − 2r(u)σ

]
P+

(
u, σ, r(u)

)
≥ trρ(u)Du − trρ(u)P+

(
u, σ, r(u)

)
≥ δ, (4.7)

where the first inequality follows from (4.3), (4.4), and the fact that for any oper-

ator π with diagonlization π =
d−1∑
i=0

pi|ei >< ei|, the projector P+
π =

∑
pi≥0

|ei ><

ei| maximizes tr(πτ) among the operators τ with 0 ≤ τ ≤ I, and the last
inequality holds by condition (4.5).
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Next notice that δ2
−|U|−1 ∑

u∈U
r(u)

=
[ ∏
u∈U

δ2−r(u)
] 1

|U|
. Then (4.7) is followed

by

δ2
−|U|−1 ∑

u∈U
r(u)

≤
[∏
u∈U

tr(σDu)
] 1

|U|

. (4.8)

However geometric means may not exceed arithmetic means and so we can
continue to bound (4.8) by

δ2
−|U|−1 ∑

u∈U
r(u)

≤ 1
|U|

∑
u∈U

tr(σDu)= |U|−1tr

(
σ
∑
u∈U

Du‖!
)

= |U|−1tr(σI)= |U|−1.

That is (4.6). �

To apply Lemma 1 in the proof of Theorem 1 we have to estimate
[
trρP+

(ρ, σ, r)
]

for projector

P+(ρ, σ, r) =
∑
αj≥0

|ej >< ej| (4.9)

onto the subspace ρ−2rσ ≥ 0, where σ and ρ are states and the diagonalization
of ρ− 2rσ is

ρ− 2rσ =
d−1∑
j=0

αj |ej >< ej|. (4.10)

For j = 0, 1, 2, . . . , d− 1, let P (j) = 〈ej |ρ|ej〉 and Q(j) = 〈ej |σ|ej〉. Then P and
Q are probability distributions on {0, 1, . . . , d−1} since ρ and σ are states: Thus
by (4.9) and (4.10) one may rewrite

trρP+(ρ, σ, r) =
∑

j:P (j)−2rQ(j)≥0

P (j) =
∑

j:log P (j)
Q(j)≥r

P (j). (4.11)

A natural way to estimate
[
trρP+(ρ, σ, r)

]
is applying Chebyshev’s inequality

to (4.11). But it will lead us to an estimation in terms of Shannon information
quantities, which is not what we want to have.

Based on the works [20], [21] by Petz, T. Ogawa and H. Nagaoka provided an
estimation in [19].

Lemma ON ([19]). For all s ∈ [0, 1)

log
[
trρP+(ρ, σ, r)

]
≤ 2−rstr(ρ1+sσ−s). (4.12)

It can be shown that

1
s
trρ1+sσ−s → D(ρ‖σ) as s → 0, (4.13)
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which was used by M. Hayashi and H. Nagaoka to obtain a strong converse
theorem for stationary memoryless c − q channels in terms of optimal input
distributions.

However the convergence in (4.13) is not sufficient for us to obtain a strong
converse theorem for non–stationary channel and, roughly saying, we need that

1
s

log
[
tr(ρt(u)1+sσ−st )

]
→ D

(
ρt(u)‖σt

)
as s → 0 (4.14)

uniformly in t for sets
{
ρt(u) : u ∈ U

}
and σt, t = 1, 2, . . . , n as states. Precisely

our estimation is done by the following lemma.

Lemma 2. For a given positive real number w there exists a positive a = a(w)
such that for all states ρ whose minimum positive eigenvalue is not smaller than
w, all states σ, and all s ∈

[
0, 1

2

)
D(ρ‖σ)s ≤ log[trρ1+sσ−s] ≤ D(ρ‖σ)s+ d

1
2
[
a+ tr(ρσ−1)

]
s2, (4.15)

where d is the dimension of the Hilbert space HH.

Proof: Let ρ and σ have diagonalizations

ρ =
∑
j

W (j)|j〉〈j| (4.16)

and
σ =

∑
y

Q(y)|y〉〈y|, (4.17)

respectively. We may assume that the support of ρ contains the support of σ,
because otherwise all terms in (4.15) are infinity and we need to do nothing. So
in the following we assume all summations run over positive eigenvalues of σ
and do not worry about “zero denominators”. Then by (4.15) and (4.16)

trρ1+sσ−s =
∑
j

∑
y

tr

[
W (j)

(
W (j)
Q(y)

)s
|j〉〈j||y〉〈y|

]

=
∑
j

∑
y

W (j)
(
W (j)
Q(y)

)s
|〈j|y〉|2. (4.18)

Let f(s) = tr(ρ1+sσ−s) and g(s) = log f(s). Then by Taylor expansion we
have for s ∈

[
0, 1

2

)
the estimate

g(s) = g(0) + g′(0)s+ g′′(s0)s2 (4.19)

for some s0 ∈ [0, s]. Next we have to calculate the derivations of g. By simple
calculation we obtain from (4.18)

f ′(s) =
∑
j

∑
y

W (j)|〈j|y〉|2
(
W (j)
Q(y)

)s
n
W (j)
Q(y)

, (4.20)
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and

f ′′(s) =
∑
j

∑
y

W (j)|〈j|y〉|2
(
W (j)
Q(y)

)s (
n
W (j)
Q(y)

)2

. (4.21)

Next we substitute f(s) = tr(ρ1+sσ−s) and (4.20) into

g′(s) =
f ′(s)
f(s)

· log e, (4.22)

and f(s) = tr(ρ1+sσ−s), (4.20) and (4.21) into

g′′(s) =
[
f ′′(s)
f(s)

− (f ′(s))2

f2(s)

]
log e, (4.23)

respectively.
Then we obtain

g′(s) =

∑
j

∑
y
W (j)|〈j|y〉|2

(
W (j)
Q(y)

)s
log W (j)

Q(y)

tr(ρ1+sσ−s)
(4.24)

and

g′′(s) =


∑
j

∑
y
W (j)|〈j|y〉|2

(
W (j)
Q(y)

)s (
nW (j)
Q(y)

)2

tr(ρ1+sσ−s)

−


∑
j

∑
y
W (j)|〈j|y〉|2

(
W (j)
Q(y)

)s
nW (j)
Q(y)

tr(ρ1+sσ−s)


2
 log e. (4.25)

We are ready to see from (4.25) that for all s

g′′(s) ≥ 0. (4.26)

Indeed by (4.18), Qs =
{
Qs(j, y) =

W (j)|〈j|y〉|2(W (j)
Q(y) )s

tr(ρ1+sσ−s)

}
(j,y)

is a probability

distribution. So we may define a random variable Z(s) taking value W (j)
Q(y) with

probability Qs(j, y) and rewrite (4.25) as g′′(s) = Var
[
nZ(s)

]
log e. Moreover

by (4.24), (4.16), and (4.17) we have that

g′(0) =
∑
j

∑
y

W (j)|〈j|y〉|2 logW (j) −
∑
j

∑
y

W (j)|〈j|y〉|2 logQ(y)

= tr(ρ log ρ) − tr(ρ log σ) = D(ρ‖σ), (4.27)

Which with (4.19) and (4.26) and g(0) = 0 yields the first inequality in (4.15).
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To obtain the second inequality in (4.15), we have to choose a at the right

hand side of (4.15) according to w. We observe that lim
x→∞

x
1
2 (�n x2) log e

x = 0 and

so there exists an A > 1 such that for all s ∈
[
0, 1

2

]
, x ∈ [A,∞)

xs(n x)2 log e ≤ x
1
2 (n x)2 log e ≤ x, (4.28)

We choose

a = max
{

max
x∈[w,1]

(n x)2 log e, max
x∈[1,A]

x
1
2 (n x)2 log e

}
and then for all s ∈

[
0, 1

2

]
, x ∈ [w,A],

xs(n x)2 log e ≤ a. (4.29)

By (4.28) and (4.29) we upperbound

xs(n x)2 log e ≤ x+ a (4.30)

for s ∈
[
0, 1

2

]
and x ∈ [w,∞). Notice that by our assumption that for all j

w ≤W (j), for all j, y, W (j)
Q(y) ∈ [w,∞).

Thus we may apply the upper bound in (4.30) with x = W (j)
Q(y) to (4.25). This

gives us that for all s ∈
[
0, 1

2

]
g′′(s) ≤ 1

tr(ρ1+sσ−s)

∑
j

∑
y

|〈j|y〉|2
(
W (j)
Q(y)

)s (
n
W (j)
Q(y)

)2

log e

≤ 1
tr(ρ1+sσ−s)

∑
j

∑
y

|〈j|y〉|2
(
W (j)
Q(y)

+ a

)
=
tr(ρσ−1) + a

tr(ρ1+sσ−s)
. (4.31)

Since for s > 0 σ−s ≥ I and x
3
2 is convex ∪, for s ∈

[
0, 1

2

]
tr(ρ1+sσ−s) ≥ trρ1+s =

∑
j

W (j)1+s ≥
∑
j

W (j)
3
2 ≥ d

∑
j

1
d
W (j)


3
2

= d−
1
2 .

(4.32)

Finally the second inequality in (4.15) follows from (4.19), (4.27), (4.31), (4.32)
and g(0) = 0.

�
Proof of Theorem 1. To conclude the section we prove Theorem 1. Let {Φ}∞n=1

be a non–stationary c − q and let (U ,D) be an (n,M, λ)–code for it. Without
loss of generality, we assume it is a code for the maximum probability of error
because by Markov’s inequality one always may obtain an

(
n,
⌊
λ−λ̄
λ M

⌋
, λ
)
–

code for maximum probability of error from an (n,M, λ̄)–code with average
probability of error for all λ ∈ (λ̄, 1). So, we have for all un ∈ U that (2.3) holds.
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Let Xn = (X1, . . . , Xn) be the sequence of random variables uniformly dis-
tributed on the codebook U and for t = 1, 2, . . . , n

σt = Eϕt(Xt) =
∑
x∈X

PXt(x)ϕt(x) (4.33)

where ϕt(x) ∈ Φt =
{
ϕt(x) : x ∈ X

}
. Let

σ⊗n = σ1 ⊗ σ2 ⊗ · · · ⊗ σn. (4.34)

To prove the theorem, we should apply Lemma 1 to
{
ϕ⊗n(un) : un ∈ U

}
and

σ⊗n, where
ϕ⊗n(un) = ϕ1(u1) ⊗ ϕ2(u2) ⊗ · · · ⊗ ϕ1(un) (4.35)

for un = (u1, . . . , un). To this end we set for all un ∈ (u1, . . . , un) ∈ U

r(un) =
n∑
t=1

{
D
(
ϕt(ut)‖σt

)
+
d

1
2 [a+ tr(ϕt(ut)σ−1

t )] + log 2
1−λ√

n

}
, (4.36)

where a is the constant in (4.15), Lemma 2 (defined in the proof). We have to
verify (4.5) for δ = 1−λ

2 , which will be done by applying Lemma ON and Lemma
2. By Lemma ON, we have that for all un ∈ U and s ∈ [0, 1)

tr
[(
ϕ⊗n(un)

)
P+

(
un, σ⊗nr(un)

)]
≤ 2−r(u

n)str
([
ϕ⊗n(un)

]1+s[
σ⊗n

]−s)
= 2−r(u

n)s
n∏
t=1

tr
[
ϕ1+s
t (ut)σ−st

]
= 2−r(u

n)s2
n∑

t=1
log tr

[
ϕ1+s

t (ut)σ
−s
t

]
, (4.37)

where the first equality follows from (4.34) and (4.35). Next we bound

log tr
[
ϕ1+s
t (ut)σ−st

]
by the second inequality in (4.15), Lemma 2 and notice that by condition (2.5)
of Theorem 1, for all t, and all u ∈ X , the minimum positive eigenvalue of ϕt(u)
is not smaller than w.

Then by Lemma 2, we have that for all s ∈
[
0, 1

2

)
log

[
trϕ1+s

t (ut)σ−st
]
≤ D

(
ϕt(ut)‖σt

)
s+ d

1
2
[
a+ tr

(
ϕt(ut)σ−1

t

)]
s2, (4.38)

By substitution of (4.38) into (4.37), we further bound tr
(
ϕ⊗n(un)P+(

un, σ⊗n, r(un)
)

as follows:

tr
(
ϕ⊗n(un)P+

(
un, σ⊗n, r(un)

)
≤

exp2

{
−r(un)s+

n∑
t=1

[
D
(
ϕt(ut)‖σt

)
s+ d

1
2
[
a+ tr

(
ϕt(ut)σ−1

t

]
s2

}
(4.39)

for all s ∈
(
0, 1

2

]
. We choose s = 1√

n
in (4.39) and then substitute (4.36) into it.
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Thus we obtain

tr
(
ϕ⊗n(un)P+

(
un, σ⊗nr(un)

)

≤ exp2

{
−1√
n

n∑
t=1

[
D
(
ϕt(ut)‖σt

)
+
d

1
2 [a+ tr(ϕt(ut)σ−1

t )] + log 2
1−λ√

n

]}

+
1√
n

n∑
t=1

D
(
ϕt(ut)‖σt

)
+

1
n

n∑
t=1

d
1
2
[
a+ tr

(
ϕt(ut)σ−1

t

)]
= 2

− 1
n

n∑
t=1

log 2
1−λ = 2− log 2

1−λ =
1 − λ

2
, (4.40)

which with assumption (2.3) yields that (4.5) holds for ϕn(un), σn, r(un), un ∈
U , and δ = 1−λ

2 . That is, the conditions of Lemma 1 are satisfied, and thus (for{
ρ(u) : u ∈ U

}
=

{
ϕ⊗n(un) : u ∈ U

}
, σ = σ⊗n, u = un) get

logM ≤ −M−1
∑
un∈U

r(un) − log
1 − λ

2
. (4.41)

Finally we recall the definition of random variables Xn = (X1, . . . , Xn), the
definition of r(un) in (4.36) and treat r(un), D

(
ϕt(u)‖σt

)
and tr(ϕt(u)σ−1

t ) as
functions of un and u. Then it follows from (4.41), (4.36), (4.33), and (2.1) that

1
n

logM≤ 1
n

∑
xn∈Xn

Pr(Xn = xn)r(xn)− 1
n

log
1 − λ

2
=

1
n
Er(Xn)− 1

n
log

1 − λ

2

=
1
n

n∑
t=1

E
[
D
(
ϕt(Xt)‖σt

)]
+ n−

3
2

n∑
t=1

d
1
2
[
a+ E

[
tr
(
ϕt(Xt)σ−1

t

)]]
− log

1 − λ

2
(n−1 + n−

1
2 )

=
1
n

n∑
t=1

∑
x∈X

PXt(x)D
(
ϕt(x)‖σt

)
+ n−

3
2 s

1
2

n∑
t=1

[
a+ tr

[
E
(
ϕt(Xt)

)
σ−1
t

]]
− log

1 − λ

2
(n−1 + n−

1
2 )

=
1
n

n∑
t=1

χ(PXt ;Φt) + n−
3
2 d

1
2

n∑
t=1

[
a+ tr(σt · σ−1

t )
]

− log
1 − λ

2
(n−1 + n−

1
2 )

≤ 1
n

n∑
t=1

χ(PXt ;Φt) + n−
1
2 d

1
2 (a+ d) − 2n−

1
2 log

1 − λ

2

=
n∑
t=1

1
n
χ(PXt ;Φt) +

1√
n

[
d

1
2 (a+ d) − 2 log

1 − λ

2

]
. (4.42)
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Finally we complete our proof by choosing h(λ) = d
1
2 (a + d) − 2 log 1−λ

2 in
(4.42). �

5 The Proof of the Main Result

In previous section we have shown Theorem 1, which completed the first step of
the plan to prove Theorem 2. In this section we shall finish our proof according
to the plan in Section 3. The second step is to apply wringing technique Lemma
A and it directly follows from the Lemma the

Corollary A. For given finite sets X and Y, U ⊂ Xn and V ∈ Yn and a subset
A ⊂ U ×V with cardinality |A| ≥ β|U| × |V| for a β ∈ (0, 1), a γ ∈ (0, β−1 − 1),
and ε > 0 there exists t1, t2, . . . , tk ∈ {1, 2, . . . , n} and (xt1 , yt2), . . . , (xtk , ytk)
for a k ≤ β−1−1

γ such that the section of A at (xt1 , yt1), (xt2 , yt2), . . . , (xtk , ytk),

B =
{
(un, vn) ∈ A : (uti , vti) = (xti , yti), i = 1, 2, . . . , k

}
has the following properties.

|B| ≥ εk|A|, (5.1)

and for the pair (X̄n, Ȳ n) of sequences of random variables uniformly distributed
on B,

(1 + γ)Pr(X̄t = x)Pr(Ȳt = y) − γ − |X ||Y|ε
≤ Pr(X̄t = x, Ȳt = y) ≤ max

(
(1 + γ)Pr(X̄t = x)Pr(Ȳt = y), ε

)
(5.2)

for all x ∈ X , y ∈ Y and t = 1, 2, . . . , n.
The corollary is actually Corollary 2 in [3]. (The only difference is that we

now remove the assumption in [3] that U × V is a codebook for the MAC but
this is obviously not an essential assumption.) (5.1) and the first inequality in
(5.2) are a simple consequence of Lemma 1 with the choice of P as uniform
distribution on A and Q as uniform distribution of U ×V . The second inequality
in (5.2) follows the first inequality in (5.2) and the fact that

∑
(x,y)∈X×Y

Pr(X̄t =

x)Pr(Ȳt = y) = 1.
So we omit the details. Readers can make them by themselves or read [3].
Now let Φ be a c−q MAC. We have to find an h̃ such that for all (n,M,N, λ̄)–

codes and the channel (2.23) – (2.25) hold. Suppose that we are given an
(n,M,N, λ̄)–code (U ,V ,D) for the c − q MAC Φ. Let λ = 1+λ̄

2 and A ={
(un, vn) : tr

[
ϕ(un, vn)Dun,vn

]
> 1 − λ, un ∈ U , vn ∈ V

}
. Then we obtain

that

|A| >
(

1 − λ̄

λ

)
MN =

1 − λ̄

1 + λ̄
MN (5.3)

by applying Shannon’s well known approach to (2.8). By definition for all
(un, vn) ∈ A

tr
[
ϕ(un, vn)Dun,vn

]
> 1 − λ =

1 − λ̄

2
. (5.4)
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Let β = 1−λ̄
1+λ̄

γ = 1√
n
, and ε = 1√

n
. Then corollary A is followed by that there

exists a B ⊂ A in Corollary A such that for a k ≤ 2λ̄
1−λ̄

√
n,

|B| ≥ n−
λ̄

1−λ̄

√
n|A| ≥ 1 − λ̄

1 + λ̄
n−

λ̄
1−λ̄

√
nMN, (5.5)

where the last inequality follows from (5.3), and (5.2) holds for the pair of se-
quences of random variables (X̄n, Ȳ n) uniformly distributed on B. That is, for
all x ∈ X , y ∈ Y, and t = 1, 2, . . . , n,

1√
n

[
Pr(X̄t = x)Pr(Ȳt = y) − 1 − |X ||Y|

]
≤ Pr(X̄t = x, Ȳt = y) − Pr(X̄t = x)Pr(Ȳt = y)

≤ 1√
n

[
Pr(X̄t = x)Pr(Ȳt = y) + 1

]
, (5.6)

where we use the assumption γ = ε = 1√
n

and to obtain the last inequality we
use the obvious inequality

max

{(
1 +

1√
n

)
Pr(X̄t = x)Pr(Ȳt = y),

1√
n

}
≤

(
1 +

1√
n

)
Pr(X̄t = x)Pr(Ȳt = y)+

1√
n

.

We first treat our c−q MAC channel as a stationary memoryless c−q channel
with input alphabet X × Y and it is obvious that (B,D) is an (n, |B|, λ)–code
for it, where λ = 1+λ̄

2 .
So we may apply Theorem 1 to it and obtain

|B| ≤
n∑
t=1

1
n
χ(PX̃tỸt

;Φ) +
1√
n
h(λ) =

1
n

n∑
t=1

χ(X̄t, Ȳt;Φ) +
1√
n
h(λ), (5.7)

which together with (5.5) implies

1
n

logM+
1
n

logN ≤ 1
n

n∑
t=1

χ(X̄t, Ȳt;Φ)+
1√
n
h(λ)+

1√
n

λ̄

1 − λ̄
logn+

1
n

log
1 + λ̄

1 − λ̄
.

(5.8)
Next we get for yn ∈ Yn

B(yn) =
{
(un, yn) : (un, yn) ∈ B

}
. (5.9)

Then by our definitions

B(yn) = φ if yn /∈ Vn, (5.10)

Pr(Ȳ n = yn) =
|B̄(yn)|
|B| , (5.11)
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and
{
B(vn) : vn ∈ V ,B(vn) = φ

}
is a partition of B. We partition V into two

parts according to PȲ n ,

V+ =
{
vn ∈ V : Pr(Ȳ n = vn) ≥ (nN)−1

}
(5.12)

and
V− =

{
vn ∈ V : Pr(Ȳ n = vn) < (nN)−1

}
. (5.13)

Then by (5.10) and (5.11)

1 = Pr(Ȳ n ∈ V) < Pr(Ȳ n ∈ V+) + (nN)−1|V| = Pr(Ȳ n ∈ V+) +
1
n
,

or

Pr(Ȳ n ∈ V+) > 1 − 1
n
. (5.14)

Now we combine (5.11) and (5.12) with (5.5) and obtain that for all vn ∈ V+

|B(vn)| ≥ (nN)−1|B| ≥ 1 − λ̄

1 + λ̄
n
−
(

λ̄
1−λ̄

√
n+1

)
M, (5.15)

which together with (5.14) yields∑
vn∈Vn

Pr(Ȳ n = vn) log |B(vn)| ≥
∑
vn∈V+

Pr(Ȳ n = vn) log |B(vn)|

≥
(

1 − 1
n

)[
logM −

(
λ̄

1 − λ̄

√
n + 1

)
logn + log

1 − λ̄

1 + λ̄

]
≥

(
1 − 1

n

)[
logM −

√
n logn

(
1

1 − λ̄
+ 1 + log

1 + λ̄

1 − λ̄

)]
≥ logM − 1

n
log |Xn| −

√
n logn

(
1

1 − λ̄
+ 1 + log

1 + λ̄

1 − λ̄

)
≥ logM −

√
n logn

(
2 − λ̄

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|X |

))
,

i.e.,

1
n

logM ≤ 1
n

∑
vn∈Vn

Pr(Ȳ n = vn) log |B(vn)| + logn√
n

(
2

1 − λ̄
+log

(
1 + λ̄

1 − λ̄
|X |

))
.

(5.16)

Here we use the convention “0 log 0 = 0”. For vn ∈ V , we let

UB(vn) =
{
un ∈ U : (un, vn) ∈ B(vn)

}
. (5.17)
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Then obviously by definition
(
UB(vn),D

)
is an

(
n, |B(vn)|, λ

)
–code for non–

stationary memoryless c− q channel
{
Φt(·, vt)

}
t

where for vn = (v1, v2, . . . , vn),
Φ =

{
ϕ(x, y) = x ∈ X , y ∈ Y

}
, Φt(·, vt) =

{
ϕ(x, vt) : x ∈ X

}
, and PX̄n|Ȳ n(·|vn)

is the uniform distribution on B(vn). Denote by w(x, y), the minimum positive
eigenvalue of ϕ(x, y) and by w = min

x,y
w(x, y). Then w > 0 since |X ||Y| < ∞,

and (2.5) holds. Consequently by Theorem 1 we have that

1
n

log |B(vn)| ≤
n∑
t=1

1
n

[
S

(∑
x∈X

PX̄t|Ȳ n
t

(x|vn)ϕ(x, vn)

)

−
∑
x∈X

PX̄t|Ȳ n
t

(x|vn)S
(
ϕ(x, vt)

)]
+
h(λ)√
n
. (5.18)

Notice that ϕ(xt, vt) depends on xn = (x1, . . . , xn) through xt for fixed v.
One may rewrite (5.18) as

1
n

log |B(vn)| ≤
n∑
t=1

1
n

[
S

( ∑
xn∈Xn

PX̄n
t |Ȳ n(xn|vn)ϕ(xt, vt)

)

−
∑
xn∈Xn

PX̄n
t |Ȳ n

t
(xn|vn)S

(
ϕ(xt, wt)

)]
+
h(λ)√
n
. (5.19)

Next by the concavity (∩) of von Neumann entropy and Jensens inequality
we have

∑
yn∈Yn

PȲ n(yn)S

( ∑
xn∈Xn

PX̄n|Ȳ n(xn|yn)ϕ(xt, yt)

)

=
∑
yt∈Y

PȲt
(y)

∑
i�=t

∑
yi∈Y

Pr(Ỹi = yi, i = t|Ỹt = yt)S

( ∑
xn∈Xn

PX̄n|Ȳ n(xn, yn)ϕ(xt, yt)

)
≤

∑
yt∈Y

PȲt
(yt)S∑

i�=t

∑
yi∈Y

Pr(Ȳi − yi, i = t|Ȳt = yt)
∑
xn∈Xn

Pr(X̄n = xn|Ȳ n = yn)ϕ(xt, yt)


=

∑
yt∈Y

PȲt
(yt)S

( ∑
xt∈X

PX̄t|Ȳt
(xt|yt)ϕ(xt, yt)

)
=

∑
y∈Y

PȲt
(y)S

(
σX̄tȲt,2(y)

)
(5.20)

for σX̄tȲt,2(y) =
∑
x∈X

PX̄t|Ȳt
(x|y)ϕ(x, y).
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This and the fact∑
yn∈Yn

PȲ n(yn)
∑
xn∈X

PX̄n|Ȳ n(xn|yn)S
(
ϕ(xt, yt)

)
=

∑
y∈Y

PȲt
(y)

∑
x∈X

PX̄t|Ȳt
(x|y)S

(
ϕ(xt, yt)

)
together with (2.11) imply that

1
n

n∑
t=1

PȲ n(yn) log |B(yn)|

≤ 1
n

n∑
t=1

∑
y∈Y

PȲt
(y)

(
S
(
σX̄tȲt,2(y)

)
−

∑
x∈X

PX̄t|Ȳt
(x|y)S

(
ϕ(xt, yt)

)) +
h(λ)√
n

=
1
n

n∑
t=1

χ(X̄t;Φ|Ȳt) +
h(λ)√
n
. (5.21)

Recalling that P (Ȳ n = yn) = 0, if yn /∈ Vn, by combining (5.16) with (5.21),
we have that

1
n

logM ≤ 1
n

n∑
t=1

χ(X̄t;Φ|Ȳt) +
logn√
n

(
2

1 − λ
+ log

(
1 + λ̄

1 − λ̄
|X |

))
+
h(λ)√
n

≤ 1
n

n∑
t=1

χ(X̄t;Φ|Ȳt) +
logn√
n

(
2

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|X |

)
+ h

(
1 + λ̄

2

))
,

(5.22)

where in the last step we use our choice λ = 1+λ̄
2 . By interchanging the roles of

X̄n and Ȳ n, we obtain in the same way that

1
n

logN ≤ 1
n

n∑
t=1

χ(Ȳt|X̄t) +
logn√
n

(
2

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|Y|

)
+ h

(
1 + λ̄

2

))
.

(5.23)
So for our proof has not been done and we only finished the second step of our
plan although (5.8), (5.22), and (5.23) have the same form as (2.23), (2.24), and
(2.25), because (X̄t, Ȳt) may not be independent. We have to replace (X̄t, Ȳt) by
a pair of random variables (X̃t, Ỹt) with distribution

PX̃tỸt
(x, y) = PX̄t

(x)PX̄t
(y) (5.24)

for x ∈ X , y ∈ Y, for t = 1, 2, . . . , n. This is finished in the last step.
In the calculation we need two basic inequalities from Quantum Information

Theory.

Strong Convexity of the Trace Distance (P. 407 [17])
Let {Pi} and {Qi} be two probability distributions and let {ρi} and {σi} be two
sets of states. Then
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tr

(∣∣∣∣∣∑
i

Piρi −
∑
i

Qiσi

∣∣∣∣∣
)

≤
∑
i

|Pi −Qi| +
∑
i

Pitr|ρi − σi|. (5.25)

Fanne’s Inequality (Continuity of von Neumann Entropy ([10] also P.
512 [17])
For two states ρ and σ

|S(ϕ) − S(σ)| ≤ 1
2
tr|ρ− σ| log

2d
tr|ρ− σ| . (5.26)

In the following let us denote by PQ+ =
{
z ∈ Z : P (z) ≥ Q(z)

}
for two

probability distributions P and Q on the same set Z. Then the second inequality
in (5.6) implies that∑

x∈Xy∈Y
|PX̄tȲt

(x, y) − PX̄t
(x)PȲt

(y)|

≤ 2
∑

(x,y)∈PX̄tȲt
(PX̄t

PȲt
)

+PX̄tȲt
(x, y) − PX̄t

(x)PȲt
(y)

≤ 2√
n

(
1 + |X ||Y|

)
. (5.27)

So by (5.25) and (5.27) we have

tr

∣∣∣∣∣∣
∑

x∈Xy∈Y
PX̄tȲt

(x, y)ϕ(x, y) −
∑

x∈Xy∈Y
PX̄t

(x)PȲt
(y)ϕ(x, y)

∣∣∣∣∣∣


≤
∑

x∈Xy∈Y
|PX̄tȲt

(x, y) − PX̄t
(x)PȲt

(y)|

≤ 2√
n

(
1 + |X ||Y|

)
(5.29)

Moreover, by (5.27)∣∣∣∣∣∑
x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

)
−
∑
x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)∣∣∣∣∣
≤

∑
x,y

|PX̄tȲt
(x, y) − PX̄t

(x)PȲt
(y)|S

(
ϕ(x, y)

)
≤ log d

∑
x,y

|PX̄tȲt
(x, y) − PX̄t

(x)PȲt
(y)|

≤ 2√
n

(
1 + |X ||Y|

)
log d. (5.30)
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Now (5.26) and (5.30) imply that

|χ(X̄t, Ȳt;Φ) − χ(X̃t, Ỹt;Φ)|

=

∣∣∣∣∣
[
S

(∑
x,y

PX̄tȲt
(x, y)ϕ(x, y)

)
−
∑
x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

)]

−
[
S

(∑
x,y

PX̄t
(x)PȲt

(y)ϕ(x, y)

)
−
∑
x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)]∣∣∣∣∣
≤

∣∣∣∣∣S
(∑
x,y

PX̄tȲt
(x, y)ϕ(x, y)

)
− S

(∑
x,y

PX̄t
(x)PȲt

(y)ϕ(x, y)

)∣∣∣∣∣
+

∣∣∣∣∣∑
x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

)
−
∑
x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)∣∣∣∣∣
≤ 1√

n

(
1 + |X ||Y|

)
log

√
nd

1 + |X ||Y| +
2√
n

(
1 + |X ||Y|) log d

<
1√
n

(
1 + |X ||Y|

)
log

√
nd3

1 + |X ||Y|

<
1√
n

(
1 + |X ||Y|

)
log

√
nd3. (5.31)

Next let us turn to estimate the difference |χ(X̄t;Φ|Ȳt) − χ(X̃t;Φ|Ỹt)|. To

this end we have to upper bound the difference

∣∣∣∣∣ ∑y∈Y PȲt
(y)S

(
σX̄tȲt,2(y)

)
−

∑
y∈Y

PȲt
(y)S

(
σX̃tỸt,2

(y)
)∣∣∣ for

σX̄tȲt,2(y) =
∑
x∈X

PX̄t|Ȳt
(x|y)ϕ(x, y) and σX̃tỸt,2

(y) =
∑
x∈X

PX̄t
(x)ϕ(x, y).

Since for all y
∑
x
PX̄tȲt

(x, y) =
∑
x
PX̄t

(x)PȲt
(y) = PȲt

(y), if PȲt
(y) = 0,

by (5.6)

PȲt
(y)

∑
x∈X

|PX̄t|Ȳt
(y|x) − PX̄t

(x)| =
∑
x∈X

|PX̄tȲt
(x, y) − PX̄t

(x)PȲt
(y)|

= 2Σ+
(
PX̄tȲt

(x, y) − PX̄t
(x)PȲt

(y)
)

≤ 2√
n

(
PȲt

(y) + |X |
)

≤ 2√
n

(
1 + |X |

)
, (5.32)

where the sum Σ+ is taken over all x ∈ X with PX̄t|Ȳt
(x|y) ≥ PX̄t

(x).
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Thus by (5.26), (5.25), and (5.32), we have that∣∣∣∣∣∑
y∈Y

PȲt
(y)S

(
σX̄t|Ȳt,2(y)

)
−

∑
y∈Y

PȲt
(y)S

(
σX̃tỸt,2(y)

)∣∣∣∣∣
≤

∑
y∈Y

PȲt
(y)

∣∣S(σX̄tȲt,2(y)
)
− S

(
σX̃tỸt,2(y)

)∣∣
≤

∑
y∈Y

PȲt
(y) · 1

2
tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)| log 2d

tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)|

≤ 1

2

∑
y∈Y

PX̄t
(y)tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)| log 2d

PX̄t
(y)tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)|

≤ 1

2

∑
y∈Y

PȲt
(y)

∑
x∈X

|PX̄t|Ȳt
(x|y) − PX̄t

(x)| log 2d

PȲt
(y)

∑
x∈X

|PX̄t|Ȳt
(x|y) − PX̄t

(x)|ϕ(x, y)

≤ 1

2

∑
y∈Y

2√
n

(
1 + |X |

)
log

d
√

n

1 + |X |

=
1√
n

(
1 + |X |

)
|Y| log d

√
n

1 + |X |

≤ 1√
n

(
1 + |X |

)
|Y| log d

√
n (5.33)

where the second inequality holds by (5.26); the fourth inequality follows from
(5.25) and the monotonicity of z log 2d

z in the interval
[
0, 2d

e

]
; and the fifth in-

equality follows from (5.32).
Considering that by (2.11)

χ(X̄t;Φ|Ȳt) =
∑
y∈Y

PȲt
S
(
σX̄tȲt,2(y)

)
−
∑
x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

)
and χ(X̃t;Φ|Ỹt) =

∑
y∈Y

PȲt
S
(
σX̃tỸt,2

(y)
)
−
∑
x,y PX̄t

(x)PȲt
(y)S

(
ϕ(x, y)

)
, we add

up (5.30) and (5.33),

|χ(X̄t;Φ|Ȳt) − χ(X̃t;Φ|Ỹt)|

≤

∣∣∣∣∣∣
∑
y∈Y

PȲt
(y)S

(
σX̄tȲt,2(y)

)
−

∑
y∈Y

PȲt
(y)S

(
σX̃tỸt,2

(y)
)∣∣∣∣∣∣

+

∣∣∣∣∣∑
x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

)
−
∑
x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)∣∣∣∣∣
≤ 1√

n

(
2 + |Y| + 3|X ||Y|

)
log d+

1
2
√
n

(
1 + |X |

)
|Y| logn. (5.34)

Next, we exchange the roles of X̄t and Ȳt in (5.34), in the same way we obtain
that

|χ(Ȳt;Φ|X̄t)−χ(Ỹt;Φ|X̃t)| ≤
1√
n

(
2+|X |+3|X ||Y|

)
log d+

1
2
√
n

(
1+|Y|

)
|X | log n.

(5.35)
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Finally we set

h̃(λ̄) = h

(
1 + λ̄

2

)
+

2 + λ̄

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|X ||Y|

)
+ (3 + 6|X ||Y|) log d

and combine (5.8) with (5.31), (5.22) with (5.34), and (5.23) with (5.35), respec-
tively. Then (2.23) – (2.25) follow. �
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1. R. Ahlswede, Beiträge zur Shannonschen Informationstheorie im Falle nichtsta-
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Identification Via Quantum Channels in the

Presence of Prior Correlation and Feedback

A. Winter

Abstract. Continuing our earlier work (quant-ph/0401060), we give
two alternative proofs of the result that a noiseless qubit channel has
identification capacity 2: the first is direct by a “maximal code with ran-
dom extension” argument, the second is by showing that 1 bit of entan-
glement (which can be generated by transmitting 1 qubit) and negligible
(quantum) communication has identification capacity 2. This generalizes
a random hashing construction of Ahlswede and Dueck: that 1 shared
random bit together with negligible communication has identification
capacity 1.

We then apply these results to prove capacity formulas for various
quantum feedback channels: passive classical feedback for quantum–
classical channels, a feedback model for classical–quantum channels, and
“coherent feedback” for general channels.

1 Introduction

While the theory of identification via noisy channels[4,5] has generated signif-
icant interest within the information theory community (the areas of, for in-
stance, common randomness[3], channel resolvability[16] and watermarking[31]
were either developed in response or were discovered to have close connections
to identification), the analogous theory where one uses a quantum channel has
received comparably little attention: the only works extant at the time of writing
are Löber’s[24] starting of the theory, a strong converse for discrete memoryless
classical-quantum channels by Ahlswede and Winter[6], and a recent paper by
the present author[33].

This situation may have arisen from a perception that such a theory would
not be very different from the classical identification theory, as indeed classi-
cal message transmission via quantum channels, at a fundamental mathematical
level, does not deviate much from its classical counterpart. In [20,28,27,32] cod-
ing theorems and converses are “just like” in Shannon’s classical channel coding
theory with Holevo information playing the role of Shannon’s mutual informa-
tion. (Though we have to acknowledge that it took quite a while before this was
understood, and that there are tantalising differences in detail, e.g. additivity
problems[30].)

In our recent work[33], however, a quite startling discovery was made: it was
shown that — contrary to the impression the earlier papers[24,6] gave — the
identification capacity of a (discrete memoryless, as always in this paper) quan-
tum channel is in general not equal to its transmission capacity. Indeed, the

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 486–504, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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identification capacity of a noiseless qubit was found to be 2. This means that
for quantum channels the rule that identification capacity equals common ran-
domness capacity (see the discussion by Ahlswede[1] and Kleinewächter[22]) fails
dramatically, even for the most ordinary channels!

In the present paper we find some new results for identification via quantum
systems: after a review of the necessary definitions and known results (section 2)
and a collection of statements about what we called “random channels” in our
earlier paper[33], we first give a direct proof that a qubit has identification capac-
ity 2, in section 4. (Our earlier proof[33] uses a reduction to quantum identifica-
tion, which we avoid here.) Then, in section 5, we show the quantum analogue of
Ahlswede and Dueck’s result [5] that 1 bit of shared randomness plus negligible
communication are sufficient to build an identification code of rate 1, namely, 1
bit of entanglement plus negligible (quantum) communication are sufficient to
build an identification code of rate 2. In section 6 we briefly discuss the case of
more general prior correlations between sender and receiver.

In section 7, we turn our attention to feedback channels: we first study
quantum–classical channels with passive classical feedback, and prove a quan-
tum generalization of the capacity formula of Ahlswede and Dueck[5]. Then, in
section 8, we introduce a feedback model for general quantum channels which we
call “coherent feedback”, and prove a capacity formula for these channels as well
which can be understood as a quantum analogue of the feedback identification
capacity of Ahlswede and Dueck[5]. We also comment on a different feedback
model for classical–quantum channels.

2 Review of Definitions and Known Facts

For a broader review of identification (and, for comparison, transmission) via
quantum channels we refer the reader to the introductory sections of our earlier
paper[33], to Löber’s Ph.D. thesis[24], and to the classical identification papers
by Ahlswede and Dueck[4,5]. Here we are content with repeating the bare defi-
nitions:

We are concerned with quantum systems, which are modeled as (finite) Hilbert
spaces H (or rather the operator algebra B(H)). States on these systems we
identify with density operators ρ: positive semidefinite operators with trace 1.

A quantum channel is modeled in this context as a completely positive, trace
preserving linear map T : B(H1) −→ B(H2) between the operator algebras of
Hilbert spaces H1, H2.

Definition 1 (Löber[24], Ahlswede and Winter[6]). An identification code
for the channel T with error probability λ1 of first, and λ2 of second kind is a
set {(ρi, Di) : i = 1, . . . , N} of states ρi on H1 and operators Di on H2 with
0 ≤ Di ≤ 11, such that

∀i Tr
(
T (ρi)Di

)
≥ 1 − λ1, ∀i = j Tr

(
T (ρi)Dj

)
≤ λ2.

For the identity channel idCd of the algebra B(Cd) of a d–dimensional system we
also speak of an identification code on Cd.
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For the special case of memoryless channels T⊗n (where T is implicitly fixed),
we speak of an (n, λ1, λ2)–ID code, and denote the largest size N of such a code
N(n, λ1, λ2).

An identification code as above is called simultaneous if all the Di are coex-
istent: this means that there exists a positive operator valued measure (POVM)
(Ek)Kk=1 and sets Di ⊂ {1, . . . ,K} such that Di =

∑
k∈Di

Ek. The largest size
of a simultaneous (n, λ1, λ2)–ID code is denoted Nsim(n, λ1, λ2).

Most of the current knowledge about these concepts is summarized in the two
following theorems.

Theorem 1 (Löber[24], Ahlswede and Winter[6]). Consider any channel
T , with transmission capacity C(T ) (Holevo[20], Schumacher and Westmoreland
[28]). Then, the simultaneous identification capacity of T ,

Csim−ID(T ) := inf
λ1,λ2>0

lim inf
n→∞

1
n

log logNsim(n, λ1, λ2) ≥ C(T ).

(With log and exp in this paper understood to basis 2.)
For classical–quantum (cq) channels T (see Holevo[19]), even the strong con-

verse for (non–simultaneous) identification holds:

CID(T ) = lim
n→∞

1
n

log logN(n, λ1, λ2) = C(T ),

whenever λ1, λ2 > 0 and λ1 + λ2 < 1. �

That the (non–simultaneous) identification capacity can be larger than the trans-
mission capacity was shown only recently:

Theorem 2 (Winter[33]). The identification capacity of the noiseless qubit
channel, idC2 , is CID(idC2) = 2, and the strong converse holds. �

The main objective of the following three sections is to give two new proofs of
the archievability of 2 in this theorem.

3 Random Channels and Auxiliary Results

The main tool in the following results (as in our earlier paper[33]) are random
channels and in fact random states [25,26,18]:

Definition 2. For positive integers s, t, u with s ≤ tu, the random channel Rt(u)s

is a random variable taking values in quantum channels B(Cs) −→ B(Ct) with
the following distribution:

There is a random isometry V : Cs −→ Ct ⊗ Cu, by which we mean a random
variable taking values in isometries whose distribution is left–/right–invariant
under multiplication by unitaries on Ct ⊗ Cu/on Cs, respectively, such that

Rt(u)s (ρ) = TrCu

(
V ρV ∗

)
.
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Note that the invariance demanded of the distribution of V determines it uniquely
— one way to generate the distribution is to pick an arbitrary fixed isometry
V0 : Cs −→ Ct ⊗ Cu and a random unitary U on Ct ⊗ Cu according to the Haar
measure, and let V = UV0.

Remark 1. Identifying Ctu with Ct ⊗ Cu, we have Rt(u)s = TrCu ◦ Rtu(1)s . Note
that Rt(1)s is a random isometry from Cs into Ct in the sense of our definition,
and that the distribution of Rs(1)s is the Haar measure on the unitary group
of Cs.

Remark 2. The one–dimensional Hilbert space C is a trivial system: it has only
one state, 1, and so the random channel Rt(u)1 is equivalently described by the
image state it assigns to 1, Rt(u)1 (1). For s = 1 we shall thus identify the random
channel Rt(u)1 with the random state Rt(u)1 (1) on Ct. A different way of describing
this state is that there exists a random (Haar distributed) unitary U and a pure
state ψ0 such that Rt(u)1 = TrCu

(
Uψ0U

∗) — note that it has rank bounded by
u. These are the objects we concentrate on in the following.

Lemma 1 (see Bennett et al.[8], [9] Winter[33]). Let ψ be a pure state,
P a projector of rank (at most) r and let U be a random unitary, distributed
according to the Haar measure. Then for ε > 0,

Pr
{

Tr(UψU∗P ) ≥ (1 + ε)
r

d

}
≤ exp

(
−r ε− ln(1 + ε)

ln 2

)
.

For 0 < ε ≤ 1, and rankP = r,

Pr
{

Tr(UψU∗P ) ≥ (1 + ε)
r

d

}
≤ exp

(
−r ε2

6 ln 2

)
,

Pr
{

Tr(UψU∗P ) ≤ (1 − ε)
r

d

}
≤ exp

(
−r ε2

6 ln 2

)
.

�

Lemma 2 (Bennett et al.[8], [9]). For ε > 0, there exists in the set of pure
states on Cd an ε–net M of cardinality |M| ≤

(
5
ε

)2d; i.e., ∀ϕ pure ∃ϕ̂ ∈ M
‖ϕ− ϕ̂‖1 ≤ ε. �

With these lemmas, we can prove an important auxiliary result:

Lemma 3 (see Harrow et al.[18]). For 0 < η ≤ 1 and t ≤ u, consider the
random state Rt(u)1 on Ct. Then,

Pr
{
R
t(u)
1 ∈

[
1 − η

t
11;

1 + η

t
11
]}

≤ 2
(

10t
η

)2t

exp
(
−u η2

24 ln 2

)
.
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Proof. We begin with the observation that Rt(u)1 ∈ [α11;β11] if and only if for all
pure states (rank one projectors) ϕ,

Tr
(
R
t(u)
1 ϕ

)
= Tr

(
R
tu(1)
1 (ϕ ⊗ 11u)

){≥ α,

≤ β.

Due to the triangle inequality, we have to ensure this only for ϕ from an η/2t–net
and with α =

(
1 − η

2

)
/t, β =

(
1 + η

2

)
/t. Then the probability bound claimed

above follows from lemmas 1 and 2, with the union bound. �

4 ID Capacity of a Qubit

Here we give a new, direct proof of theorem 2 — in fact, we prove the following
proposition from which it follows directly.

Proposition 1. For every 0 < λ < 1, there exists on the quantum system B(Cd)
an ID code with

N =

⌈
1
2

exp

((
λ

3000
d

log d

)2
)⌉

messages, with error probability of first kind equal to 0 and error probability of
second kind bounded by λ.

Proof. We shall prove even a bit more: that such a code exists which is of the
form {(ρi, Di) : i = 1, . . . , N} with

Di = suppρi, rank ρi = δ := α
d

log d
, ρi ≤

1 + η

δ
Di. (1)

The constants α ≤ λ/4 and η ≤ 1/3 will be fixed in the course of this proof. Let
a maximal code C of this form be given. We shall show that if N is “not large”,
a random codestate as follows will give a larger code, contradicting maximality.

Let R = R
d(δ)
1 (the random state in dimension d with δ–dimensional ancillary

system, see definition 2), and D := suppR. Then, according to the Schmidt
decomposition and lemma 3,

Pr
{
R ∈

[
1 − η

δ
D;

1 + η

δ
D

]}
= Pr

{
R
δ(d)
1 ∈

[
1 − η

δ
11δ;

1 + η

δ
11δ

]}
≤ 2

(
10δ
η

)2δ

exp
(
−d η2

24 ln 2

)
.

(2)

This is ≤ 1/2 if

d ≥
(

96 ln 2
η2

log
10
η

)
δ log δ,

which we ensure by choosing α ≤ λ
(

96 ln 2
η2 log 10

η

)−1

≤ λ/4.
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In the event that 1−η
δ D ≤ R ≤ 1+η

δ D, we have on the one hand

Tr(ρiD) ≤ Tr
(

1 + η

δ
Di

δ

1 − η
R

)
≤ 2Tr(RDi). (3)

On the other hand, because of Rd(δ)1 = TrCδR
dδ(1)
1 , we can rewrite

Tr(RDi) = Tr
(
R
dδ(1)
1 (Di ⊗ 11δ)

)
,

hence by lemma 1
Pr

{
Tr(RDi) > λ/2

}
≤ exp

(
−δ2

)
. (4)

So, by the union bound, eqs. (3) and (4) yield

Pr
{
C ∪ {(R,D)} has error probability of

second kind larger than λ or violates eq. (1)
}
≤ 1

2
+N exp

(
−δ2

)
.

If this is less than 1, there must exist a pair (R,D) extending our code while
preserving the error probabilities and the properties of eq. (1), which would
contradict maximality. Hence,

N ≥ 1
2

exp
(
δ2
)
,

and we are done, fixing η = 1/3 and α = λ/3000. �

The proof of theorem 2 is now obtained by applying the above proposition
to d = 2n, the Hilbert space dimension of n qubits, and arbitrarily small λ.
That the capacity is not larger than 2 is shown by a simple dimension counting
argument[33], which we don’t repeat here. �

5 ID Capacity of an Ebit

Ahlswede and Dueck[5] have shown that the identification capacity of any sys-
tem, as soon as it allows — even negligible — communication, is at least as
large as its common randomness capacity: the maximum rate at which shared
randomness can be generated. (We may add, that except for pathological exam-
ples expressly constructed for that purpose, in practically all classical systems
for which these two capacities exist, they turn out to be equal[5,2,22,1].)

Their proof relies on a rather general construction, which we restate here, in
a simplified version:

Proposition 2 (Ahlswede and Dueck[5]). There exist, for λ > 0 and N ≥
41/λ, functions fi : {1, . . . ,M} −→ {1, . . . , N} (i = 1, . . . , 2M) such that the
distributions Pi on {1, . . . ,M} × {1, . . . , N} defined by

Pi(µ, ν) =

{
1
M if ν = fi(µ),
0 otherwise.
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and the sets Di = suppPi form an identification code with error probability of
first kind 0 and error probability of second kind λ.

In other words, prior shared randomness in the form of uniformly distributed
µ ∈ {1, . . . ,M} between sender and receiver, and transmission of ν ∈ {1, . . . , N}
allow identification of 2M messages. �

(In the above form it follows from proposition 4 below: a perfect transmission
code is at the same time always an identification code with both error probabil-
ities 0.)

Thus, an alternative way to prove that a channel of capacity C allows identi-
fication at rate ≥ C, is given by the following scheme: use the channel n−O(1)
times to generate Cn − o(n) shared random bits and the remaining O(1) times
to transmit one out of N = 2O(1) messages; then apply the above construction
with M = 2Cn−o(n). More generally, a rate R of common randomness and only
negligible communication give identification codes of rate R.

The quantum analogue of perfect correlation (i.e., shared randomness) being
pure entanglement, substituting quantum state transmission wherever classical
information was conveyed, and in the light of the result that a qubit has identi-
fication capacity 2, the following question appears rather natural (and we have
indeed raised it, in remark 14 of our earlier paper[33]): Does 1 bit of entangle-
ment plus the ability to (even only negligible) communicate result in an ID code
of rate 2, asymptotically?

Proposition 3. For λ > 0, d ≥ 2 and ∆ ≥
(

900
λ2 log 30d

λ

)
log d, there exist quan-

tum channels Ti : B(Cd) −→ B(C∆) (i = 1, . . . , N ′ =
⌈

1
2 exp(d2)

⌉
), such that

the states ρi = (id ⊗ Ti)Φd (with state vector |Φd〉 = 1√
d

∑d
j=1 |j〉|j〉), and the

operators Di = supp ρi form an identification code on B(Cd ⊗ C∆) with error
probability of first kind 0 and error probability of second kind λ.

In other words, sender and receiver, initially sharing the maximally entangled
state Φd, can use transmission of a ∆-dimensional system to build an identifi-
cation code with

⌈
1
2 exp(d2)

⌉
messages.

Proof. Let a maximal code C as described in the proposition be given, such that
additionally

Di = suppρi, rank ρi = d, ρi ≤
1 + λ

d
Di. (5)

Consider the random state R = R
d∆(d)
1 on Cd∆ = Cd ⊗ C∆, and D := suppR.

Now, by Schmidt decomposition and with lemma 1 (compare the proof of propo-
sition 1), for η := λ/3

Pr
{
R ∈

[
1 − η

d
D;

1 + η

d
D

]}
= Pr

{
R
d(∆d)
1 ∈

[
1 − η

d
11d;

1 + d

δ
11d

]}
≤ 2

(
10d
η

)2d

exp
(
−d∆ η2

24 ln 2

)
.

(6)
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The very same estimate gives

Pr
{
TrC∆R ∈

[
1 − η

d
11d;

1 + η

d
11d

]}
= Pr

{
R
d(∆d)
1 ∈

[
1 − η

d
11d;

1 + η

d
11d

]}
≤ 2

(
10d
η

)2d

exp
(
−d∆ η2

24 ln 2

)
.

(7)

By choosing ∆ ≥
(

144 ln 2
η2 log 10

η

)
log d, as we indeed did, the sum of these two

probabilities is at most 1/2.
In the event that 1−η

d D ≤ R ≤ 1+η
d D, we argue similar to the proof of

proposition 1 (compare eq. (3)):

Tr(ρiD) ≤ Tr
(

1 + λ

d
Di

d

1 − η
R

)
≤ 3Tr(RDi). (8)

On the other hand (compare eq. (4)),

Pr
{
Tr(RDi) > λ/3

}
≤ exp

(
−d2

)
, (9)

by lemma 1 and using ∆−1 ≤ λ/6.
In the event that 1−η

d 11 ≤ TrC∆R ≤ 1+η
d 11, there exists an operator X on Cd

with 1
1+η 11 ≤ X ≤ 1

1−η 11, such that

R0 :=
√
R(X ⊗ 11)

√
R (which has the same support D as R)

satisfies TrC∆R0 = 1
d11. By the Jamio�lkowski isomorphism[21] between quantum

channels and states with maximally mixed reduction, this is equivalent to the
existence of a quantum channel T0 such that R0 = (id ⊗ T0)Φd. Observe that
R0 ≤ 1+λ

d D and Tr(R0Di) ≤ 3
2Tr(RDi).

So, putting together the bounds of eqs. (6), (7), (8) and (9), we get, by the
union bound,

Pr
{
C ∪ {(R0, D)} has error probability of

second kind larger than λ or violates eq. (5)
}
≤ 1

2
+N ′ exp

(
−d2

)
.

If this is less than 1, there will exist a state R0 = (id⊗T0)Φd and an operator D
enlarging the code and preserving the error probabilities as well as the properties
in eq. (5), which contradicts maximality.

Hence, N ′ ≥ 1
2 exp

(
d2
)
, and we are done. �

This readily proves, answering the above question affirmatively:

Theorem 3. The identification capacity of a system in which entanglement
(EPR pairs) between sender and receiver is available at rate E, and which allows
(even only negligible) communication, is at least 2E. This is tight for the case
that the available resources are only the entanglement and negligible communi-
cation. �
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Remark 3. Just as the Ahlswede–Dueck construction of proposition 2 can be
understood as an application of random hashing, we are tempted to present our
above construction as a kind of “quantum hashing”: indeed, the (small) quan-
tum system transmitted contains, when held together with the other half of the
prior shared entanglement, just enough of a signature of the functions/quantum
channels used to distinguish them pairwise reliably.

6 General Prior Correlation

Proposition 2 quantifies the identification capacity of shared randomness, and
proposition 3 does the same for shared (pure) entanglement. This of course raises
the question what the identification capacity of other, more general, correlations
is: i.e., we are asking for code constructions and bounds if (negligible) quantum
communication and n copies of a bipartite state ω between sender and receiver
are available.

For the special case that the correlation decomposes cleanly into entanglement
and shared randomness,

ω =
∑
µ

pµΨ
AB
µ ⊗ |µ〉〈µ|A

′
⊗ |µ〉〈µ|B

′
,

with an arbitrary perfect classical correlation (between registers A′ and B′)
distributed according to p and arbitrary pure entangled states Ψµ, we can easily
give the answer (let the sender be in possession of AA′, the receiver of BB′):

CID = H(p) + 2
∑
µ

pµE(ΨABµ ); (10)

here, H(p) is the entropy of the classical perfect correlation p; E(ΨAB) = S(ΨA)
is the entropy of entanglement [7], with the reduced state ΨA = TrBΨAB. The
archievability is seen as follows: by entanglement and randomness concentration
[7] this state yields shared randomness and entanglement at rates R = H(p)
and E =

∑
µ pµE(Ψµ), respectively (without the need of communication —

note that both users learn which entangled state they have by looking at the
primed registers). Proposition 3 yields an identification code of rate 2E, while
proposition 4 below shows how to increase this rate by R.

That the expression is an upper bound is then easy to see, along the lines of
the arguments given in our earlier paper for the capacity of a “hybrid quantum
memory”[23,33].

Proposition 4 (Winter[33]). Let {(ρi, Di) : i = 1, . . . , N} be an identification
code on the quantum system H with error probabilities λ1, λ2 of first and second
kind, respectively, and let HC be a classical system of dimension M (by this we
mean a Hilbert space only allowed to be in a state from a distinguished orthonor-
mal basis {|µ〉}Mµ=1). Then, for every ε > 0, there exists an identification code
{(σf , D̃f ) : f = 1, . . . , N ′} on HC ⊗H with error probabilities λ1, λ2 + ε of first
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and second kind, respectively, and N ′ ≥
(

1
2N

ε
)M . The f actually label functions

(also denoted f) {1, . . . ,M} −→ {1, . . . , N}, such that

σf =
1
M

∑
µ

|µ〉〈µ| ⊗ ρf(k).

In other words, availability of shared randomness (µ on the classical system
HC) with an identification code allows us to construct a larger identification
code. �

The general case seems to be much more complex, and we cannot offer an ap-
proximation to the solution here. So, we restrict ourselves to highlighting two
questions for further investigation:

1. What is the identification capacity of a bipartite state ω, together with neg-
ligible communication? For noisy correlations, this may not be the right
question altogether, as a look at work by Ahlswede and Balakirsky[2] shows:
they have studied this problem for classical binary correlations with sym-
metric noise, and have found that — as in common randomness theory[3] —
one ought to include a limited rate of communication and study the relation
between this additional rate and the obtained identification rate. Hence, we
should ask: what is the identification capacity of ω plus a rate of C bits of
communication? An obvious thing to do in this scenario would be to use
part of this rate to do entanglement distillation of which the communication
cost is known in principle ([12], [13], [14]). This gives entanglement as well
as shared randomness, so one can use the constructions above. It is not clear
of course whether this is asymptotically optimal.

2. In the light of the code enlargement proposition 4, it would be most inter-
esting to know if a stronger version of our proposition 3/theorem 3 holds:
Does entanglement of rate E increase the rate of a given identification code
by 2E?

7 Identification in the Presence of Feedback:
Quantum–Classical Channels

Feedback for quantum channels is a somewhat problematic issue, mainly because
the output of the channel is a quantum state, of which there is in general no
physically consistent way of giving a copy to the sender. In addition, it should
not even be a “copy” for the general case that the channel outputs a mixed
state (which corresponds to the distribution of the output), but a copy of the
exact symbol the receiver obtained; so the feedback should establish correlation
between sender and receiver, and in the quantum case this appears to involve
further choices, e.g. of basis. The approach taken in the small literature on the
issue of feedback in quantum channels (see Fujiwara and Nagaoka[15], Bowen[10],
and Bowen and Nagarajan[11]) has largely been to look at active feedback, where
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the receiver decides what to give back to the sender, based on a partial evaluation
of the received data.

We will begin our study by looking at a subclass of channels which do not
lead into any of these conceptual problems: quantum–classical (qc) channels, i.e.,
destructive measurements, have a completely classical output anyway, so there
is no problem in augmenting every use of the channel by instantaneous passive
feedback.

Let a measurement POVM (My)y∈Y be given; then its qc–channel is the map

T : ρ �−→
∑
y

Tr(ρMy)|y〉〈y|,

with an orthogonal basis (|y〉)y of an appropriate Hilbert space F , say. We will
denote this qc–channel as T : B(H) −→ Y.

For a qc–channel T , a (randomized) feedback strategy F for block n is given
by states ρt:yt−1 on H1 for each t = 1, . . . , n and yt−1 ∈ Yt−1: this is the state
input to the channel in the tth timestep if the feedback from the previous rounds
was yt−1 = y1 . . . yt−1. Clearly, this defines an output distribution Q on Yn by
iteration of the feedback loop:

Q(yn) =
n∏
t=1

Tr
(
ρt:yt−1Myt

)
. (11)

Remark 4. We could imagine a more general protocol for the sender: an initial
state σ0 could be prepared on an ancillary system HA, and the feedback strategy
is a collection Φ of completely positive, trace preserving maps

ϕt : B
(
F⊗(t−1) ⊗HA

)
−→ B

(
HA ⊗H

)
,

where F is the quantum system representing the classical feedback by states
from an orthogonal basis: this map creates the next channel input and a new
state of the ancilla (potentially entangled) from the old ancilla state and the
feedback.

This more general scheme allows for memory and even quantum correlations
between successive uses of the channel, via the system HA. However, the scheme
has, for each “feedback history” yt−1 up to time t, a certain state σt−1:yt−1 on
HA (starting with σ0), and consequently an input state ρt:yt−1 on H:

ρt:yt−1 = TrHA

(
ϕt
(
|yt−1〉〈yt−1| ⊗ σt−1:yt−1

))
,

σt:yt =
1

Tr
(
ρt:yt−1Myt

)TrH
(
ϕt
(
|yt−1〉〈yt−1| ⊗ σt−1:yt−1

))
.

It is easy to check that the corresponding output distribution Q of this feed-
back strategy according to our definition (see eq. (11)) is the same as for the
original, more general feedback scheme. So, we do not need to consider those to
obtain ultimate generality.
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An (n, λ1, λ2)–feedback ID code for the qc–channel T with passive feedback
is now a set {(Fi, Di) : i = 1, . . . , N} of feedback strategies Fi and of operators
0 ≤ Di ≤ 11, such that the output states ωi =

∑
yn Qi(yn)|yn〉〈yn| with the

operators Di form an identification code with error probabilities λ1 and λ2 of
first and second kind, respectively. Note that since the output is classical — i.e.,
the states are diagonal in the basis (|yn〉) —, we may without loss of generality
assume that all Di =

∑
yn Di(yn)|yn〉〈yn|, with certain 0 ≤ Di(yn) ≤ 1.

Finally, letNF (n, λ1, λ2) be the maximalN such that there exists an (n, λ1, λ2)–
feedback ID code with N messages. Note that due to the classical nature of the
channel output codes are automatically simultaneous.

To determine the capacity, we invoke the following result:

Lemma 4 (Ahlswede and Dueck[5], Lemma 4). Consider a qc–channel
T : B(H) → Y and any randomized feedback strategy F for block n. Then, for
ε > 0, there exists a set E ⊂ Yn of probability Q(E) ≥ 1 − ε and cardinality
|E| ≤ exp (nmaxρH(T (ρ)) + α

√
n) , where α = |Y|ε−1/2.

The proof of Ahlswede and Dueck[5] applies directly: a qc–channel with feedback
is isomorphic to a classical feedback channel with an infinite input alphabet (the
set of all states), but with finite output alphabet, which is the relevant fact. �

This is the essential tool to prove the following generalization of Ahlswede’s and
Dueck’s capacity result[5]:

Theorem 4. For a qc–channel T and λ1, λ2 > 0, λ1 + λ2 < 1,

lim
n→∞

1
n

log logNF (n, λ1, λ2) = CFID(T ) = max
ρ

H
(
T (ρ)

)
,

unless the transmission capacity of T is 0, in which case CFID(T ) = 0.
In other words, the capacity of a nontrivial qc–channel with feedback is its

maximum output entropy and the strong converse holds.

Proof. Let’s first get the exceptional case out of the way: C(T ) can only be 0 for
a constant channel (i.e., one mapping every input to the same output). Clearly
such a channel allows not only no transmission but also no identification.

The archievability is explained in the paper of Ahlswede and Dueck[5]: the
sender uses m = n−O(1) instances of the channel with the state ρ each, which
maximizes the output entropy. Due to feedback they then share the outcomes of
m i.i.d. random experiments, which they can concentrate into nH(T (ρ)) − o(n)
uniformly distributed bits. (This is a bit simpler than in the original paper[5]:
they just cut up the space into type classes.) The remaining O(1) uses of the
channel (with an appropriate error correcting code) are then used to implement
the identification code of proposition 2 based on the uniform shared randomness.

The strong converse is only a slight modification of the arguments of Ahlswede
and Dueck[5], due to the fact that we allow probabilistic decoding procedures:
first, for each message i in a given code, lemma 4 gives us a set Ei ⊂ Yn
of cardinality ≤ K = exp

(
nmaxρH(T (ρ)) + 3|Y|ε−1/2√n

)
, with probability
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1 − ε/3 under the feedback strategy Fi, where ε := 1 − λ1 − λ2 > 0. Now let
c := 	 3

ε 
, and define new decoding rules by letting

D̂i(yn) :=

{
1
c �cDi(yn)� for yn ∈ Ei,
0 for yn ∈ Ei.

(I.e., round the density Di(yn) down to the nearest multiple of 1/c within Ei,
and to 0 outside Ei.) It is straightforward to check that in this way we obtain
an

(
n, λ1 + 2

3ε, λ2

)
–feedback ID code.

The argument is concluded by observing that the new decoding densities are
(i) all distinct (otherwise λ1 + 2

3ε+ λ2 ≥ 1), and (ii) all have support

≤ K = exp
(
nmax

ρ
H(T (ρ)) + 3|Y|ε−1/2

√
n

)
.

Hence

N ≤
(
|Y|n
K

)
(c+ 1)K ≤

[
(c+ 1)|Y|n

]2n maxρ H(T (ρ))+O(
√

n)

,

from which the claim follows. �

8 Identification in the Presence of Feedback:
“Coherent Feedback Channels”

Inspired by the work of Harrow[17] we propose the following definition of “coher-
ent feedback” as a substitute for full passive feedback: by Stinespring’s theorem
we can view the channel T as an isometry U : H1 −→ H2 ⊗H3, followed by the
partial trace Tr3 over H3: T (ρ) = Tr3

(
UρU∗

)
. Coherent feedback is now defined

as distributing, on input ρ, the bipartite state Θ(ρ) := UρU∗ among sender and
receiver, who get H3 and H2, respectively.

A coherent feedback strategy Φ for block n consists of a system HA, initially
in state σ0, and quantum channels

ϕt : B
(
HA ⊗H⊗(t−1)

3

)
−→ B

(
HA ⊗H⊗(t−1)

3 ⊗H1

)
,

creating the tth round channel input from the memory in HA and the previous
coherent feedback H⊗(t−1)

3 . The output state on H⊗n2 after n rounds of coherent
feedback channel alternating with the ϕt, is

ω = TrHA⊗H⊗n
3

[(
Θ ◦ ϕn ◦Θ ◦ ϕn−1 ◦ · · · ◦Θ ◦ ϕ1

)
σ0

]
,

where implicitly each Θ is patched up by an identity on all systems different
from H1, and each ϕt is patched up by an identity on H⊗(t−1)

2 .
Now, an (n, λ1, λ2)–coherent feedback ID code for the channel T with coherent

feedback consists of N pairs (Φi, Di) of coherent feedback strategies Φi (with
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output states ωi) and operators 0 ≤ Di ≤ 11 on H⊗n2 , such that the (ωi, Di) form
an (n, λ1, λ2)–ID code on H⊗n2 .

As usual, we introduce the maximum size N of an (n, λ1, λ2)–coherent feed-
back ID code, and denote it N|F 〉(n, λ1, λ2). It is important to understand the
difference to NF (n, λ1, λ2) at this point: for the qc–channel, the latter refers to
codes making use of the classical feedback of the measurement result, but coher-
ent feedback — even for qc–channels — creates entanglement between sender
and receiver, which, as we have seen in section 5, allows for larger identification
codes.

We begin by proving the analogue of lemma 4:

Lemma 5. Consider a quantum channel T : B(H1) → B(H2) and any feedback
strategy Φ on block n with output state ω on H⊗n2 . Then, for ε > 0, there exists
a projector Π on H⊗n2 with probability Tr(ωΠ) ≥ 1 − ε and rank

rankΠ ≤ exp
(
nmax

ρ
S(T (ρ)) + α

√
n

)
,

where α = (dimH2)ε−1/2.

Proof. The feedback strategydetermines the output stateω onH⊗n2 , and we choose
complete von Neumann measurements on each of the n tensor factors: namely, the
measurement M of an eigenbasis (|my〉)y of ω̃, the entropy–maximizing output
state of T (which is unique, as easily follows from the strict concavity of S).

Defining the qc–channel T̃ := M ◦T (i.e., the channel T followed by the mea-
surement M), we are in the situation of lemma 4, with Y = {1, . . . ,dimH2}.
Indeed, we can transform the given quantum feedback strategy into one based
solely on the classical feedback of the measurement results, as explained in re-
mark 4. Note that the additional quantum information available now at the
sender due to the coherent feedback does not impair the validity of the argu-
ment of that remark: the important thing is that the classical feedback of the
measurement results collapses the sender’s state into one depending only on the
message and the feedback.

By lemma 6 stated below, maxρH
(
T̃ (ρ)

)
= S(ω̃), so lemma 4 gives us a set

E of probability Q(E) ≥ 1 − ε and |E| ≤ exp
(
nS(ω̃) + α

√
n
)
. The operator

Π :=
∑
yn∈E

|my1〉〈my1 | ⊗ · · · ⊗ |myn〉〈myn |

then clearly satisfies Tr(ωΠ) = Q(E) ≥ 1 − ε, and rankΠ = |E| is bounded as
in lemma 4. �

Lemma 6. Let T : B(Cd1) −→ B(Cd2) be a quantum channel and let ρ̃ maximize
S(T (ρ)) among all input states ρ. Denote ω̃ = T (ρ̃) (which is easily seen to be
the unique entropy–maximizing output state of T ), and choose a diagonalisation
ω̃ =

∑
j λj |ej〉〈ej |. Then, for the channel T̃ defined by

T̃ (ρ) =
∑
j

|ej〉〈ej |T (ρ) |ej〉〈ej|
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(i.e., T followed by dephasing of the eigenbasis of ω̃),

max
ρ

S
(
T̃ (ρ)

)
= S(ω̃) = max

ρ
S
(
T (ρ)

)
.

Proof. The inequality “≥” is trivial because for input state ρ̃, T and T̃ have the
same output state.

For the opposite inequality, let us first deal with the case that ω̃ is strictly
positive (i.e., 0 is not an eigenvalue). The lemma is trivial if ω̃ = 1

d2
11, so we

assume ω̃ = 1
d2

11 from now on. Observe that N := {T (ρ) : ρ state on Cd1} is
convex, as is the set S := {τ state on Cd2 : S(τ) ≥ S(ω̃)}, and that N ∩S = {ω̃}.
Since we assume that ω̃ is not maximally mixed, S is full–dimensional in the set
of states, so the boundary ∂S = {τ : S(τ) = S(ω̃)} is a one–codimensional
submanifold; from positivity of ω̃ (ensuring the existence of the derivative of S)
it has a (unique) tangent plane H at this point:

H =
{
ξ state on Cd2 : Tr

[
(ξ − ω̃)∇S(ω̃)

]
= 0

}
.

Thus, H is the unique hyperplane separating S from N :

S ⊂ H+ =
{
ξ state on Cd2 : Tr

[
(ξ − ω̃)∇S(ω̃)

]
≥ 0

}
,

N ⊂ H− =
{
ξ state on Cd2 : Tr

[
(ξ − ω̃)∇S(ω̃)

]
≤ 0

}
.

Now consider, for phase anglesα=(α1, . . . , αd2), the unitaryUα =
∑
j e
iαj |ej〉〈ej |,

which clearly stabilizes S and leaves ω̃ invariant. Hence, also H and the two half-
spaces H+ andH− are stabilized:

UαHU∗α = H, UαH
+U∗α = H+, UαH

−U∗α = H−.

In particular, UαNU∗α ⊂ H−, implying the same for the convex hull of all these
sets:

conv

⋃
α

UαNU∗α

 ⊂ H−.

Since this convex hull includes (for τ ∈ N ) the states∑
j

|ej〉〈ej| τ |ej〉〈ej | =
1

(2π)d2

∫
dαUατU∗α,

we conclude that for all ρ, T̃ (ρ) ∈ H−, forcing S
(
T̃ (ρ)

)
≤ S(ω̃).

We are left with the case of a degenerate ω̃: there we consider perturbations
Tε = (1− ε)T + ε 1

d2
11 of the channel, whose output entropy is maximized by the

same input states as T , and the optimal output state is ω̃ε = (1 − ε)ω̃ + ε 1
d2

11.

These are diagonal in any diagonalising basis for ω̃, so T̃ε = (1 − ε)T̃ + ε 1
d2

11.
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Now our previous argument applies, and we get for all ρ,

S
(
T̃ε(ρ)

)
≤ S(ω̃ε) ≤ (1 − ε)S(ω̃) + ε log d2 +H(ε, 1 − ε).

On the other hand, by concavity, S
(
T̃ε(ρ)

)
≥ (1 − ε)S

(
T̃ (ρ)

)
+ ε log d2.

Together, these yield for all ρ,

S
(
T̃ (ρ)

)
≤ S(ω̃) +

1
1 − ε

H(ε, 1 − ε),

and letting ε → 0 concludes the proof. �

We are now in a position to prove

Theorem 5. For a quantum channel T and λ1, λ2 > 0, λ1 + λ2 < 1,

lim
n→∞

1
n

log logN|F 〉(n, λ1, λ2) = C
|F 〉
ID (T ) = 2 max

ρ
S
(
T (ρ)

)
,

unless the transmission capacity of T is 0, in which case C|F 〉ID (T ) = 0.
In other words, the capacity of a nontrivial quantum channel with coherent

feedback is twice its maximum output entropy and the strong converse holds.

Proof. The trivial channel is easiest, and the argument is just as in theorem 4.
Note just one thing: a nontrivial channel with maximal quantum feedback will
always allow entanglement generation (either because of the feedback or because
it is noiseless), so — by teleportation — it will always allow quantum state
transmission.

For archievability, the sender uses m = n−O(log n) instances of the channel
to send one half of a purification Ψρ of the output entropy maximizing state
ρ each. This creates m copies of a pure state which has reduced state T (ρ)
at the receiver. After performing entanglement concentration[7], which yields
nS(T (ρ)) − o(n) EPR pairs, the remaining O(log n) instances of the channel
are used (with an appropriate error correcting code and taking some of the
entanglement for teleportation) to implement the construction of proposition 3,
based on the maximal entanglement.

The converse is proved a bit differently than in theorem 4, where we counted
the discretised decoders: now we have operators, and discretisation in Hilbert
space is governed by slightly different rules. Instead, we do the following: given an
identification code with feedback, form the uniform probabilistic mixture Φ of the
feedback strategies Φi of messages i — formally, Φ = 1

N

∑
i Φi. Its output state ω

clearly is the uniform mixture of the output states ωi corresponding to message
i: ω = 1

N

∑
i ωi. With ε = 1 − λ1 − λ2, lemma 5 gives us a projector Π of rank

K ≤ exp
(
nmaxρ S(T (ρ))+48(dimH2)2ε

√
n
)

such that Tr(ωΠ) ≥ 1− 1
2 (ε/24)2.

Thus, for half of the messages (which we may assume to be i = 1, . . . , �N/2�),
Tr(ωiΠ) ≥ 1 − (ε/24)2.

Observe that the ωi together with the decoding operators Di form an iden-
tification code on B(H⊗n2 ), with error probabilities of first and second kind λ1
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and λ2, respectively. Now restrict all ωi and Di (i ≤ N/2) to the supporting
subspace of Π (which we identify with CK):

ω̃i :=
1

Tr(ωiΠ)
ΠωiΠ, D̃i := ΠDiΠ.

This is now an identification code on B(CK), with error probabilities of first
and second kind bounded by λ1 + 1

3 ε and λ2 + 1
3ε, respectively, as a consequence

of the gentle measurement lemma[32]: namely, 1
2‖ωi − ω̃i‖1 ≤ 1

3ε. So finally,
we can invoke Proposition 11 of our earlier paper[33], which bounds the size
of identification codes (this, by the way, is now the discretisation part of the
argument):

N

2
≤
(

5
1 − λ1 − ε/3 − λ2 − ε/3

)2K2

=
(

15
ε

)2n maxρ 2S(T (ρ))+O(
√

n)

,

and we have the converse. �

Remark 5. For cq–channels T : X −→ B(H) (a map assigning a state T (x) =
ρx to every element x from the finite set X ), we can even study yet another kind
of feedback (let us call it cq–feedback): fix purifications Ψx of the ρx, on H⊗H;
then input of x ∈ X to the channel leads to distribution of Ψx between sender
and receiver. In this way, the receiver still has the channel output state ρx, but
is now entangled with the sender.

By the methods employed above we can easily see that in this model, the
identification capacity is

CFFID (T ) ≥ max
P

{
S

(∑
x

P (x)ρx

)
+
∑
x

P (x)S(ρx)

}
.

Archievability is seen as follows: for a given P use a transmission code of rate
I(P ;T ) = S

(∑
x P (x)ρx

)
−

∑
x P (x)S(ρx) and with letter frequencies P in

the codewords[20,28]. This is used to create shared randomness of the same
rate, and the cq–feedback to obtain pure entangled states which are concen-
trated into EPR pairs[7] at rate

∑
x P (x)E(Ψx) =

∑
x P (x)S(ρx); then we use

eq. (10).
The (strong) converse seems to be provable by combining the approximation

of output statistics result of Ahlswede and Winter[6] with a dimension counting
argument as in our previous paper’s [33] Proposition 11, but we won’t follow on
this question here.

Remark 6. Remarkably, the coherent feedback identification capacity C|F 〉ID (T )
of a channel is at present the only one we actually “know” in the sense that we
have a universally valid formula which can be evaluated (it is single–letter); this
is in marked contrast to what we can say about the plain (non–simultaneous)
identification capacity, whose determination remains the greatest challenge of
the theory.
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16. T. S. Han and S. Verdú, Approximation theory of output statistics, IEEE Trans.

Inf. Theory, Vol. 39, No. 3, 752–772, 1993.
17. A. W. Harrow, Coherent communication of classical messages, Phys. Rev. Lett.,

92, 9, 097902, 2004.
18. A. Harrow, P. Hayden, and D. W. Leung, Superdense coding of quantum states,

e–print, quant-ph/0307221, 2003.



504 A. Winter

19. A.S. Holevo, Problems in the mathematical theory of quantum communication
channels, Rep. Math. Phys., 12, 2, 273–278, 1977.

20. A. S. Holevo, The capacity of the quantum channel with general signal states,
IEEE Trans. Inf. Theory, Vol. 44, No. 1, 269–273, 1998.

21. A. Jamio�lkowski, Linear transformations which preserve trace and positive semi-
definiteness of operators, Rep. Math. Phys., 3, 275–278, 1972.
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24. P. Löber, Quantum channels and simultaneous ID coding, Dissertation, Universität

Bielefeld, Bielefeld, Germany, 1999. Available as e–print quant-ph/9907019.
25. E. Lubkin, Entropy of an n–system from its correlation with a k–reservoir, J. Math.

Phys., 19, 1028–1031, 1978.
26. D. Page, Average entropy of a subsystem, Phys. Rev. Lett., 71, 9, 1291–1294, 1993.
27. T. Ogawa and H. Nagaoka, Strong converse to the quantum channel coding theo-

rem, IEEE Trans. Inf. Theory, Vol. 45, No. 7, 2486–2489, 1999.
28. B. Schumacher and M.D. Westmoreland, Sending classical information via noisy

quantum channels, Phys. Rev. A, 56, 1, 131–138, 1997.
29. C.E. Shannon, A mathematical theory of communication, Bell System Tech. J.,

27, 379–423 and 623–656, 1948.
30. P.W. Shor, Equivalence of additivity questions in quantum information theory,

Comm. Math. Phys. 246, No. 3, 453–472, 2004.
31. Y. Steinberg and N. Merhav, Identification in the presence of side information with

applications to watermarking, IEEE Trans. Inf. Theory, Vol. 47, No. 4, 1410–1422,
2001.

32. A. Winter, Coding theorem and strong converse for quantum channels, IEEE Trans.
Inf. Theory, Vol. 45, No. 7, 2481–2485, 1999.

33. A. Winter, Quantum and classical message identification via quantum channels,
e–print, quant-ph/0401060, 2004.



Additive Number Theory and the Ring

of Quantum Integers�

M.B. Nathanson��

In memoriam Levon Khachatrian

Abstract. Let m and n be positive integers. For the quantum integer
[n]q = 1 + q + q2 + · · · + qn−1 there is a natural polynomial addition
such that [m]q ⊕q [n]q = [m + n]q and a natural polynomial multipli-
cation such that [m]q ⊗q [n]q = [mn]q . These definitions are motivated
by elementary decompositions of intervals of integers in combinatorics
and additive number theory. This leads to the construction of the ring
of quantum integers and the field of quantum rational numbers.

1 The Quantum Arithmetic Problem

For every positive integer n we have the quantum integer

[n]q = 1 + q + q2 + · · · + qn−1.

Then
F = {[n]q}∞n=1

is a sequence of polynomials in the variable q. This sequence arises frequently in
the study of q-series and of quantum groups (cf. Kassel [1, Chapter IV]). Adding
and multiplying polynomials in the usual way, we observe that

[m]q + [n]q = [m+ n]q

and
[m]q · [n]q = [mn]q.

This suggests the problem of introducing new operations of addition and mul-
tiplication of the polynomials in a sequence so that addition and multiplication
of quantum integers behave properly. We can state the problem more precisely
as follows. Define “natural” operations of quantum addition, denoted ⊕q, and
quantum multiplication, denoted ⊗q, on the polynomials in an arbitrary sequence
F = {fn(q)}∞n=1 of polynomials such that fm(q) ⊕q fn(q) and fm(q) ⊗q fn(q)
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are polynomials, not necessarily in F . We want to construct these operations
so that, when applied to the polynomial sequence F = {[n]q}∞n=1 of quantum
integers, we have

[m]q ⊕q [n]q = [m+ n]q (1)

and
[m]q ⊗q [n]q = [mn]q (2)

for all positive integers m and n. We would like these operations to determine
the quantum integers uniquely.

2 Combinatorial Operations on Intervals of Integers

Let A and B be sets of integers, and let m be an integer. We define the sumset

A+B = {a+ b : a ∈ A and b ∈ B},

the translation
m+A = {m+ a : a ∈ A},

and the dilation
m ∗A = {ma : a ∈ A}.

We write A ⊕ B = C if A + B = C and every element of C has a unique
representation as the sum of an element of A and an element of B.

Let [n] = {0, 1, 2, . . . , n − 1} denote the set of the first n − 1 nonnegative
integers. Then

[m+ n] = {0, 1, 2, . . . ,m+ n− 1}
= {0, 1, 2, . . . ,m− 1} ∪ {m,m+ 1,m+ 2, . . . ,m+ n− 1}
= {0, 1, 2, . . . ,m− 1} ∪m+ {0, 1, 2, . . . , n− 1}
= [m] ∪ (m+ [n]) ,

and
[m] ∩ (m+ [n]) = ∅.

Moreover,

[mn] = {0, 1, 2, . . . ,mn− 1}
= {0, 1, 2, . . . ,m− 1} ⊕ {0,m, 2m, . . . ,m(n− 1)}
= {0, 1, 2, . . . ,m− 1} ⊕m ∗ {0, 1, 2, . . . , n− 1}
= [m] ⊕ (m ∗ [n]) .

If m1, . . . ,mr are positive integers, then, by induction, we have the partition

[m1 +m2 + · · · +mr] =
r⋃
j=1

(
j−1∑
i=1

mi + [mj ]

)
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into pairwise disjoint sets, and the direct sum decomposition

[m1m2 · · ·mr] =
r⊕
j=1

(
j−1∏
i=1

mi ∗ [mj ]

)
.

Associated to every set A of integers is the generating function

fA(q) =
∑
a∈A

qa.

This is a formal Laurent series in the variable q. If A and B are finite sets of non-
negative integers and if m is a nonnegative integer, then fA(q) is a polynomial,
and

fm+A = qmfA(q)

and
fm∗A(q) = fA(qm).

If A and B are disjoint, then

fA∪B(q) = fA(q) + fB(q).

If A+B = A⊕B, then

fA⊕B(q) = fA(q)fB(q).

The generating function of the interval [n]q is the quantum integer [n]q. Since
[m] ∩ (m+ [n]) = ∅, we have

[m+ n]q = f[m+n](q)
= f[m]∪(m+[n])(q)
= f[m](q) + fm+[n](q)
= f[m](q) + qmf[n](q)
= [m]q + qm[nq].

Similarly,

[mn]q = f[mn](q)
= f[m]⊕(m∗[n])(q)
= f[m](q)fm∗[n](q)
= f[m](q)f[n](qm)
= [m]q[n]qm .

These identities suggest natural definitions of quantum addition and multi-
plication. If F = {fn(q)}∞n=1 is a sequence of polynomials, we define

fm(q) ⊕q fn(q) = fm(q) + qmfn(q) (3)
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and
fm(q) ⊗q fn(q) = fm(q)fn(qm). (4)

Then
[m]q ⊕q [n]q = [m+ n]q

and
[m]q ⊗q [n]q = [mn]q.

More generally, if F = {fn(q)}∞n=1 is any sequence of functions, not necessarily
polynomials, then we can define quantum addition and multiplication by (3)
and (4). We shall prove that the only nonzero sequence F = {fn(q)}∞n=1 of
functions such that

fm(q) ⊕q fn(q) = fm+n(q)

and
fm(q) ⊗q fn(q) = fmn(q)

is the sequence of quantum integers.

3 Uniqueness of Quantum Arithmetic

Let F = {fn(q)}∞n=1 be a sequence of polynomials in the variable q that satisfies
the addition and multiplication rules for quantum integers, that is, F satisfies
the additive functional equation

fm+n(q) = fm(q) + qmfn(q) (5)

and the multiplicative functional equation

fmn(q) = fm(q)fn(qm) (6)

for all positive integers m and n. Nathanson [2] showed that there is a rich
variety of sequences of polynomials that satisfy the multiplicative functional
equation (6), but there is not yet a classification of all solutions of (6). There
is, however, a very simple description of all solutions of the additive functional
equation (5).

Theorem 1. Let F = {fn(q)}∞n=1 be a sequence of functions that satisfies the
additive functional equation (5). Let h(q) = f1(q). Then

fn(q) = h(q)[n]q for all n ∈ N. (7)

Conversely, for any function h(q) the sequence of functions F = {fn(q)}∞n=1

defined by (7) is a solution of (5). In particular, if h(q) is a polynomial in q,
then h(q)[n]q is a polynomial in q for all positive integers n, and all polynomial
solutions of (5) are of this form.
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Proof. Suppose that F = {fn(q)}∞n=1 is a solution of the additive functional
equation (5). Define h(q) = f1(q). Since [1]q = 1 we have

f1(q) = h(q)[1]q.

Let n ≥ 2 and suppose that fn−1(q) = h(q)[n− 1]q. From (5) we have

fn(q) = f1(q) + qfn−1(q)
= h(q)[1]q + qh(q)[n− 1]q
= h(q)([1]q + q[n− 1]q)
= h(q)[n]q.

It follows by induction that fn(q) = h(q)[n]q for all n ∈ N.
Conversely, multiplying (5) by h(q), we obtain

h(q)[m+ n]q = h(q)[m]q + qmh(q)[n]q,

and so the sequence {h(q)[n]q}∞n=1 is a solution of the additive functional equa-
tion (5) for any function h(q). This completes the proof.

We can now show that the sequence of quantum integers is the only nonzero
simultaneous solution of the additive and multiplicative functional equations (5)
and (6).

Theorem 2. Let F = {fn(q)}∞n=1 be a sequence of functions that satisfies both
functional equations (5) and (6). Then either fn(q) = 0 for all positive integers
n, or fn(q) = [n]q for all n.

Proof. The multiplicative functional equation implies that f1(q) = f1(q)2, and
so f1(q) = 0 or 1. Since F = {fn(q)}∞n=1 also satisfies the additive functional
equation, it follows from Theorem 1 that there exists a function h(q) such that
fn(q) = h(q)[n]q for all positive integers n, and so h(q) = 0 or 1. It follows
that either fn(q) = 0 for all n or fn(q) = [n]q for all n. This completes the
proof.

4 The Ring of Quantum Integers

We can now construct the ring of quantum integers and the field of quantum
rational numbers. We define the function

[x]q =
1 − qx

1 − q

of two variables x and q. This is called the quantum number [x]q . Then

[0]q = 0,

and for every positive integer n we have

[n]q =
1 − qn

1 − q
= 1 + q + · · · + qn−1,
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which is the usual quantum integer. The negative quantum integers are

[−n]q =
1 − q−n

1 − q
= − 1

qn
[n]q = −

(
1
q

+
1
q2

+ · · · + 1
qn

)
.

Then

[x]q ⊕q [y]q = [x]q + qx[y]q

=
1 − qx

1 − q
+ qx

1 − qy

1 − q

=
1 − qx+y

1 − q

= [x+ y]q

and

[x]q ⊗q [y]q = [x]q[y]qx

=
1 − qx

1 − q

1 − qxy

1 − qx

=
1 − qxy

1 − q

= [xy]q.

The identities

[x]q ⊕q [y]q = [x+ y]q and [x]q ⊗q [y]q = [xy]q (8)

immediately imply that the set

[Z]q = {[n]q : n ∈ Z}

is a commutative ring with the operations of quantum addition ⊕q and quantum
multiplication ⊗q. The ring [Z]q is called the ring of quantum integers. The map
n �→ [n]q from Z to [Z]q is a ring isomorphism.

For any rational number m/n, the quantum rational number [m/n]q is

[m/n]q =
1 − qm/n

1 − q
=

1−(q1/n)m

1−q1/n

1−(q1/n)n

1−q1/n

=
[m]q1/n

[n]q1/n

.

Identities (8) imply that addition and multiplication of quantum rational num-
bers are well-defined. We call

[Q]q = {[m/n]q : m/n ∈ Q}

the field of quantum rational numbers.
If we consider [x]q as a function of real variables x and q, then

lim
q→1

[x]q = x

for every real number x.



Additive Number Theory and the Ring of Quantum Integers 511

We can generalize the results in this section as follows:

Theorem 3. Consider the function

[x]q =
1 − qx

1 − q

in the variables x and q. For any ring R, not necessarily commutative, the set

[R]q = {[x]q : x ∈ R}

is a ring with addition defined by

[x]q ⊕q [y]q = [x]q + qx[y]q.

and multiplication by
[x]q ⊗q [y]q = [x]q[y]qx

The map from R to [R]q defined by x �→ [x]q is a ring isomorphism.

Proof. This is true for an arbitrary ring R because the two identities in (8) are
formal.
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IV
The Proper Fiducial Argument

F. Hampel

Abstract. The paper describes the proper interpretation of the fiducial
argument, as given by Fisher in (only) his first papers on the subject.
It argues that far from being a quaint, little, isolated idea, this was the
first attempt to build a bridge between aleatory probabilities (the only
ones used by Neyman) and epistemic probabilities (the only ones used
by Bayesians), by implicitly introducing, as a new type, frequentist epis-
temic probabilities. Some (partly rather unknown) reactions by other
statisticians are discussed, and some rudiments of a new, unifying gener-
al theory of statistics are given which uses upper and lower probabilities
and puts fiducial probability into a larger framework. Then Fisher’s per-
taining 1930 paper is being reread in the light of present understanding,
followed by some short sections on the (legitimate) aposteriori interpre-
tation of confidence intervals, and on fiducial probabilities as limits of
lower probabilities.

Keywords: Fiducial argument, fiducial probability, R.A. Fisher, founda-
tions of statistics, statistical inference, aleatory probabilities, epistemic
probabilities, structure of epistemic probabilities, upper and lower prob-
abilities, frequentist statistics, axiom of frequentist epistemic probability,
Bayesian statistics, intersubjective statistics, bets, odds, fair bets, suc-
cessful bets, confidence interval, aposteriori interpretation of confidence
intervals, Neyman-Pearson statistics, Behrens-Fisher problem.

1 Introduction

At first glance, it may be surprising to find in a book with stress on information
theory and related mathematics an article on a subtle concept in the foundations
of probability theory and statistics. However, this concept of fiducial probabil-
ities, as well as the seemingly unrelated one of upper and lower probabilities
(which however allows to put the former concept into the proper perspective),
may (and I believe eventually will) have profound influence on statistics and
other areas of stochastics, including information theory. Apart from that, I find
it about time for the fiducial argument to be clarified and put into a broader
framework, roughly 3/4 of a century after its invention, and after many hot and
confused discussions about it.

Related is also the fine distinction (made already by Bernoulli [4], but later
suppressed) between probabilities that are actually known to us (“epistemic
probabilities”) and “probabilities” (a misnomer due to false speculations about
the long unpublished Ars conjectandi [4], cf. Shafer [44], or Brönnimann [5])
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that are merely hypothetically assumed (essentially “aleatory probabilities”, cf.
Sec. 3). The fiducial argument is a bridge which sometimes allows to derive the
former from the latter.

While probability theory assumes perfect knowledge of the underlying stochas-
tic model, in applied statistics (but also often in other applications such as infor-
mation theory) we have only partial knowledge. It seems more realistic in many
situations to describe this partial knowledge of the underlying random mechanism
by upper and lower probabilities (which were also already used in [4], cf. Sec. 2).

I arrived at the main topic of this paper via an apparent detour. (Proper) fidu-
cial probabilities arose (somewhat surprisingly) as a special case in a side branch
of my inference theory using upper and lower probabilities [26], and understand-
ing of the general theory may help (and certainly has helped me) to understand
the “mysterious” fiducial theory, and find an appropriate place for it in a larger
framework. On the other hand, my experience both with the literature and with
many oral discussions is that there still exists a lot of confusion, not only about
the fiducial argument, but also about related concepts such as aleatory and epis-
temic probabilities, a frequentist interpretation of epistemic probabilities, and
the difference between Fisher’s and Neyman’s interpretation of confidence inter-
vals. Since all this is also part of my theory, an understanding of these (historical)
concepts is obviously required for a full understanding of my theory. But what is
mysterious to me is that more than 70 years after Fisher’s [12] first (and correct)
paper about the fiducial argument, there is still no clarity about it, and most
descriptions of it (following Fisher’s erroneous later work) are from half true to
plainly wrong and nonsensical. Therefore I thought it perhaps worthwhile to try
to explain the (proper) fiducial argument and its surroundings in more detail.

The fiducial argument was meant to be a new mode of inference, making super-
fluous the appeal to a (usually unknown) apriori distribution to be entered into
Bayes’ theorem. From 1930 to about 1960, it was one of the “hottest” topics of
debate in statistics, with participation of top statisticians across the whole spec-
trum, from J.W. Tukey to A.N. Kolmogorov. As some mathematical contradic-
tions (within the later, false interpretation by Fisher) could be derived, the whole
debate fell into oblivion soon after Fisher’s death (in 1962), and many young sta-
tisticians today have never even heard of a fiducial argument or probability.

To give briefly one of the simplest examples: Let (entirely within a frequentist
framework) a random variable X have the distribution N(θ, 1) (normal with
unknown location θ and known variance 1), where θ may be anywhere on the real
line. Then for every fixed c ∈ R1, and for every (true, unknown, fixed) parameter
θ it is true that P (X ≤ θ + c) = Φ(c) (with Φ being the cumulative standard
normal). Equivalently, P (θ ≥ X − c) = Φ(c). Now assume we have observed (a
realization of the random variable) X = x (e.g., X = 3). Then Fisher, using
the “modus ponens”, plugs in the observed x (this is the controversial “fiducial
argument”) and obtains P (θ ≥ x − c) = Φ(c) (e.g., with c = 1, P (θ ≥ 3 − 1) =
P (θ ≥ 2) = Φ(1) (this is interpreted as a “fiducial probability” for θ, namely the
probability that θ ≥ 2; letting c move from −∞ to +∞, one obtains the whole
“fiducial probability distribution” of θ).
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Now what is random? θ? But θ was a fixed unknown constant. Moreover, P is
actually Pθ (this θ is often suppressed). Are there two different θ’s in the same
formula?

In 1930 [12] and 1933 [13], Fisher gave correct (though cumbersome, brief and
incomplete, hence apparently misunderstood) interpretations of this “tempting”
result. But starting in 1935 [14], he really believed he had changed the status
of θ from that of a fixed unknown constant to that of a random variable on the
parameter space with known distribution (cf. [16]). Apparently he needed this
unfounded and false assumption in order to “solve” the Behrens-Fisher problem
(the test for equality of means of two independent normal samples with unknown
and possibly different variances, as opposed to the two-sample t-test). The “so-
lution” was shown to be mathematically wrong; but Fisher was intuitively fully
convinced of the importance of “fiducial inference”, which he considered the jewel
in the crown of the “ideas and nomenclature” for which he was responsible ([51],
p. 370); and he vigorously defended his false interpretation up to his last sta-
tistics book [16]. Later on, most statisticians, unable to separate the good from
the bad in Fisher’s arguments, considered the whole fiducial argument Fisher’s
biggest blunder, or his one great failure (cf., e.g., [51], [10]), and the whole area
fell into disrepute.

By contrast, I consider the (properly interpreted) fiducial argument the first
(though highly incomplete) attempt to bridge the gap between a wholly aleatory
Neyman-Pearson theory and a wholly epistemic Bayesian theory, either of which
comprising only one-half of what statistics should be [27]; and Fisher does so
by introducing (implicitly) frequentist(!) intersubjective epistemic probabilities
(for a brief explanation of concepts, see Sec. 3). These concepts have strong
implications for the everyday practical use of statistics, such as the aposteriori
interpretation of confidence intervals (see Sec. 5). I thus agree with Fisher, not
in his formal later interpretation of the fiducial argument (which is wrong),
but about the importance of the basic idea (and the correctness of his first
interpretation, which he later denied).

I can only speculate about the reasons why the fiducial argument was not
clarified earlier. Some reasons might be:

1. Lack of distinction between aleatory and epistemic probabilities (cf. Sec. 3).
I believe Fisher felt the distinction intuitively, but he never clearly formulat-
ed it. For the Neyman-Pearson school, there exist only aleatory probabilities
(very strictly so!), and for (strict) Bayesians there exist only epistemic prob-
abilities (perhaps apart from a few simple cases where Hacking’s principle
– “If an aleatory probability is known to be p, this p should be used as
epistemic probability” – might be applicable), hence the two schools basi-
cally cannot even talk to each other (cf. also [27]).

2. Almost nobody seems to have checked on which probability space the (prop-
er) fiducial probabilities can be defined! (Cf. the example above.) While the
axiomatic foundation of probability spaces was done only a few years after
Fisher’s first fiducial paper [32], I find it surprising that apparently none of



The Proper Fiducial Argument 515

the later mathematical statisticians (with only one exception [41] known to
me) has asked this basic question.

3. There seems to be an implicit conviction that there can be no frequentist
epistemic probabilities (apart, perhaps, again from simple uses of Hacking’s
principle). This leaves only “logical” and subjectivist Bayesian results for
scientists who really want to learn from data (and not just obey behavioristic
rules), both of which are unsatisfactory in principle for them.

4. Within frequentist statistics, it seems often impossible for the thinking of
statisticians to get away from the deeply entrenched paradigm of independent
repetitions of the SAME experiment, although apart from a few applications,
such as quality control and simulation studies, they hardly ever exist in
science. Most scientists do DIFFERENT independent experiments each time,
and frequentist properties of statistical methods can and should be evaluated
with regard to such sequences of experiments. (If this should be considered
an enlargement of the formal definition of “frequentist”, then I find it long
overdue. This point certainly was clear already to Fisher, for example, and
other early writers.)

5. It is very tempting to believe that something which formally looks like a
probability distribution is actually a probability distribution, without re-
gard to the restrictions and interpretations under which it was derived. I
am talking, of course, about the general misinterpretation of the “fiducial
probability distribution”.

6. Perhaps a major reason is Fisher’s highly intuitive and condensed style of
writing, which requires “reading from within” (trying to “feel” what he
meant and thought) rather than “reading from the outside” (superficially
taking words literally). - In addition, probably few statisticians went “back
to the roots”, to Fisher’s first papers on the topic; it is the custom in our
scientific enterprise to try to be always at the forefront of research; and the
forefront in this case was leading astray because of Fisher’s later blunder.
(Still, the fact that some kind of blunder became known to exist, might have
motivated a few more statisticians to study the origins more carefully.)

This paper contains some reflections on various reactions to the fiducial argu-
ment by other writers (Sec. 2), and mainly (throughout the paper, and specif-
ically in Sec. 4) a description of what I consider the proper fiducial argument,
based on a new reading and interpretation of Fisher’s first pertaining papers
([12], [13]) in relation to my more general approach [26]. It seems necessary to
explain a few rudiments of my approach before Section 4 (Sec. 3). Some remarks
on the dispute between Fisher and Neyman about the proper interpretation of
confidence intervals are also added (Sec. 5), as well as a short section on fiducial
probabilities as limiting and special cases of lower probabilities (Sec. 6).

Thepaper discusses only one-dimensional problems.The emphasis is on frequen-
tist properties, as opposed to full conditionality and coherence; elsewhere I have
shown that (symmetrical) optimal compromises between the two desiderata can
be defined (including Bayes solutions closest to a frequentist interpretation, and
vice versa), and that they can be numerically very close to each other ([23], [26]).
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2 Some Reactions to the Fiducial Argument

The history of Fisher’s work on fiducial probabilities is excellently described by
Zabell [51]. Briefly, Fisher discovered and solved the argument 1930 [12] for the
correlation parameter, and 1933 [13] he solved it for the variance in normal sam-
ples (with a critical discussion of Jeffreys’ approach to this problem). In 1935 [14],
Fisher “solved” the Behrens-Fisher problem by assuming that the “fiducial distri-
bution” is an ordinary probability distribution of a random parameter, and from
then on he had to defend himself not only against lack of understanding, but also
against justified criticisms. He tried - in vain - to escape these criticisms by some
spurious conditioning arguments, but he was unable to retract gracefully from an
untenable position (after previously having criticized Bayesians for the same rea-
son). He even accepted the Bayesian derivation (with an improper prior) for the
Behrens-Fisher test given by Jeffreys, after having criticized Jeffreys and stress-
ing the differences of their approaches in 1933 [13]. His last major authoritative
(though partly false) claims are in 1955 [15] and in his book 1956 [16]. (It should
be clear that by the proper fiducial argument I mean Fisher’s argument of 1930
and 1933, and not anything building upon his later erroneous work.)

It may be noted that already quite early, Fisher spoke occasionally and briefly
of “fiducial inequalities” (in situations with discrete variables), thus faintly fore-
shadowing the use of upper and lower probabilities in these cases. In his 1956
book [16] and earlier, he contrasted fiducial probabilities and likelihoods as the
main inference tools for continuous and discrete data, resp.; it seems to me that
likelihoods might here better be replaced by upper and lower probabilities (while
maintaining a central auxiliary role in both situations, of course).

By restricting himself to proper probabilities, Fisher obtained a rather limited
theory. This reminds me of Bayes [2] who in his scholium implicitly made the
same restriction. Neither seems to have thought - or known - about upper and
lower probabilities, although they had been introduced implicitly much earlier
by James (Jacob) Bernoulli [4] in the short and fragmentary Part IV of his Ars
conjectandi (cf. also Lambert [36], Shafer [44], and Brönnimann [5]).

Upper and lower probabilities in statistics were rediscovered by Koopman
[34], Kyburg [35], C. A. B. Smith [45] and I. J. Good [18], cf. also Fine [11].
Special mathematical structures were thoroughly investigated by Choquet [6]
and partly rediscovered (in the unpublished first version of [46]) by Strassen
[46], for solving a problem in information theory; cf. also [30] and [31]. Huber
([28], [29]) discusses their use in statistics. Both Bayes and Fisher could have
avoided the main limitations of their approaches by explicitly allowing upper
and lower probabilities.

A number of statisticians, starting with Bartlett, tried to check the Behrens-
Fisher test or to find conditions under which Fisher’s new methods could be
justified by other, objective arguments (cf., e.g., [1], [48], [49]). A number of
other statisticians were more indirectly inspired by Fisher’s work, trying to find
something new in a similar direction. They include Fraser [17] trying to exploit
group structures if they happen to be available, and especially Dempster ([8],
[9]), whose work on different kinds of upper and lower probabilities led to the
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theory of belief functions by Shafer [43], Smets and others. Probably many if
not most of the first, older generation of statisticians working on upper and
lower probabilities (a new research area in statistics) have at one time or other
thought hard about fiducial probabilities and were motivated by them for their
own work.

Kolmogorov [33] discusses fiducial probabilities in a summarizing report on
contemporary British statistics. In Footnote 12, he suggests the introduction of
a new axiom: if all conditional probabilities of an event, given the parameters,
exist and are equal, then the unconditional probability exists and equals this
value. At first, I was puzzled by this remark. Later, I thought that maybe this
can be interpreted to be the axiomatic introduction of a new kind of probabil-
ity (an epistemic one, to use present wording) which does not depend on any
(unknown) parameters. (We may call it the axiom of frequentist epistemic prob-
ability.) Viewed this way, it may make deep sense, although it is still highly
incomplete (for example, the underlying probability space and the epistemic in-
terpretation are not discussed). - Incidentally, Kolmogorov [33] quite naturally
discusses sequences of different experiments (as opposed to repetitions of the
same experiment); and he partly argues in favor of unconditional statements in
applications, for practical reasons.

One of the greatest mysteries for me around the fiducial argument is why the
extremely important 1957 paper by Pitman [41] seems to have gone virtually
unnoticed in the discussion of the fiducial argument. (I owe the reference to
Robert Staudte.) Pitman gives a lucid and deep mathematical description of the
fiducial argument, what is right and what is wrong about it, and mathematical
conditions under which it can be applied. He is not afraid of calling a mistake
a mistake, such as Fisher’s [16] claim that the parameter has now the status of
a random variable (simple acknowledgment of this fact would have made most
past discussions of “fiducial probabilities” superfluous). In the same sentence
(p. 325) he asserts that nevertheless “... we are able to make statements about
the unknown parameter with a calculable probability of being right” (this is
precisely my viewpoint). Pitman also discusses the fiducial distribution of several
parameters, while making it clear that Fisher’s integrations for the “Behrens-
Fisher solution” were simply not permissible. He does not go further into the
conceptual interpretation, but any truly informed mathematical paper about the
fiducial argument has to incorporate what he has to say. Nevertheless Pitman’s
paper is not cited in Cox and Hinkley [7], Walley [50], Zabell [51], Efron [10],
to name a few prominent works discussing fiducial inference; and this, although
Pitman is not entirely unknown in mathematical statistics, the journal in which
the paper appeared is not totally obscure, and the paper was an invited review
article on Fisher’s most important book on foundations, and was written in
Stanford, a place not totally provincial in statistics.

Cox and Hinkley [7] just give the usual “on the one hand ... on the other
hand ...” type of discussion of the fiducial argument; and in exercise 7 of Ch. 7,
p. 248 (accessible through the index), they try to discredit fiducial probabilities
(without using the word here) by using an operation (curtailing the distribution)
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which was (correctly) explicitly forbidden in Fisher’s early works (though not in
his later, incorrect works).

Most statisticians, after making up their mind that the whole fiducial argu-
ment was just a big blunder, tried to forget it. C.R. Rao [42] may have been
one of the last famous statisticians to include it in an ordinary applied statistics
textbook, though with reservations. But although the argument in its later form
had been proven wrong, some statisticians, such as J.W. Tukey, still thought
“there may be something to it”. I learned this attitude from him in the seven-
ties, and in our last telephone conversation in July 2000, a few days before his
death, he confirmed to me that this still was his opinion.

In his 1996 Fisher Lecture, Efron [10] gave (among other things) a reason-
able sounding discussion of the desirability of something like fiducial inference
in future statistics. But then (end of Section 8), out of the blue he suddenly
speculates: “Maybe Fisher’s biggest blunder will become a big hit in the 21st
century!” I agree of course about the hit (though, slowly as statistics progresses,
it may well be the 22nd century), but just by rereading his paper I can’t find
any reason or justification for his optimism (unless there is a - direct or indirect
- connection with my talk on foundations at Stanford in the Berkeley-Stanford
Colloquium in March 1994). In any case, it is gratifying to see (also in the dis-
cussion of the paper) that some statisticians might be willing to take a fresh
look at the fiducial argument, recognizing its basic importance for statistics.

3 Some Rudiments of a New General Theory of Statistics

Before rereading Fisher’s 1930 paper, it seems necessary to explain some of the
concepts which are hidden in and behind Fisher’s early work, and which should
make this work more comprehensible.

The broadest view of my emerging theory is given in [20], some more so-
lutions in [21], the probably most readable introduction in [24], and the most
recent highly condensed survey in [26]. I first noticed the connection with fiducial
probabilities in an abstract [19], and later in a chapter in [20].

Let me now try to explain my view of statistics.
I became more and more convinced that we have to distinguish between aleato-

ry and epistemic probabilities. Aleatory probabilities (as in dice throwing) are
supposed to be probabilities occurring objectively in Nature (in “random ex-
periments”). (Of course, I am aware that the whole concept of an objectively
existing Nature - as well as that of probabilities - can be criticized philosophi-
cally, but without it we could have no science, and we have been quite successful
with it. Here I am trying to keep the discussion on a reasonably pragmatic level.)
Usually, aleatory probabilities are unknown to us (except in simulation studies,
or under Laplacian assumptions of symmetry), but we are trying to learn some-
thing about them. Aleatory probabilities are frequentist, that is, they obey the
law of large numbers. This (besides the usual axioms) gives them an (approx-
imate, but arbitrarily accurate) operational interpretation: In a long sequence
of (usually different!) independent experiments, all with probability of “success”
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(different “successes”!) equal p, the observed fraction of “successes” will be close
to p (with the usual precise mathematical formulation).

But many statisticians, and users of statistics, also want to learn something,
and want to know some probabilities (and not only approximately, if it can be
done). Probabilities which refer to our (personal or intersubjective, assumed or
true!) state of knowledge are called epistemic. It would be nice if we could derive
known epistemic probabilities from the unknown aleatory probabilities.

But the Neyman-Pearson theory considers only aleatory probabilities. Ney-
man ([38], [39]) explicitly excluded inductive inference, hence all learning process-
es and the epistemic probabilities which they could lead to. This is very satis-
factory for pure mathematicians, because it keeps the basis of the theory mathe-
matically and conceptually simple, and it may be tolerable for decision theorists;
but it is frustrating for many applied statisticians and users of statistics who ac-
tually want to learn something from their data (also in a broader context), and
not just “behave inductively” without any thinking being allowed.

On the other hand, all Bayesian theories (and we have to distinguish at least
between Bayes - if we want to call him a Bayesian -, Laplace, Jeffreys, and
the Neo-Bayesians, who may be further split up) use, at least in principle, on-
ly epistemic probabilities (except perhaps for the conditional distributions of
the observations, given the parameters, which may be considered aleatory, but
which are quickly transformed away). They start with epistemic prior distrib-
utions for the parameters, and they end with epistemic posterior distributions
or some predictions or decisions derived from them. Bayesian probabilities may
be subjective (as with the Neo-Bayesians) or “logical”, “canonical” or “objec-
tive” (a very dubious term), as with the other Bayesian schools mentioned; these
logical probabilities are intersubjective, that means, they are the same for scien-
tists with the same data (and model) and the same background knowledge. But
none of them has a frequentist interpretation (unless the prior chosen happens
to be a true aleatory prior). The concept of a true, unknown aleatory probabil-
ity distribution which governs the success of Bayesian claims and bets, is alien
to (strict) Neo-Bayesian theory, and the self-assuring success of Bayesian “fair
bets” results from them being evaluated by their own subjective priors. We shall
see that Fisher, in effect, tried to introduce frequentist intersubjective epistemic
probabilities (without using these qualifying terms).

It seems natural to describe epistemic probabilities by bets or odds (or odd
ratios), as has been commonly done already centuries ago. Bayesian (pairs of) fair
bets (“If I am willing to bet p : q on A, I am also willing to bet q : p on Ac”) are
two-sided bets and correspond 1:1 to ordinary probabilities (“P (A) + P (Ac) =
1”). But if we are not in a decision situation, but in an inference situation, we
may also consider one-sided bets, expressing partial lack of knowledge about the
true probability (up to total ignorance); in order to avoid “sure loss” with bets
both on A and on Ac, we must have P (A)+P (Ac) ≤ 1 and are thus led to (some
form of) upper and lower probabilities. (The Bayesian claims for equality to 1
are circular and just not true, except for enforced decisions.)
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If the expected gain of my one-sided bet, evaluated under the true (unknown)
aleatory (not epistemic!) probability of A is nonnegative, I call my bet “suc-
cessful”. Obviously, I cannot bet successfully on A (except 0 : 1) without any
knowledge about its probability; but the amazing fact is that in general I can
find nontrivial successful bets if I have independent past observations from the
same parametric model.

The bets cannot, of course, in general be conditionally successful given any fixed
past observation, and at the same time informative, because usually there may be
totally misleading past observations; but they can be successful when averaged al-
so over the distribution of the past observations. Their success can be operational-
ly checked and empirically validated by considering long sequences of independent
successful bets (from different experiments!); with bounded and sufficiently vari-
able gains the average gain will most likely be > −ε for n large enough.

My theory is mainly for prediction, because I find prediction in general more
important in practice than parameter estimation (cf. [22]), and it can be checked
empirically. But the theory can also be done for random (!) parameter sets; and
then, in some cases, it just gives the (proper) fiducial probabilities (as frequentist
epistemic proper probabilities).

4 Rereading Fisher’s 1930 Fiducial Paper

(It may be useful for the reader to get a copy of this paper, e.g. from [3].)
In the beginning of the paper, Fisher [12] attacks Bayes (incorrectly, but

mildly) and the then Bayesians (to discuss this part would mean another section
- there appear to be some parallels between the history of Bayes’ argument and
of the fiducial argument); and then he discusses likelihood (describing it, like
the fiducial argument, more as an empirical discovery rather than an invention).
Starting at the bottom of p. 532 (p. 433 in [3]), he discusses the fiducial argument
with the example of the correlation coefficient, even giving a table for n = 4 which
for every ρ gives the upper 95% value (now “confidence limit”) for r. And this
relationship “implies the perfectly objective fact that in 5% of samples r will
exceed the 95% value corresponding to the actual value of ρ in the population
from which it is drawn.” (And he goes on to define ρr, the “fiducial 5% value of ρ”
corresponding to a given observed r.) Thus the actual value of ρ (an unknown
constant) may be anything (or have any prior distribution, for that matter):
among all unselected(!) pairs (ρ, r) (typically from different experiments!), in
5% of all cases ρ will be smaller than ρr. The random event “ρ < ρr” (where
the randomness is in ρr!) has an epistemic (known to us), frequentist probability
of 5%. We can bet on its truth successfully 1 : 19, and we can even bet on
its complement successfully 19 : 1; that means, we have not only a lower, but a
proper probability for this event and a Bayesian (pair of) fair bet(s). The bets can
be validated by taking any sequence of (different) independent experiments with
arbitrary values of ρ, the (unselected!) observed values of r and the corresponding
values of ρr; in exactly 5% of all cases (in the long run), ρ will be found to be
less than ρr.
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“If a value r = .99 were obtained from the sample, we should have a fiducial
5% ρ equal to about .765. The value of ρ can then only be less than .765 in the
event that r has exceeded its 95% point, an event which is known to occur just
once in 20 trials. In this sense ρ has a probability of just 1 in 20 of being less than
.765.” Here (if “in this sense” is interpreted correctly) Fisher is still correct, but
dangerously close to his later mistake of considering the “fiducial distribution”
(which he defines next) as an ordinary probability distribution. The event “ρ <
.765” can correctly be included in a sequence of events of the form “ρ < ρr”, all
having epistemic probability 1/20; but the other members of any such sequence
(“almost surely”) don’t have ρr = .765 (with some dubiously “random” ρ’s
floating around), but rather any sequence of fixed, predetermined, arbitrary,
haphazardly taken, even aleatorily random values of ρ, random values of r whose
distributions depend on them, and the corresponding values of ρr determined
by r. (By contrast, when we wanted to define a “probability distribution for ρ”,
.765 would have to be a fixed value in repetitions of the same experiment - there
is nothing of that here.)

I think one of the reasons why we still have problems with fiducial probabili-
ties, is that we lack an adequate formalism for frequentist epistemic probabilities.
For a start, let me offer the following. Given an ordinary, aleatory parametric
model, consider a class of random “claims” or “statements” {S} depending on a
random variable X on that model. In the simplest case, this is a single random
statement (e.g., “θ ≥ X − 1”), or a complementary pair of such statements. We
can call a random claim “assessable” if it has the same (aleatory) probability
under all parameter values; this probability value is taken to define the epistemic
(since it is known to us) probability P of the random claim (cf. also [33]). We
then define, for each θ, a mapping V = Vθ (depending on θ) from the space of
possible realizations of the random claims to the two-point space Ω = ΩS =
{true, false} with V (S) = “true” if S is true. Obviously, the probability of a
randomly (via X) selected claim to be true is P , independently of θ (but the
set of all claims which are true is different for each θ). Hence we obtain a fixed
probability distribution on Ω (belonging to our random claim), independently
of θ.

If we have several random claims on the same probability space, we can build
the Cartesian product of the ΩS ’s, and no matter what happens with the joint
distributions, the marginal distributions of the singleΩS ’s are still correct. Some-
times we may derive new assessable claims. In particular, if we have a sequence
of independent claims (based on independent aleatory experiments), with the
same probability of being true, we can apply the law of large numbers, and
hence we can bet successfully (and even fairly) P : (1 − P ) on the truth of any
one claim (whose realization is randomly selected by some XS) and will come
out even in the long run. (The problem of selection among different possible
random claims or successful bets is still not quite solved in the general theory
(cf. [26]): one idea has a deeper interpretation, and the other is mathematically
more elegant.)
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The “fiducial distribution of a parameter θ for a given statistic T ” may be
considered as a collection, or shorthand notation, for all (mutually compatible)
successful claims or bets about θ derivable from T . (Note that Fisher writes: “for
a given statistic T ”! T will be different next time.) At most it might perhaps
be called a “random distribution”, depending on T . From it can be derived
epistemic probabilities and successful bets on events of the form “a < θ < b”
(etc., by simple linear operations), but not, e.g., of the form “θ2 < a” or “|θ| < b”
(cf. [41]).

Replacing equal probabilities by an infimum of probabilities in the introduc-
tion of epistemic probabilities, most of the argument (except the fair bet aspect)
can be done also with lower probabilities. There are some connections with belief
function theory [43], but the interpretation is different.

It seems that Zabell ([51], e.g. p. 374), and probably many other readers,
were confused by Fisher’s wild switching between aleatory and epistemic prob-
abilities. But at least in his first papers, Fisher was, by intuition, always right;
and the point (Fisher’s, subconsciously, and mine) is that we need both types of
probability integrated in order to get a complete theory of statistics. One type
is derived from the other in a perfectly objective way.

Returning to [12]: In his paper, Fisher finally compares fiducial and Bayes
solutions. Curiously, he first argues by logic and not by insight that the two
pertaining distributions “must differ not only numerically, but in their logical
meaning” because the results will in general differ even though the Bayesian
prior may be aleatorily true. But then he goes into details by considering a prior
for which the posterior probability of ρ < .765, given r = .99, is not 5%, but
10%. He correctly argues that (with the Bayesian sampling) in 10% of all cases
where r happens to be exactly = .99, ρ will be less than .765. “Whereas apart
from any sampling for ρ [!], we know that if we take a number of samples of
4, from the same or from different populations [!], and for each calculate the
fiducial 5% value for ρ, then in 5% of all cases the true value of ρ will be less
than the value we have found. There is thus no contradiction between the two
statements. The fiducial probability is more general and, I think, more useful in
practice ...” [exclamation marks added]. The sequences of events considered by
both arguments in a sequence of experiments are clearly very different.

Here Fisher claims that if an (aleatory, true) Bayesian prior happens to be
known, both methods give valid though different answers (for different ques-
tions). Later (e.g., in [16]), he strongly insists that the fiducial argument must
only be used if nothing is known about the parameter. There is something to
both attitudes. Clearly, the fiducial argument is correct and leads to successful
bets even if a Bayesian prior is known. (By the way, this is also true if an inef-
ficient statistic is used for the fiducial argument, a point against which Fisher
later argues in his Author’s Note in [3], p. 428.) The problem is the efficien-
cy, or the information, or the selection problem for successful bets alluded to
above. According to present results, if an aleatory Bayesian method is available,
it should be used - apart from questions of robustness or stability, the one big
area Fisher refused to look at.
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5 The Aposteriori Interpretation of Confidence Intervals

As all adherents of the Neyman-Pearson school know, a 95% confidence interval
has a probability of 95% of covering the true unknown parameter apriori, before
the data are in. After the data are in, the probability is 0 or 1, but we don’t
know which one. That is all the theory says. But as probably most of those of
us know who tried to teach Neyman-Pearson statistics to critical, intelligent,
unspoilt users of statistics, these scientists have a strong intuition that even
“after the fact” there is, or should be, something with 95% probability; and
they are very frustrated when they are told their intuition is entirely wrong.
Some may become overly critical of statistics as a whole, while some others
will humbly believe the “experts”, like the werewolf in Christian Morgenstern’s
German poem [37] (cf. also Hampel [24]).

Now the explanation of the conflict is simple. Both sides are right, in a way.
Since Neyman considers only aleatory probabilities, for him 0 or 1 are the only
possibilities. But the scientist using statistics can bet 19 : 1 that the unknown
fixed parameter is in the fixed (but randomly derived) confidence interval, and
in a long sequence of such bets with different independent experiments (and
different confidence intervals with the same level), she will be right in 95% of all
cases (or at least 95%, if she uses conservative confidence intervals), so her bets
are successful. This means, she correctly has a frequentist epistemic probability
(or lower probability, for the conservative intervals) of 95% for the event or claim
that the parameter is covered, in full accordance with her intuition.

By the way, she would be rather stupid - though not wrong - offering the same
bet again and again in the case of many independent replications of the SAME
experiment, because after a while she could have learned much more about the
parameter - unless the information that it was the same experiment was withheld
from her, or some such artificial device.

It should be noted that the aposteriori interpretation of confidence intervals
(and thus the implicit fiducial argument and a subconscious switch between aleato-
ry and epistemic probability) was probably centuries old (cf. the related Endnote
8 in [51]); certainly around 1900 interpretations like “the odds are 1 : 1 that the
true mean is within ±1 probable error” were commonplace (cf., e.g., “Student’s”
writings [47], [40]; cf. also the remarks on Maskell in [51], p. 371). It is Neyman’s
merit that he clarified the purely aleatory argument; but by restricting himself to
it, he cut himself off from one half of what statistics ought to be.

Incidentally, the above explanation can perhaps throw new light on the dis-
pute between Neyman and Fisher around and about the invention of confidence
intervals. At first, Fisher seemed to believe that Neyman’s intervals are essen-
tially the same as his fiducial intervals (apart from the point of uniqueness and
efficiency related to sufficiency etc.). But a short time later, he “mysterious-
ly” seemed to change his mind and claimed that the two methods were very
different, after all, without giving reasons. My guess and interpretation is that
Fisher, more or less consciously, always included the epistemic interpretation
with his intervals and in the beginning naively thought that Neyman did the
same (given the formal similarity of what they wrote, and the lack of formalism
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for the epistemic aspect), until he suddenly (or perhaps creepingly) discovered
that Neyman’s view was in fact much more primitive.

6 From Lower Probabilities to Fiducial Probabilities

As said before, with discrete models we have to use lower probabilities to describe
successful bets. Moreover, even if ideally we have a model with a fiducial proper
probability, in reality (e.g., with a digital computer) the data are always discre-
tised. But when the discretisation gets finer and finer, the lower probabilities of
an event and its complement converge to proper probabilities adding to one.

A simple example is the following [20]. Let X be uniformly distributed on
[θ, θ+ 1] (θ real), and let (for every n) Yn be X rounded upwards to the nearest
multiple of 1/n. Then for every c between 0 and 1, and all θ, Pθ(Yn ≤ θ+c) ≤ c,
and Pθ(Yn > θ + c) ≤ 1 − c + 1/n, hence we can bet with epistemic lower
probability 1 − c on [θ < yn − c], and with odds (c − 1/n) : (1 − c + 1/n) on
[θ ≥ yn − c]. The sum of the lower probabilities is 1 − 1/n→ 1 as n → ∞.

Thus, fiducial probabilities are just a limiting case of lower probabilities,
though interesting in their own right because they allow fair (pairs of) bets
(with a frequentist interpretation!). Hence they produce something similar to
the Bayesian omelette, after all, without breaking the Bayesian eggs.
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29. P.J. Huber, Kapazitäten statt Wahrscheinlichkeiten? Gedanken zur Grundlegung
der Statistik, Jber. Deutsch. Math. Verein., 78, 2, 81–92, 1976.

30. P.J. Huber, Robust Statistics, Wiley, New York, 1981.

31. P.J. Huber and V. Strassen, Minimax tests and the Neyman–Pearson lemma for
capacities, Ann. Statist. 1, 2, 251–263, 1973. Corr: 2, 223–224.

32. A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der
Mathematik und ihrer Grenzgebiete, Springer, Berlin, 1933.



526 F. Hampel

33. A.N. Kolmogorov, The estimation of the mean and precision of a finite sample of
observations, in Russian, (Section 5: Fisher’s fiducial limits and fiducial probabili-
ty), Bull. Acad. Sci. U.S.S.R., Math. Ser., 6, 3–32, 1942.

34. B.O. Koopman, The bases of probability, Bulletin of the American Mathematical
Society, 46, 763–774, 1940.

35. H.E. Kyburg, Probability and the Logic of Rational Belief, Wesleyan University
Press, Middletown, 1961.

36. J.H. Lambert, Neues Organon, oder Gedanken über die Erforschung und Be-
zeichnung des Wahren und dessen Unterscheidung von Irrtum und Schein, Leipzig,
1764. Reprinted by Olms of Hildesheim as the first two volumes of LAMBERT’s
Philosophische Schriften, 1965.

37. C. Morgenstern, Gesammelte Werke, R. Piper & Co. Verlag, München, 1965. Se-
lected translations in: M. Knight, Christian Morgenstern’s Galgenlieder, University
of California Press, Berkeley and Los Angeles, 1963.

38. J. Neyman, ‘Inductive behavior’ as a basic concept of philosophy of science, Rev.
Internat. Statist. Inst., 25, 7–22, 1957.

39. J. Neyman, Foundations of behavioristic statistics, Foundations of Statistical In-
ference, V.P. Godambe, and D.A. Sprott (eds.), Holt, Rinehart and Winston of
Canada, Toronto, 1971.

40. E.S. Pearson and J. Wishart (eds.), “Student’s” Collected Papers, Cambridge Uni-
versity Press, 1958.

41. E.J.G. Pitman, Statistics and science, J. Amer. Statist. Assoc, 52, 322–330, 1957.
42. C.R. Rao, Linear Statistical Inference and Its Applications, Wiley, London, 1965,

(2nd edition 1973).
43. G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Prince-

ton, N. J., 1976.
44. G. Shafer, Non-Additive Probabilities in the Work of Bernoulli and Lambert,

Archive for History of Exact Sciences, Springer-Verlag, Vol. 19, 4, 309–370, 1978.
45. C.A.B. Smith, Consistency in statistical inference and decision, J.Roy. Statist. Soc.

B, 23, 1–37, 1961.
46. V. Strassen, Messfehler und Information, Z. Wahrscheinlichkeitstheorie verw. Geb.,

2, 273–305, 1964.
47. “Student”, The probable error of a mean, Biometrika, 6, 1–25, 1908.
48. J.W. Tukey, A smooth invertibility theorem, Ann. Math. Statist, 29, 581–584, 1958.
49. J.W. Tukey, Handouts for the Wald Lectures 1958, in The Collected Works of

John W. Tukey, Volume VI: More Mathematical (1938 – 1984), C.L. Mallows
(ed.), Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.
Ch.10, 119 – 148, 1990.

50. P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall,
London, 1991.

51. S.L. Zabell, R.A. Fisher and the fiducial argument, Statistical Science, 7, 3,
369–387, 1992.



On Sequential Discrimination Between Close

Markov Chains

M.B. Malyutov and D.M. Malyutov

Abstract. The appropriateness of the Wald-type logarithmic asymptot-
ics for the mean length of sequential discrimination strategies between
close alternatives has been already challenged in the well-known con-
troversy over comparative performances of the asymptotically optimal
Chernoff’s discrimination strategies and ad hoc heuristic rules of Box
and Hill in the seventies.

We continue this discussion by showing a poor performance of the
Wald-type asymptotic bounds for the mean length of asymptotically op-
timal sequential discrimination strategies between the simplest types of
Markov chains by simulation. We propose some weak remedies against
this disaster and some alternative asymptotic tools.

Keywords: Sequential test, maximal error probability, mean length of
strategies, Markov chain.

1 Introduction

One of the most popular results in Wald (1947) is his logarithmic asymptot-
ic lower bound for the mean length of sequential discrimination strategies be-
tween simple hypotheses which turned out to be asymptotically attained by his
Sequential Probability Ratio Test. This asymptotic approach was generalized
and extended to numerous discrimination settings between composite hypothe-
ses and change-point problems by Chernoff, Kiefer and Sacks, Lai, and many
other authors including the first author. The accuracy of the Wald-type loga-
rithmic asymptotics for the mean length of sequential discrimination strategies
between close alternatives has been already challenged in the well-known contro-
versy over comparative performances of the asymptotically optimal Chernoff’s
discrimination strategies and the ad hoc heuristic rules of Box and Hill (1967)
in the seventies (see, e.g. Blot and Meeter, (1973)). Under error probability α
interesting in practice, the residual term o(log |α|) may well exceed the principal
term of the Wald-type bound, see our discussion further.

We continue this discussion by showing a poor performance of the Wald-type
asymptotic bounds for the mean length of asymptotically optimal sequential
discrimination strategies between simplest types of Markov chains by simula-
tion. We propose some weak remedies against this disaster (section 2) and some
alternative asymptotic tools. We study the performance of several interrelated
sequential discrimination strategies theoretically and by statistical simulation
for two particular examples.
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In section 2 we outline an application of general asymptotically optimal se-
quential discrimination strategies proposed in Malyutov and Tsitovich (2001)
(abbreviated further as MT-2001) for an illustrative example of testing the cor-
relation significance for a first-order autoregression with small noise. Here, for a
certain range of parameters we can show the attainability of our asymptotic low-
er bound if we permit an initial transition period to the equilibrium equilibrium
for the observed MC. An extension of the results in section 2 to the discrim-
ination between statistical hypotheses about a general conservative dynamical
system perturbed by small noise is straightforward.

Two simplified versions of discrimination strategies between Markov Chains
(MC) are introduced in section 3 and studied in section 4 by simulation for
testing a regular binary random number generator versus a Markov chain with
transition probabilities very close to those in the null hypothesis. We end up with
the conclusions formulated in Section 5.

Our examples are related to the general setting in MT-2001 which we now in-
troduce. Let X be a finite set with mX elements, P be a Borel set of transition
probability matrices for Markov chains on state spaceX satisfying the conditions
formulated in the next paragraph. We denote by p(x, y), x ∈ X, y ∈ X, elements
of the matrix P ∈ P . Under the convention 0/0:=1 we assume that for someC>0

sup
P,Q∈P

max
x∈X,y∈X

p(x, y)
q(x, y)

≤ C <∞ (1)

and for every P ∈ P MC with transition probability matrix P is aperiodic
and irreducible which implies the existence and uniqueness of the stationary
distribution µ := µP with µP (x) > 0 for every x ∈ X . It follows from (1) that
p(x, y) = 0 for any P ∈ P entails q(x, y) = 0 for all Q ∈ P . Our statistical
decisions are based on the log-likelihood probability ratios:

z(P,Q, x, y) := ln p(x, y)/q(x, y).

I(x, P,Q) :=
∑
y∈X

p(x, y)z(P,Q, x, y)

is the Kullback-Leibler divergence (cross-entropy). The set P is partitioned into
Borel sets P0, P1 and the indifference zone P+ = P \ (P1 ∪ P0). We test H0 :
P ∈ P0 versus H1 : P ∈ P1, every decision is good for P ∈ P+. Suppose that
the divergence between the hypotheses is positive, i.e.

min
i=0,1

inf
P∈Pi,Q∈P1−i

max
x∈X

I(x, P,Q) ≥ δ0 > 0. (2)

The probability law of Xi, i = 0, 1, . . . , is denoted by PP and the expectation is
denoted by EP . In particular

I(x, P,Q) = EP (z(P,Q,X0, X1)|X0 = x).

A strategy s consists of a stopping (Markov) time N and a measurable binary
decision δ, δ = r means that Hr , r = 0, 1, is accepted. Introduce α-strategies s
satisfying
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max
r=0,1

sup
P∈Pr

PP (δ = 1 − r) ≤ α.

EsPN is the mean length (MEAL) of a strategy s. Define: I(µ, P,Q) :=
∑
x∈X

µ(x)I(x, P,Q), where µ is a probability distribution onX , I(P,Q) := I(µP , P,Q)
and I(P,R) := infQ∈R I(P,Q) for R ⊂ P ; A(P ) := P1−r for P ∈ Pr as the
alternative set to P (in P). For P ∈ P+, if I(P,P0) ≤ I(P,P1), then A(P ) := P1,
otherwise, A(P ) := P0. Finally, k(P ) = I(P,A(P )). It follows from (2) that

k0 := inf
P∈P

k(P ) > 0, P ∈ P

since µP (x) > 0 for all x ∈ X and for any P ∈ P . It is proved in MT-2001 that
for every P ∈ P and α-strategy s

EsPN ≥ ρ(α, P ) +O
(√

ρ(α, P )
)
, (3)

as α → 0, where ρ(α, P ) = | lnα|/k(P ) is the well-known principal term of the
MEAL first appearing in Wald (1947), and the following α-strategy s1 attaining
equality in (3) is constructed depending on a parameter β, β < α. Strategy s1

consists of conditionally i.i.d. loops. Every loop contains two phases. Based on
the first

N1 = N1(α, δ0) (4)

observations of a loop, we estimate the matrix P by the MLE P̂ ∈ P (or its
orthogonal projection on P as a subset of Rm2

X ). Let us enumerate measurements
of the second phase anew and introduce Lk(P̂ , Q) =

∑k
i=1 z(P̂ , Q,Xi−1, Xi).We

stop observations of the loop at the first moment N2 such that

inf
Q∈A(P̂ )

LN2(P̂ , Q) > | lnβ| (5)

or
N2 > N0 := 2k−1

0 | lnα|, (6)

stop all experiments and accept the hypothesis Hr (i.e. δ = r), if (5) holds
and 1 − r is the index of the set A(P̂ ). After event (6) we begin a new loop.
Strategies s1 and s2 (see section 3) do not revise the estimate P̂ during the
second phase of a loop which we modify for strategy s3 introduced in section 3.
In both new strategies the rule (5) is replaced by comparing (with the prescribed
level) only the likelihood ratios with respect to the closest alternatives to P̂ which
is numerically much easier to implement. Our simulation in section 4 shows that
s3 is much better than s2. Note also that for attaining an asymptotic equality
in (3) it is assumed in MT-2001 that P (N2 > N0) → 0 as α → 0 making the
probability of more than one loop negligible. This holds, if

EI(P, P̂ )/δ0 → 0 as α → 0. (7)

We study the situation of close alternatives (δ0 small) in both our examples
further which is dubious to deal with the conventional asymptotic approach of
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large deviations common in discrimination problems, see e.g. Chernoff (1972). Le
Cam’s theory of contiguous alternatives might give a better approximation which
we plan to study in future. Namely, the misclassification probability under the
hypotheses at distance of order cn−1/2, where n is the sample size of the first
stage, can be shown to be normal with parameter depending on c. Hence we will
be able to choose parameters in such a way that the unfavorable outcome of the
first loop would take place with probability less than α.

In sections 3 and 4 the condition (7) is impractical since L = | lnα| cannot
be very large. Our simulation shows that under the parameters studied only α-
strategies with several times larger MEAL than ρ(α, P ) seem to be attainable
which appears around twice less than the sample size of the best static strategy.
It is an open problem whether our strategies can be modified to require the
MEAL equivalent to the lower bound proved so far.

Remark. The most promising revision of our strategies would be following:
generalizing to the first stage of our strategies the recent methods of supervised
discrimination maximizing margin. These methods use the estimation of the like-
lihood function only in the vicinity of the margin points crucial for discrimination
getting rid of the idea to approximate the likelihood function globally (and plug
in the estimated parameters there).

In the next section 2 we study ßmall noisecase where condition (7) can be
achieved under mild conditions in theMC transition period, where the signal-
noise ratio exceeds considerably that for the stationary distribution. Even simpler
is to justify the condition (7) in non-stationary ßignal plus small noisemmodels
which we do not consider here.

2 Testing Correlation in a First-Order Autoregression

Here we illustrate the previously exposed general results for an example of se-
quential discrimination between i.i.d.N(0, ε2) measurements versus a first order
autoregression with small correlation. We view this as an example of conservative
dynamical systems perturbed by small noise which can be treated similarly.

Consider a Markov chain X0, X1, . . . with joint distribution Pθ:

Xt = θXt−1 + εet, t = 1, 2, . . . ,

where |θ| ≤ Θ < 1 is an unknown correlation, the noise εet is i.i.d.N(0, ε2) and
we can choose X0 to be, say, 1 (or more generally is random with constant mean
as ε → 0).

We test H0 = {θ = 0} versus the composite hypothesis H1 = {|θ| ≥ d >
0}, {0 < |θ| < d being an indifference zone. The marginal distribution of Xt is
well-known to converge exponentially fast as t → ∞ to N(0, ε2(1−θ2)) for every
initial state. We study here the performance of strategy s1 for small d, ε and α.
The loglikelihood of Pθ versus Pθ̇ up to moment T is Z0 +

∑T+1
1 Zt, where

Zt := [(Xt − θ̇Xt−1)2 − (Xt − θXt−1)2]/(2ε2).

First averaging Zt given Xt−1, we get
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I(x, θ, θ̇) = (θ − θ̇)2x2/(2ε2),

and then averaging over the stationary distribution, we get the stationary cross-
entropy

I(θ, θ̇) := Eθ(Zt) = (θ − θ̇)2(1 − θ2).)

In particular, I(0, θ) = θ2, I(θ, 0) = θ2(1 − θ2). It is straightforward from the
above calculations that the Fisher information J(x, θ) of Xt given that Xt−1 = x
is x2/(2ε2). Thus

E(
T∑
0

J(Xt)) = ε−2
T∑
t=0

(θ2t)/2

is not less asymptotically for large T than 1/[2(1−D2)ε2] implying that the vari-
ance of the preliminary MLE θ̂ based on

√
ρ(α, Pd) observations is 1/

√
ρ(α, Pd),

if we assume that ε2(1 −D2) = o(d2/L).
This implies the attainment of the lower bound (3) by s1 along the lines

of MT-2001. The bound (3) holds, if the transition period to the stationary
distribution is not sufficient to discriminate with error probability less than α,
which is also straightforward to rephrase in terms of the model parameters.

3 Testing Random Number Generator vs. Markov Chain

Our basic hypothesis H0 deals with a Bernoulli binary equally likely distributed
(P0) sequence of measurements X1, X2, . . . . We test it versus an alternative
hypothesis H1 that the sequence observed is a stationary Markov chain with
transition probabilities Pr := (pij , i, j = 1, 2), where r := (r1, r2), r1 := p11 −
1/2, r2 := p22 − 1/2, such that for certain d > 0

I(P0, Pr) := − ln[16p11(1 − p11)p22(1 − p22)]/4 ≥ d2.

Note that I(P0, Pr) = ||r||22(1 + o(1)) as ||r||2 → 0, where

||r||22 := r21 + r22 .

For very small d considered in our simulation, we can approximately view the
set of alternatives as the exterior to the figure which is very close to a circle of
radius d with center in (1/2, 1/2). We skip a more lengthy general expression
for I(Pr , Pṙ) unused in our presentation of the simulation results. The local
optimization method used in our program for finding the set of Pr∗ minimizing
I(Pr̂, Pṙ) over Pṙ on the border of the alternative set to a preliminary estimate
Pr̂, always unexpectedly found a unique minimizing point A(r̂) ( which simplifies
the strategy considerably ). We are not aware if this is true in general situations.
Now we introduce two sequential algorithms for the discrimination between H0

and H1. The only difference of the strategy s2 from s1 is that the rule (3) is
replaced with

LN2(Pr̂, PAr̂) > | lnα|. (8)
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To simplify the strategy further, we abandon another parameter β < α in the
definition of s1 which apparently does not change the performance of s3 con-
siderably (see the corresponding figures further) whereas the evaluation of the
recommended in MT-2001 update is clumsy.

Now, the strategy s3 deviates from s2 only in being more greedy: we continue
to update recurrently the preliminary estimate for the true parameter r during
the second phase in parallel to counting the likelihood ratios, and if a loop ended
undecidedly, we plug the updated estimate for r into the likelihood ratio, find
the closest alternative, and start the new second phase. Therefore, only second
phases occur in loops after the first one.

3.1 Static Discrimination

Now we discuss the performance of the best static (non-sequential) strategy
with maximal error probability α. Our large sample discrimination problem is
obviously asymptotically equivalent to the discrimination of the zero mean hy-
pothesis for the bivariate rotationally invariant Normal distribution versus the
spherically invariant alternative dealt with in Example 5.17 of Cox and Hink-
ley (1974). It is shown there that the best critical region is the exterior to a
circle of certain radius, and that the distribution under the alternative is the
non-central Chi-Square with two degrees of freedom. Using the power diagrams
of non-central Chi-Square in Sheffe (1958), we find that the radius providing
the equality of maximal errors under the null hypothesis and the alternative
is approximately 0.39d. This finally determines the sample size such that the
maximal error probabilities equal specified levels which we compare with the
empirical MEALs of strategies s3, s2 found by simulation.

4 Simulation Results

We present a series of simulation results (using MATLAB) for s2 and s3 with
various parameters of the model described in the preceding section. The code is
available by request.

The table below summarizes the results of a few trials of our simulation. In the
table, N1 = K1

√
L/d2, where L = | ln(α)|, n is the number of times strategies

were run under the same parameters, the empirical MEAL (EMEAL) is the
average number of random numbers taken before the decision, the ENOL is the
average number of loops over n runs. Note that all the parameters in simulations
2-4 are taken the same with n=100, and with n = 1000 in simulation 5 for
estimating the variance of the performance parameters.

In the plots d2 = 0.001, p := p11 = p22, methods 1 and 2 represent respectively
s2 and s3. Figures 3 and 6 plot respectively EMEAL and FE under various
alternatives. Both are maximal, as natural, in the middle of the indifference
zone. Other figures illustrate the performance of our strategies under H0. The
empirical MEAL, number of loops and empirical error rate are plotted versus
changing values of various parameters of our strategies. The main news is that
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Table 1. Please write your table caption here

d2 α K1 p n EMEAL FE ENOL

(1) s2 0.0002 0.01 2500 0.5015 200 263723.82 0.02 4.37
s3 93836.39 0.0 1.905

(2) s2 0.001 0.02 500 0.5 100 42434.89 0.09 4.27
s3 15553.15 0.03 1.89

(3) s2 0.001 0.02 500 0.5 100 49191.76 0.04 4.8
s3 15879.13 0.01 1.97

(4) s2 0.001 0.02 500 0.5 100 52232.04 0.04 4.97
s3 16412.41 0.03 1.98

(5) s2 0.001 0.02 500 0.5 1000 42934.085 0.057 4.24
s3 15729.03 0.01 1.90
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the EMEAL exceeds the theoretical principal term approximately four times
under best parameters of our strategies.

5 Conclusions

1. Conventional asymptotic expansions of the MEAL in terms of lnα, where α
is the maximal error probability can be of dubious importance for discrimi-
nation between close hypotheses.

2. Our simulation shows that strategy s3 which keeps updating the prelimi-
nary estimate of the true parameter is clearly preferable as compared to the
theoretically justified strategy s1.

3. Further work to find a valid expansion for the MEAL of discriminating be-
tween close hypotheses seems necessary incorporating Le Cam’s contiguity
techniques.

4. Although seemingly suboptimal, the strategy s3 is clearly preferable to the
best static discrimination strategies even for discrimination between close
hypotheses.

5. Use of the MC transition periods for preliminary estimation of true parame-
ters may be fruitful in discrimination between almost deterministic ergodic
Markov chains.

6. Simplified versions of the best controlled and of the change-point detection
strategies, also studied in MT-2001, as well as the development of s1, and of
strategies in Lai (1998) should also be examined by simulation.
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Estimating with Randomized Encoding the Joint

Empirical Distribution in a Correlated Source

R. Ahlswede and Z. Zhang

1 Introduction

In order to put the present model and our results into the right perspectives we
describe first key steps in multiuser source coding theory.

We are given a discrete memoryless double source (DMDS) with alphabets X ,
Y, and generic variables X , Y , i.e., a sequence of independent replicas (Xt, Yt),
t = 1, 2, . . . of the pair of random variables (X,Y ) taking values in the finite
sets X and Y, respectively.

I. Slepian and Wolf considered the problem of encoding the source output
blocks Xn � X1 . . . Xn resp. Y n � Y1 . . . Yn by two separate encoders in
such a way that a common decoder could reproduce both blocks with small
probability of error. They proved that such an encoding is possible with rates
(R1, R2) if and only if

R1 ≥ H(X |Y ), R2 ≥ H(Y |X), R1 +R2 ≥ H(X,Y ). (1.1)

II. It may happen, however, that what is actually required at the decoder is
to answer a certain question concerning (Xn, Y n). Such a question can of
course be described by a function F of (Xn, Y n). The authors of [5] are
interested in those functions for which the number kn of possible values of
F (Xn, Y n) satisfies

lim
n→∞

1
n

log kn = 0. (1.2)

This means that the questions asked have only “a few” possible answers.
For example, Xt and Yt may be the results of two different quality control
tests performed on the ith item of a lot. Then for certain purposes, e.g., for
determining the price of the lot, one may be interested only in the frequencies
of the various possible pairs (x, y) among the results, their order, i.e., the
knowledge of the individual pairs (Xt, Yt), being irrelevant. In this case kn ≤
(n + 1)|X ||Y|, and (1.2) holds. A natural first question is whether or not it
is always true in this case that, for large n, arbitrarily small encoding rates
permit the decoder to determine F (Xn, Y n).

The authors of [5] also consider other choices of F and first obtain the
following result. For every DMDS with

H(X |Y ) > 0, H(Y |X) > 0

there exists a binary question (function F with only two possible values)
such that in order to answer this question (determine F (Xn, Y n)) one needs
encoding rates as specified in (1.1).

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 535–546, 2006.
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As a matter of fact, almost all randomly selected functions F are of this
kind. Since the reason for this unexpected phenomenon might be that ran-
domly selected functions are very irregular, we next study more regular func-
tions. A function F of special interest is the joint composition (joint type) of
the two source blocks hinted at in the quality control example. In this respect
our main result is that for determining the joint type of Xn and Y n when Y n

is completely known at the decoder, Xn must be encoded with just as large a
rate as if Xn were to be fully reproduced except for (exactly specified) singu-
lar cases. Actually, this analogous result is proved in [5] for a class of functions
F which include, in addition to the joint type, the Hamming distance and —
for alphabet size at least three — the parity of the Hamming distance.

As a consequence of these results one obtains that in the case of encoding
both Xn and Y n, the rates must satisfy

R1 ≥ H(X |Y ), R2 ≥ H(Y |X), (1.3)

in order that the joint type or the Hamming distance of Xn and Y n can
be determined by the decoder. In particular, it follows that for a DMDS
with independent components (i.e., when X and Y are independent random
variables (RV’s)) nothing can be gained in rates, if instead of (Xn, Y n) only
the joint type or the Hamming distance of Xn and Y n is to be determined
by the decoder. For a DMDS with dependent components such a rate gain
is possible, although it remains to be seen whether this always happens and
to what extent. At present a complete solution to this problem is available
only in the binary symmetric case. In fact, it readily follows from a result of
Körner and Marton, that our necessary conditions (1.3) are also sufficient.
Let us emphasize that their result concerns “componentwise” functions F

F (Xn′, Y n) �
(
F1(X1, Y1), F1(X2, Y2), . . . , F1(Xn, Yn)

)
, (1.4)

where F1 is defined on X × Y.
In the binary symmetric case (i.e. Pr{X = Y = 0} = Pr{X = Y = 1},

Pr{X = 0, Y = 1} = Pr{X = 1, Y = 0}), they proved for the particular
F with f1(x, y) � x + y (mod 2) that (R1, R2) is an achievable rate pair
for determining F (Xn, Y n) if and only if (1.3) holds. Now observe that the
types of Xn and of Y n can be encoded with arbitrarily small rates and that
those two types and the mod 2 sum F (Xn, Y n) determine the Hamming
distance and also the joint type of Xn, Y n.

Notice that the problem of F–codes is outside the usual framework of rate–
distortion theory except for “componentwise” functions F , cf. (1.4). Still, a
complete description of the achievable F rate region, e.g., for F (x, y) �
Px,y, may be as hard a problem as to determine the achievable rate region
for reproducing Xn, Y n within a prescribed distortion measure. We draw
attention to the fact that for the latter problem it is also the projection of
the achievable rate region to theR1–axis which could be determined (Wyner–
Ziv, [10]).
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III. The authors of [9] consider a new model: identification via compressed data.
To put it in perspective, let us first review the traditional problems in tradi-
tional rate–distortion theory for sources. Consider the diagram shown in Fig 1,

�� �binary data of
rate R

encoder decoder

Fig. 1. Model for source coding

where {Xt}∞t=1 is an independent and identically distributed (i.i.d.) source
taking values in a finite alphabet X . The encoder output is a binary sequence
which appears at a rate of R bits per symbol. The decoder output is a
sequence {X̂n}∞n=1 which takes values in a finite reproduction alphabet Y. In
traditional source coding theory, the decoder is required to recover {Xt}∞t=1

either completely or with some allowable distortion. That is, the output
sequence {X̂t}∞t=1 of the decoder must satisfy

1
n

n∑
i=1

Eρ(Xt, X̂t) ≤ d (1.5)

for sufficiently large n, where E denotes the expected value,

ρ : X × Y → [0,+∞)

is a distortion measure, and d is the allowable distortion between the source
sequence and the reproduction sequence. The problem is then to determine
the infimum of the rateR such that the system shown in Fig. 1 can operate in
such a way that (1.5) is satisfied. It is known from rate distortion theory that
the infimum is given by the rate distortion function of the source {Xt}∞1 .

Let us now consider the system shown in Fig. 2,

encoder decoder�binary data of
rate R

� �

�

0 or 1

Fig. 2. Model for joint source coding and identification

where the sequence {Yt}∞1 is a sequence of i.i.d. random variables taking val-
ues from Y. Knowing Y n, the decoder is now required to be able to identi-
fy whether or not the source sequence Xn and the sequence Y n have some
prescribed relation F in such a way that two kinds of error probabilities, the
probabilities for misacceptance (false identification) and the probabilities for
misrejection, satisfy some prescribed conditions. In parallel with rate distor-
tion theory, we consider in this paper the following relation F defined by:
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n−1
n∑
t=1

ρ(Xt, Yt) ≤ d. (1.6)

That is, the values Xn and Y n are said to have relation F if (1.6) is satisfied.
The problem we are interested in is to determine the infimum of the rate R
such that the system shown in Fig. 2 can operate so that the error probability
of misrejection, that is the decoder votes for 0 even though F holds, and
the error probability of misacceptance, that is the decoder votes for 1 even
though F does not hold, satisfy constraints on the error exponents α and β,
say. So the goal of the decoder is to identify whether Xn is close to Y n (in
the sense of relation F ) or not. The encoder is cooperative.

It must be remarked that in this model the minimum achievable rate is
shown to always equal zero, if we only require that the two kinds of error
probabilities go to zero as n goes to infinity. So the exponential decay of
error probabilities makes the problem meaningful. The regions of pairs of
exponents (α, β) are studied as functions of rate R and fidelity criterion d
for general correlated sources. Complete characterizations are obtained, if
Xn and Y n are independent.

IV. Now we come to our new model of estimating the joint empirical distrib-
ution (joint type) not exactly like in [5], but within some accuracy only.
This “computational” aspect was motivated by [9]. Furthermore the help of
randomization was understood in [6] and [7].

We consider the following model. The encoder knows a word xn ∈ Xn and
the receiver knows a word yn ∈ Yn. The encoder sends information of at most
 bits to the receiver, who uses these bits and his own observation yn ∈ Yn
to estimate the joint type. The question is how accurate the estimate can
be. It can be formalized as follows:

A randomized encoding is a pair E =
{
M, Q(·|·)

}
, where

M = {1, 2, . . . ,M},M = 2k, and Q(·|xn) ∈ P(M), xn ∈ Xn. (1.5)

Here and elsewhere P(·) denotes the set of probability distributions (ab-
breviated as PD) or probability vectors of a set in brackets.

The decoder uses a decoding function

g : M×Yn → P(X × Y). (1.6)

Next we describe performance criteria for the code C = (E , g). For any
two PD’s P = (P1, . . . , Ps) and Q = (Q1, . . . , Qs) define the norms

‖P −Q‖1 =
s∑
i=1

|Pi −Qi|, (1.7)

‖P −Q‖2 =

√√√√ s∑
i=1

|Pi −Qi|2, (1.8)
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and the “individual errors” based on them for the code C = (E , g)

e
(i)
C (xn, yn) =

∑
j∈M

Q(j|xn)‖g(j, yn) − Pxnyn‖i (i = 1, 2). (1.9)

This leads to two notions of maximal errors of the code (C, g)

e
(i)
C = max

xn,yn
e
(i)
C (xn, yn); (i = 1, 2). (1.10)

Finally, we get the best possible maximal errors (for parameters n and
M)

e(i)(n,M) = min
C:|M|=M

e
(i)
C . (1.11)

We mention two other kinds of criteria for the measurement of the esti-
mation error.

Let J be a RV with distribution Pr(J = j) = Q(j|xn) and use the RV’s

∆
(i)
xnyn(J) = ‖g(J, yn) − Pxnyn‖i (1.12)

to define
e
(i)
C (xn, yn, δ) = Pr

(
∆

(i)
xnyn(J) > δ

)
; i = 1, 2; (1.13)

and

e
(i)
C (xn, yn, ε) = min

{
δ : Pr

(
∆

(i)
xnyn(J) > δ

)
< ε

}
; i = 1, 2. (1.14)

Actually, all these definitions lead to similar results and we start here with
e
(2)
C (xn, yn, ε) for which we define

eC(ε) = max
xn,yn

e
(2)
C (xn, yn, ε) (1.15)

and
e(n,M, ε) = min

C:|M|=M
eC(ε). (1.16)

An appropriate scaling

α(D, ε) = sup
n,M : log log M

log n <D

− log e(n,M, ε)
logn

(1.17)

leads to a striking result.

Theorem
α(D, ε) = D for all ε ∈ (0, 1). (1.18)
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2 Direct Coding Theorem

We use the following simple coding method. Label the members of
(
[n]
�n

)
, the set

of all n–element subsets of [n] = {1, 2, . . . , n}. The sender randomly selects one
such subset and transmits its label and the components of xn within this subset
to the receiver. The receiver uses the joint type of yn and xn within this subset
as the estimate of the joint type.

We now evaluate the performance of this method. First we count the number

L of subsets where (xn, yn)’s local joint type is at least
√
−1
n log2

n away from
the true type.

For this we need the definitions

n(x, y) := Pxnyn(x, y)n, (2.1)

(x, y) := local frequencies of (xn, yn) in n–subset considered (2.2)
and

→
 :=

(
(x, y)

)
(x,y)∈X×Y. (2.3)

Clearly
∑
x,y

(x, y) = n.

Now

L =
∑

→
� :

∑
x,y| �(x,y)

�n
−n(x,y)

n |2> log2 n
�n

∏
x,y

(
n(x, y)
(x, y)

)

and

L ·
(
n

n

)−1

≤ O(nab−1) max
→
� :
∑

x,y| �(x,y)
�n

−n(x,y)
n |2> log2 n

�n

√
n∏

x,y

√
(x, y)

· exp

{∑
x,y

n(x, y)h
(
(x, y)
n(x, y)

)
− nh

(
n
n

)}
(2.4)

by Stirling’s formula.
This can be bounded from above by using the following auxiliary result.

Lemma. Let positive integers n(x, y), (x, y), , n satisfy

∑
x∈X ,y∈Y

n(x, y) = n,
∑

x∈X ,y∈Y
(x, y) = , (x, y) ≤ n(x, y) for x ∈ X , y ∈ Y.

Then

θ �
∑

x∈X ,y∈Y
n(x, y)

[
h

(
(x, y)
n(x, y)

)
−h

(


n

)]
≤− n

2ab

∑
x∈X ,y∈Y

n(x, y)
(
(x, y)
n(x, y)

−

n

)2

,

where a = |X |, b = |Y|.
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Proof. For γ(x, y) � �(x,y)
n(x,y) −

�
n obviously

∑
x,y

n(x, y)γ(x, y) = 0. With C � �
n we

can now write

θ =
∑
x,y

n(x, y)
[
h
(
C + γ(x, y)

)
− h(C)

]
.

By Lagrange’s interpolation formula

h
(
C + γ(x, y)

)
− h(C) = h′(C)γ(x, y) +

h′′(ξ(x, y))
2

γ2(x, y),

where ξ(x, y) is between C and C + γ(x, y).
Thus

θ =
∑
x,y

n(x, y)h′(C)γ(x, y) +
∑
x,y

n(x, y)
h′′(ξ(x, y))

2
γ2(x, y)

=
∑
x,y

n(x, y)
h′′(ξ(x, y))

2
γ2(x, y)

≤
∑

x,y:γ(x,y)≤0

n(x, y)
h′′(ξ(x, y))

2
γ2(x, y)

=
∑

x,y:γ(x,y)≤0

n(x, y)
(
− 1

2ξ(x, y)(1 − ξ(x, y))

)
γ2(x, y)

≤
∑

x,y:γ(x,y)≤0

n(x, y)
(
− 1

2C

)
γ2(x, y)

= − n

2

∑
x,y:γ(x,y)≤0

n(x, y)γ2(x, y).

Clearly, the claimed inequality follows from the identity

µ � min
ρ:
∑
x,y
n(x,y)ρ(x,y)=0

∑
x,y:ρ(x,y)≤0

n(x, y)ρ2(x, y)∑
x,y

n(x, y)ρ2(x, y)
=

1
ab
, (2.5)

which remains to be proved.
Obviously, the optimizing ρ has the properties:

1. |
{
(x, y) : ρ(x, y) > 0

}
| = 1

2. There exists a constant ν such that ρ(x, b) ≤ 0 implies ρ(a, b) = ν.

These two properties imply

µ =
(ab− 1)

(
a

ab−1

)2

a2 + (ab− 1)
(

a
ab−1

)2 =
1
ab
.

�
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We apply now the Lemma to upper bound the exponent in the exponential
function and get

L ·
(
n

n

)−1

≤O(nab−1) max
→
� :
∑

x,y| �(x,y)
�n

−n(x,y)
n |2> log2 n

�n

√
n∏

x,y

√
(x, y)

· exp

− n

2abn

∑
x∈X ,y∈Y

n(x, y)


(
(x, y)
n(x, y)

− n
n

)2

≤ max
→
� :

∑
x,y| �(x,y)

�n
−n(x,y)

n |2> log2 n
�n

O(nab)

· exp

{
−µ

2
n

n

∑
x,y

n(x, y)

}(
(x, y)
n(x, y)

− n
n

)2

= max
→
� :

∑
x,y| �(x,y)

�n
−n(x,y)

n |2> log2 n
�n

O(nab)

· exp

{
−µ

2

∑
x,y

n · n
n(x, y)

}(
(x, y)
n

− n(x, y)
n

)2

≤O(nab) exp
{
−µ

2
log2 n

}
→ 0 as n→ ∞.

Now the number of bits needed for sending an element of
(
[n]
�n

)
is log

(
n
�n

)
and for

sending the n bits is n. This amounts to a total number of log
(
n
�n

)
+ n bits.

The accuracy achieved is n log2 n.
Therefore we get

log δ
logn

=
log n
logn

+
2 log logn

logn

and

log logM
log n

=
log(n logn+ n)

logn
=

log n
logn

+
log(logn + 1)

logn
.

If n % logn, then
log δ
logn

≈ log logM
logn

and the direct part is proved.

3 Converse of Coding Theorem (Proof in Binary Case,
Exercise in General Case)

Let C = (E , g) be a (D,α, n) code and let

M(xn, yn) =
{
m ∈ M : ‖g(m, yn) − Pxnyn‖2

2 ≤ exp
{
α logn+ o(log n)

}}
.
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We have
Q
(
M(xn, yn)|xn

)
> 1 − ε.

Select now nβ codewords independently at random according to the PD Q(·|xn).
Abbreviate the random code

(
Xn1 (xn), . . . , Xnnβ (xn)

)
as B(xn) and use F̃ (·|xn)

to denote the uniform distribution on B(xn).

Pr
(
F̃
(
M(xn, yn)|xn

)
<

1
2

+ ε

)
≈

∑
k>( 1

2−ε)nβ

(
nβ

k

)
εk(1 − β)n

β−k

≈ exp
{
−nβD

(
1
2
− ε

∥∥∥∥ε) � λnβ .

A yn is called irregular with respect to xn for a particular B(xn) or F̃ (·|xn) iff
F̃
(
M(xn, yn|xn)

)
< 1

2 + ε.
The average number of irregular yn is 2n−λn

β

. Therefore a choice of B(xn)
exists such that the number of irregular yn’s is at most 2n−λn

β

.
According to this principle we make choices for every xn. So we get a whole

family
(
F̃ (·|xn)

)
xn∈Xn , where each member has at most 2n−λn

β

irregular yn’s.
Now we use a constant weight error correcting code of cardinality 2γn and of

minimum distance µn, where γ, µ are constants (independent of n).
Let xn1 and xn2 be two codewords of this code. We prove that for suitable β,

B(xn1 ) = B(xn2 ). Actually, we count the number of yn’s with(∑
x,y

(
nxn

1 y
n(x, y) − nPxn

2 y
n(x, y)

)2) 1
2

≥ 2nα+o(1).

For this define

A =
{
t ∈ [n] : x1t = 1 and x2t = 0

}
, B =

{
t ∈ [n] : x1t = 1 and x2t = 1

}
,

C =
{
t ∈ [n] : x1t = 0 and x2t = 1

}
, and D=

{
t ∈ [n] : x1t=0 and x2t = 0

}
.

This number of yn’s exceeds

2|B|+|D|
∑

|u−v|>2n
1
2 α+o(1)

(
|A|
u

)(
|C|
v

)
=2|B|+|D|

∑
�>2n

1
2 α+o(1)

(
|A| + |C|
|A| − 

)
= 2n−µn

α+o(1)
.

Now, if B(xn1 ) = B(xn2 ), then those yn must be irregular for at least one of
xn1 , x

n
2 . Hence 2n−µn

α+o(1) ≤ 2n−λn
β

and thus α ≥ β + o(1). Finally Mnβ ≥ 2rn

implies M ≥ 2rn
1−β ≥ 2n

1−α−o(1)
. The converse is proved in the binary case.

4 Other Problems

A. The existing work on statistical inference (hypothesis testing and estima-
tion in [4] and [3]) under communication constraints uses a “one shot” side
information. It seems important to introduce and analyze interactive models.
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B. Permutation invariant functions
A function F , defined on Xn ×Yn, is called permutation invariant iff for all
permutations π of the set {1, 2, . . . , n}

F (xn, yn) = F (πxn, πyn), (4.1)

where xn = (x1, x2, . . . , xn)

πxn = (xπ(1), xπ(2), . . . , xπ(n)) (4.2)

and yn, πyn are defined analogously.

Permutation invariant functions are actually functions of the joint empirical
distribution Pxnyn of the sequences xn and yn, where for all x ∈ X , y ∈ Y

Pxnyn(x, y) = |{t : xt = x, yt = y}|n−1. (4.3)

Examples of permutation invariant functions include, but are not limited to,
sum–type functions fn,

fn(xn, yn) =
n∑
t=1

f(xt, yt), (4.4)

such as the Hamming distance function. In identification problems, we can be
interested in Boolean functions. When the problem is permutation invariant,
we need to study permutation invariant Boolean functions. If we estimate
the joint empirical distribution of xn and yn. Then

(
Pxnyn(x, y)

)
x∈X ,y∈Y is

a permutation invariant vector–valued function on Xn × Yn.

C. Approximation of continuous permutation invariant functions
Let F be a continuous function defined on the compact set P(X ×Y). Define

F̂ (xn, yn) = F (Pxnyn). (4.5)

If the task of the receiver is not to estimate Pxnyn , but to compute F̂ (xn, yn),
what is then the trade–off between the computation accuracy and the “com-
munication rate” D?

This problem is closely related to the joint empirical distribution estima-
tion problem — actually, it generalizes it.

D. Classification Problem
Let {A0,A1} be a partition of Xn × Yn and let both sets in this partition
be permutation invariant. If in the model treated in this paper the task of
the receiver is to determine whether or not (xn, yn) ∈ A0, then this is a new
“classification” problem.

In case we want to determine this exactly, then we have to transmit for
“most” partitions almost all bits of xn to the receiver. We introduce now a
model, which allows a much lower rate.

Let d1(P, P ′) = ‖P −P ′‖1 be the L1–distance of P and P ′ in P(Xn×Yn).
For A ⊂ Xn × Yn and δ > 0 let

Γδ(A)=
{
(xn, yn)∈Xn×Yn :d1(Pxnyn , Px′ny′n)≤δ for some (x′n, y′n)∈A

}
,

and for permutation invariant A ⊂ Xn × Yn let
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N(A) = |
{
Pxnyn : (xn, yn) ∈ A

}
|.

Now, for ε > 0, find maximal δ0, δ1 ≥ 0 such that

N
(
Γδ0(A0) ∩A1

)
N(A1)

≤ ε, (4.6)

N
(
Γδ1(A1) ∩A0

)
N(A0)

≥ ε. (4.7)

Finally, let
g : M×Yn → {0, 1}

be a binary–valued function such that for all (xn, yn) ∈ A0 � Γδ1(A1)

Q
(
g(J, yn) = 0|xn

)
≥ 1 − ε

and for all (xn, yn) ∈ A1 � Γδ0(A0)

Q
(
g(J, xn) = 1|xn

)
≥ 1 − ε.

What is the minimum number of bits 	logM
 needed? This problem is also
closely related to the joint empirical distribution estimation problem.

References

1. R. Ahlswede, Channel capacities for list codes, J. Appl. Probability, 10, 824–836,
1973.

2. R. Ahlswede, Coloring hypergraphs: A new approach to multi–user source coding,
Part I, Journ. of Combinatorics, Information and System Sciences, Vol. 4, No. 1,
76–115, 1979; Part II, Journ. of Combinatorics, Information and System Sciences,
Vol. 5, No. 3, 220–268, 1980.

3. R. Ahlswede and M. Burnashev, On minimax estimation in the presence of side
information about remote data, Ann. of Stat., Vol. 18, No. 1, 141–171, 1990.

4. R. Ahlswede and I. Csiszár, Hypothesis testing under communication constraints,
IEEE Trans. Inform. Theory, Vol. 32, No. 4, 533–543, 1986.

5. R. Ahlswede and I. Csiszár, To get a bit of information may be as hard as to get
full information, IEEE Trans. Inform. Theory, Vol. 27, 398–408, 1981.

6. R. Ahlswede and G. Dueck, Identification via channels, IEEE Trans. Inform. The-
ory, Vol. 35, No. 1, 15–29, 1989.

7. R. Ahlswede and G. Dueck, Identification in the presence of feedback — a discovery
of new capacity formulas, IEEE Trans. Inform. Theory, Vol. 35, No. 1, 30–39, 1989.

8. R. Ahlswede and J. Körner, Source coding with side information and a converse
for degraded broadcast channels, IEEE Trans. Inf. Theory, Vol. 21, 629–637, 1975.

9. R. Ahlswede, E. Yang, and Z. Zhang, Identification via compressed data, IEEE
Trans. Inform. Theory, Vol. 43, No. 1, 22–37, 1997.

10. R. Ahlswede and Z. Zhang, Worst case estimation of permutation invariant func-
tions and identification via compressed data, Preprint 97–005, SFB 343 “Diskrete
Strukturen in der Mathematik”, Universität Bielefeld.



546 R. Ahlswede and Z. Zhang

11. T. Berger, Rate Distortion Theory, Englewood Cliffs, NJ, Prentice–Hall, 1971.
12. I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Mem-

oryless Systems, New York, Academic, 1981.
13. D. Slepian and J.K. Wolf, Noiseless coding of correlated information sources, IEEE

Trans. Inform. Theory, Vol. 19, 471–480, 1973.
14. A.D. Wyner and J. Ziv, The rate–distortion function for source coding with side

information at the decoder, IEEE Trans. Inform. Theory, Vol. 22, 1–10, 1976.



On Logarithmically Asymptotically Optimal

Hypothesis Testing for Arbitrarily Varying
Sources with Side Information

R. Ahlswede, Ella Aloyan, and E. Haroutunian�

Abstract. The asymptotic interdependence of the error probabilities
exponents (reliabilities) in optimal hypotheses testing is studied for ar-
bitrarily varying sources with state sequence known to the statistician.
The case when states are not known to the decision maker was studied
by Fu and Shen.

1 Introduction

On the open problems session of the Conference in Bielefeld (August 2003)
Ahlswede formulated among others the problem of investigation of ”Statistics for
not completely specified distributions” in the spirit of his paper [1]. In this paper,
in particular, coding problems are solved for arbitrarily varying sources with
side information at the decoder. Ahlswede proposed to consider the problems
of inference for similar statistical models. It turned out that the problem of
”Hypothesis testing for arbitrarily varying sources with exponential constraint”
was already solved by Fu and Shen [2]. This situation corresponds to the case,
when side information at the decoder (in statistics this is the statistician, the
decision maker) is absent.

The present paper is devoted to the same problem when the statistician has
the possibility to make decisions after receiving the complete sequence of states
of the source. This, still simple, problem may be considered as a beginning of
the realization of the program proposed by Ahlswede.

This investigation is a development of results from [3]-[9] and may be con-
tinued in various directions: the cases of many hypotheses, non complete side
information, sources of more general classes (Markov chains, general distribu-
tions), identification of hypotheses in the sense of [10].

2 Formulation of Results

An arbitrarily varying source is a generalized model of a discrete memoryless
source, distribution of which varies independently at any time instant within
a certain set. Let X and S be finite sets, X the source alphabet, S the state
alphabet. P(S) is a set of all possible probability distributions P on S. Suppose
a statistician makes decisions between two conditional probability distributions
� Work was partially supported by INTAS grant 00738.
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of the source: G1 = {G1(x|s), x ∈ X , s ∈ S}, G2 = {G2(x|s), x ∈ X , s ∈ S},
thus there are two alternative hypotheses H1 : G = G1, H2 : G = G2. A
sequence x = (x1, . . . , xN ), x ∈ XN , N = 1, 2, ..., is emitted from the source,
and sequence s = (s1, . . . , sN) is created by the source of states. We consider
the situation when the source of states is connected with the statistician who
must decide which hypothesis is correct on the base of the data x and the state
sequence s. Every test ϕ(N) is a partition of the set XN into two disjoint subsets
XN = A(N)

s

⋃
A(N)

s , where the set A(N)
s consists of all vectors x for which the

first hypothesis is adopted using the state sequence s.
Making decisions about these hypotheses one can commit the following

errors: the hypothesis H1 is rejected, but it is correct, the corresponding error
probability is

α
(N)
1|2 (ϕ(N)) = max

s∈SN
GN1 (A(N)

s | s),

if the hypothesis H1 is adopted while H2 is correct, we make an error with
the probability

α
(N)
2|1 (ϕ(N)) = max

s∈SN
GN2 (A(N)

s | s).

Let us introduce the following error probability exponents or ”reliabilities”
E1|2 and E2|1, using logarithmical and exponential functions at the base e:

lim
N→∞

−N−1 lnα(N)
1|2 (ϕ(N)) = E1|2, (1)

lim
N→∞

−N−1 lnα2|1
(N)(ϕ(N)) = E2|1. (2)

The test is called logarithmically asymptotically optimal (LAO) if for given E1|2
it provides the largest value to E2|1. The problem is to state the existence of
such tests and to determine optimal dependence of the value of E2|1 from E1|2.

Now we collect necessary basic concepts and definitions. For s=(s1, . . . , sN), s∈
SN , let N(s | s) be the number of occurrences of s ∈ S in the vector s. The type
of s is the distribution

Ps = {Ps(s), s ∈ S}

defined by

Ps(s) =
1
N
N(s | s), s ∈ S.

For a pair of sequences x ∈ XN and s ∈ SN , let N(x, s|x, s) be the number of
occurrences of the pair (x, s) ∈ X ×S in the pair of vectors (x, s). The joint type
of the pair (x, s) is the distribution

Qx,s = {Qx,s(x, s), x ∈ X , s ∈ S}

defined by

Qx,s(x, s) =
1
N
N(x, s | x, s), x ∈ X , s ∈ S.
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The conditional type of x for given s is the conditional distribution

Qx|s = {Qx|s(x|s), x ∈ X , s ∈ S}

defined by

Qx|s(x|s) =
Qx,s(x, s)
Ps(s)

, x ∈ X , s ∈ S.

Let X and S are random variables with probability distributions P = {P (s), s ∈
S} and Q = {Q(x|s), x ∈ X , s ∈ S}. The conditional entropy of X with respect
to S is:

HP,Q(X | S) = −
∑
x,s

P (s)Q(x|s) lnQ(x|s).

The conditional divergence of the distribution P ◦Q = {P (s)Q(x|s), x ∈ X , s ∈
S} with respect to P ◦Gm = {P (s)Gm(x|s), x ∈ X , s ∈ S} is defined by

D(P ◦Q||P ◦Gm) = D(Q ‖ Gm|P ) =
∑
x,s

P (s)Q(x|s) ln
Q(x|s)
Gm(x|s) , m = 1, 2.

The conditional divergence of the distribution P ◦G2 = {P (s)G2(x|s), x ∈ X , s ∈
S} with respect to P ◦G1 = {P (s)G1(x|s), x ∈ X , s ∈ S} is defined by

D(P ◦G2||P ◦G1) = D(G2 ‖ G1|P ) =
∑
x,s

P (s)G2(x|s) ln
G2(x|s)
G1(x|s)

.

Similarly we define D(G1 ‖ G2|P ).
Denote by PN(S) the space of all types on S for given N , and QN (X , s) the

set of all possible conditional types on X for given s. Let T (N)
Ps,Q

(X | s) be the set
of vectors x of conditional type Q for given s of type Ps.

It is known [3] that

| QN (X , s) |≤ (N + 1)|X ||S|, (3)

(N +1)−|X ||S| exp{NHPs,Q(X |S)} ≤| T (N)
Ps,Q

(X | s) |≤ exp{NHPs,Q(X |S)}. (4)

Theorem. For every given E1|2 from (0, min
P∈P(S)

D(G2 ‖ G1 | P ))

E2|1(E1|2) = min
P∈P(S)

min
Q:D(Q||G1|P )≤E1|2

D(Q ‖ G2 | P ). (5)

We can easily infer the following

Corollary. (Generalized lemma of Stein): When α
(N)
1|2 (ϕ(N)) = ε > 0, for N

large enough

α
(N)
2|1 (α(N)

1|2 (ϕ(N)) = ε) = min
P∈P(S)

exp{−ND(G1 ‖ G2|P )}.
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3 Proof of the Theorem

The proof consists of two parts. We begin with demonstration of the inequality

E2|1(E1|2) ≥ min
P∈P(S)

min
Q:D(Q||G1|P )≤E1|2

D(Q||G2|P ). (6)

For x ∈ T (N)
Ps,Q

(X |s), s ∈ T (N)
Ps

(S), m = 1, 2 we have,

GNm(x | s)=
N∏
n=1

Gm(xn|sn)=
∏
x,s

Gm(x|s)N(x,s|x,s) =
∏
x,s

Gm(x|s)NPs(s)Qx|s(x|s) =

=
∏
x,s

exp {NPs(s)(s)Qx|s(x|s) ln Gm(x|s)}=
∏
x,s

exp {N [Ps(s)(s)Qx|s(x|s) lnGm(x|s)−

−Ps(s)(s)Qx|s(x|s) lnQx|s(x|s) + Ps(s)(s)Qx|s(x|s) lnQx|s(x|s)]} =

= exp{N
∑
x,s

(−Ps(s)(s)Qx|s(x|s) ln
Qx|s(x|s)
Gm(x|s) + Ps(s)(s)Qx|s(x|s) ln Qx|s(x|s))} =

= exp {−N [D(Q ‖ Gm|P ) +HPs,Q(X | S)]}. (7)

Let us show that the optimal sequence of tests ϕ(N) for every s is given by the
following sets

A(N)
s =

⋃
Q:D(Q‖G1|Ps)≤E1|2

T (N)
Ps,Q

(X | s). (8)

Using (4) and (7) we see that

GNm(T (N)
Ps,Q

(X |s) | s) =| T (N)
Ps,Q

(X | s) | GNm(x|s) ≤ exp{−ND(Q ‖ Gm|Ps)}.

We can estimate both error probabilities

α
(N)

1|2 (ϕ(N)) = max
s∈SN

GN
1 (A(N)

s | s) = max
s∈SN

GN
1 (

⋃
Q:D(Q||G1|Ps)>E1|2

T (N)
Ps,Q(X | s) | s) ≤

≤ max
s∈SN

(N + 1)|X |S| max
Q:D(Q||G1|Ps)>E1|2

GN1 (T (N)
Ps,Q

(X | s) | s) ≤

≤ (N + 1)|X ||S| max
Ps∈PN (S)

max
Q:D(Q||G1|Ps)>E1|2

exp{−ND(Q||G1|Ps)} =

= max
Ps∈PN(S)

max
Q:D(Q||G1|Ps)>E1|2

exp{|X ||S| ln (N + 1) −ND(Q||G1|P )} =

= max
Ps∈PN (S)

max
Q:D(Q||G1|Ps)>E1|2

exp{−N [D(Q||G1|Ps) − o(1)]} ≤

≤ exp{−N(E1|2 − o(1))},

where o(1) = N−1|X ||S| ln(N + 1) → 0, when N → ∞. And then
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α
(N)
2|1 (ϕ(N)) = max

s∈SN
GN2 (A(N)

s |s) = max
s∈SN

GN2 (
⋃

Q:D(Q||G1|Ps)≤E1|2

T (N)
Ps,Q

(X |s)|s) =

= max
s∈SN

∑
Q:D(Q||G1|Ps)≤E1|2

GN2 (T (N)
Ps,Q

(X |s)|s) ≤

≤ (N + 1)|X ||S| max
Ps∈PN (S)

max
Q:D(Q||G1|Ps)≤E1|2

exp{−ND(Q||G2|Ps)} =

= max
Ps∈PN (S)

max
Q:D(Q||G1|Ps)≤E1|2

exp{−N [D(Q||G2|Ps) − o(1)]} =

= exp{−N( min
Ps∈PN (S)

min
Q:D(Q||G1|Ps)≤E1|2

D(Q||G2|Ps) − o(1))}.

So with N → ∞ we get (6)
Now we pass to the proof of the second part of the theorem. We shall prove

the inequality inverse to (6). First we can show that this inverse inequality is
valid for test ϕ(N) defined by (8). Using (4) and (7) we obtain

α
(N)
2|1 (ϕ(N)) = max

s∈SN
GN2 (A(N)

s |s) = max
s∈SN

GN2 (
⋃

Q:D(Q||G1|Ps)≤E1|2

T (N)
Ps,Q

(X |s)|s)) ≥

≥ max
s∈SN

max
Q:D(Q||G1|Ps)≤E1|2

GN2 (T (N)
Ps,Q

(X |s)|s) ≥

≥ max
Ps∈PN (S)

(N + 1)−|X ||S| max
Q:D(Q||G1|Ps)≤E1|2

exp{−ND(Q||G2|Ps)} =

= exp{−N( min
Ps∈PN (S)

min
Q:D(Q||G1|Ps)≤E1|2

D(Q||G1|Ps) + o(1))}.

So with N → ∞ we get that for this test

E2|1(E1|2) ≤ min
P∈P(S)

min
Q:D(Q||G1|P )≤E1|2

D(Q||G2|P ). (9)

Then we have to be convinced that any other sequence ϕ̃N of tests defined for
every s ∈ SN by the sets ÃNs such, that

α1|2
(N)(ϕ̃(N)) ≤ exp{−NE1|2}, (10)

and
α

(N)
2|1 (ϕ̃(N)) ≤ α

(N)
2|1 (ϕ(N)),

in fact coincide with ϕ(N) defined in (8). Let us consider the sets ÃNs
⋂
ANs ,

s ∈ SN . This intersection cannot be void, because in that case ÃNs
⋂
ANs will

be equal to XN = ANs
⋃
ÃN s and the probabilities GN1 (ANs |s) and GN1 (ÃNs |s)

cannot be small simultaneously.
Now because

GN1 (ANs
⋂

ÃNs |s) ≤

GN1 (ANs )|s) +GN1 (ÃNs )|s) ≤ 2 · exp{−NE1|2} = exp{−N(E1|2 + o(1)},
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from (6) we obtain

GN
2 (AN

s

⋂
ÃN

s |s) ≤ GN
2 (AN

s |s) ≤ exp{−N( min
P∈P(S)

min
Q:D(Q||G1|P )≤E1|2

D(Q||G2|P ))}

and so we conclude that if we exclude from ÃNs the vectors x of the types
T NP,Q(X |s) with D(Q||G1|P ) > E1|2 we do not make reliabilities of the test ϕ̃(N)

worse. It is left to remark that when we add to ÃNs all types T NP,Q(X |s) with
D(Q||G1|P ) ≤ E1|2, that is we take ÃNs = ANs , we obtain that (6) and (9) are
valid, that is the test ϕ(N) is optimal.
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On Logarithmically Asymptotically Optimal

Testing of Hypotheses and Identification

R. Ahlswede and E. Haroutunian

Abstract. We introduce a new aspect of the influence of the information-
theoretical methods on the statistical theory. The procedures of the prob-
ability distributions identification for K(≥ 1) random objects each having
one from the known set of M(≥ 2) distributions are studied. N-sequences
of discrete independent random variables represent results of N observa-
tions for each of K objects. On the base of such samples decisions must be
made concerning probability distributions of the objects. For N → ∞ the
exponential decrease of the test’s error probabilities is considered. The re-
liability matrices of logarithmically asymptotically optimal procedures are
investigated for some models and formulations of the identification prob-
lems. The optimal subsets of reliabilities which values may be given be-
forehand and conditions guaranteeing positiveness of all the reliabilities
are investigated.

“In statistical literature such a problem is referred to as one of classifica-
tion or discrimination, but identification seems to be more appropriate”

Radhakrishna Rao [1].

1 Problem Statement

Let Xk = (Xk,n, n ∈ [N ]), k ∈ [K], be K(≥ 1) sequences of N discrete inde-
pendent identically distributed random variables representing possible results of
N observations, respectively, for each of K randomly functioning objects.

For k ∈ [K], n ∈ [N ],Xk,n assumes values xk,n in the finite set X of cardinality
|X |. Let P(X ) be the space of all possible distributions on X . There are M(≥ 2)
probability distributions G1, . . . , GM from P(X ) in inspection, some of which
are assigned to the vectors X1, . . . ,XK . This assignment is unknown and must
be determined on the base of N–samples (results of N independent observations)
xk = (xk,1, . . . , xk,N ), where xk,n is a result of the n-th observation of the k-th
object.

When M = K and all objects are different (any two objects cannot have the
same distribution), there are K! possible decisions. When objects are indepen-
dent, there are MK possible combinations.

Bechhofer, Kiefer, and Sobel presented investigations on sequential multiple-
decision procedures in [2]. This book is concerned principally with a particular
class of problems referred to as ranking problems.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 553–571, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Chapter 10 of the book by Ahlswede and Wegener [3] is devoted to statistical
identification and ranking problems.

We study models considered in [2] and [3] and variations of these models
inspired by the pioneering papers by Ahlswede and Dueck [4] and by Ahlswede
[5], applying the concept of optimality developed in [6]-[11] for the models with
K = 1.

Consider the following family of error probabilities of a test

α
(N)

m1,m2,...,mK |l1,l2,...,lK
, (m1, m2, . . . , mK) �= (l1, l2, . . . , lK), mk, lk ∈ [M ] , k ∈ [K] ,

which are the probabilities of decisions l1, l2, . . . , lK when actual indices of the
distributions of the objects were, respectively, m1,m2, . . . ,mK .

The probabilities to reject all K hypotheses when they are true are the fol-
lowing

α
(N)
m1,m2,...,mK |m1,m2,...,mK

=
∑

(l1,l2,...,lK) �=(m1,m2,...,mK)

α
(N)
m1,m2,...,mK |l1,l2,...,lK .

We study exponential decrease of the error probabilities when N → ∞ and
define (using logarithms and exponents to the base e)

lim
N→∞

− 1
N

logα(N)
m1,m2,...,mK |l1,l2,...,lK = Em1,m2,...,mK|l1,l2,...,lK ≥ 0. (1)

These are exponents of error probabilities which we call reliabilities (in asso-
ciation with Shannon’s reliability function [12]). We shall examine the matrix
E = {Em1,m2,...,mK |l1,l2,...,lK} and call it the reliability matrix.

Our criterion of optimality is: given M,K and values of a part of reliabilities
to obtain the best (the largest) values for others. In addition it is necessary
to describe the conditions under which all these reliabilities are positive. The
procedure that realizes such testing is identification, which following Birgé [10],
we call “logarithmically asymptotically optimal” (LAO).

Let N(x|x) be the number of repetitions of the element x ∈ X in the vector
x ∈ XN , and let

Q = {Q(x) = N(x|x)/N, x ∈ X}
is the distribution, called “the empirical distribution” of the sample x in statis-
tics, in information theory called “the type” [12], [13] and in algebraic literature
“the composition”.

Denote the space of all empirical distributions for given N by P(N)(X ) and
by T (N)

Q the set of all vectors of the type Q ∈ P(N)(X ).
Consider for k ∈ [K], m ∈ [M ], divergences

D(Qk||Gm) =
∑
x∈X

Qk(x) log
Qk(x)
Gm(x)

,

and entropies
H(Qk) = −

∑
x∈X

Qk(x) logQk(x).
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We shall use the following relations for the probability of the vector x when
Gm is the distribution of the object:

G(N)
m (x) =

N∏
n=1

Gm(xn) = exp{−N [D(Q||Gm) +H(Q)]}.

For mk ∈ [M ], k ∈ [K], when the objects are independent and Gmk
is the

distribution of the k-th object:

P (N)
m1,m2,...,mK

(x1,x2, . . . ,xK) = exp{−N [
K∑
k=1

D(Qk||Gmk
) +H(Qk)]}. (2)

The equalities follow from the independence of N observations of K objects
and from the definitions of divergences and entropies. It should be noted that
the equality (2) is valid even when its left part is equal to 0, in that case for
one of xk the distribution Qk is not absolutely continuous relative to Gmk

and
D(Qk||Gmk

) = ∞.
Our arguments will be based on the following fact: the “maximal likelihood”

test accepts as the solution values m1,m2, . . . ,mk, which maximize the proba-
bility P

(N)
m1,m2,...,mK (x1,x2, . . . ,xK), but from (2) we see that the same solution

can be obtained by minimization of the sum
K∑
k=1

[D(Qk||Gmk
) +H(Qk)], that is

the comparison with the help of divergence of the types of observed vectors with
their hypothetical distributions may be helpful.

In the paper we consider the following models.

1. K objects are different, they have different distributions among M ≥ K
possibilities. For simplicity we restrict ourselves to the case K = 2,M = 2. It is
the identification problem in formulations of the books [2] and [3].

2. K objects are independent, that is some of them may have the same distri-
butions. We consider an example for K,M = 2. It is surprising, but this model
has not been considered earlier in the literature.

3. We investigate one object, K = 1, and M possible probability distribu-
tions. The question is whether the m-th distribution occurred or not. This is the
problem of identification of distributions in the spirit of the paper [4].

4. Ranking, or ordering problem [5]. We have one vector of observations X =
(X1, X2, . . . , XN) and M hypothetical distributions. The receiver wants to know
whether the index of the true distribution of the object is in {1, 2, . . . , r} or in
{r + 1, . . . ,M}.

5. r-identification of distribution [5]. Again K = 1. One wants to identify the
observed object as a member either of the subset S of [M ], or of its complement,
with r being the number of elements in S.

Section 2 of the paper presents necessary notions and results on hypothesis
testing. The models of identification for independent objects are considered in
section 3 and for different objects in section 4. Section 5 is devoted to the problem
of identification of an object distribution and section 6 to the problems of r-
identification and ranking. Some results are illustrated by numerical examples
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and graphs. Many directions of further research are indicated in the course of
the text and in the section 7.

2 Background

The study of interdependence of exponential rates of decrease, as the sample size
N goes to the infinity, of the error probabilities α(N)

1|2 of the “first kind” and α(N)
2|1

of the “second kind” was started by the works of Hoeffding [6], Csiszár and Longo
[7], Tusnády [8], Longo and Sgarro [9], Birgé [10], and for multiple hypotheses
by Haroutunian [11]. Similar problems for Markov dependence of experiments
were investigated by Natarajan [14], Haroutunian [15], Gutman [16] and others.
As it was remarked by Blahut in his book [17], it is unfortunately confusing that
the errors are denoted type I and type II, while the hypotheses are subscripted
0 and 1. The word “type” is also used in another sense to refer to the type of a
measurement or the type of a vector. For this reason we do not use the names
“0” and “1” for hypotheses and the name “type” for errors. Note that in [17]–[19]
an application of the methods of hypothesis testing to the proper problems of
information theory is developed.

It will be very interesting to combine investigation of described models with
the approach initiated by the paper of Ahlswede and Csiszár [20] and developed
by many authors, particularly, for the exponentially decreasing error probabili-
ties by Han and Kobayashi [21].

In [22] Berger formulated the problem of remote statistical inference. Zhang
and Berger [23] studied a model of an estimation system with compressed in-
formation. Similar problems were examined by Ahlswede and Burnashev [24]
and by Han and Amari [25]. In the paper of Ahlswede, Yang and Zhang [26]
identification in channels via compressed data was considered. Fu and Shen [19]
studied hypothesis testing for an arbitrarily varying source.

Our further considerations will be based on the results from [11] on mul-
tiple hypotheses testing, so now we expose briefly corresponding formulations
and proofs. In our terms it is the case of one object (K = 1) and M possible
distributions (hypotheses) G1, . . . , GM . A test ϕ(x) on the base of N -sample
x = (x1, . . . , xN ) determines the distribution.

We study error probabilities α(N)
m|l for m, l ∈ [M ]. Here α(N)

m|l is the probability
that the distribution Gl was accepted instead of true distribution Gm. For m = l

the probability to reject Gm when it is true, is denoted by α
(N)
m|m thus:

α
(N)
m|m =

∑
l:l �=m

α
(N)
m|l .

This probability is called [27] the test’s “error probability of the kind m”. The
matrix {α(N

m|l)} is sometimes called the “power of the test” [27].
In this paper we suppose that the list of possible hypotheses is complete.

Remark that, as it was noted by Rao [1], the case, when the objects may have
also some distributions different from G1, . . . , GM , is interesting too.
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Let us analyze the reliability matrix

E =


E1|1 . . . E1|l . . . E1|M
. . . . . . . . . . . . . . . . . . . . .
Em|1 . . . Em|l . . . Em|M
. . . . . . . . . . . . . . . . . . . . .
EM|1 . . . EM|l . . . EM|M


with components

Em|l = lim
N→∞

− 1
N

logα(N)
m|l , m, l ∈ [M ] .

According to this definition and the definition of α(N)
m|l we can derive that

Em|m = min
l:m �=l

Em|l. (3)

Really,

Em|m = lim
N→∞

− 1
N

log
∑
l:m �=l

α
(N)
m|l =

= lim
N→∞

− 1

N
log max

l:m�=l
α

(N)
m|l + lim

N→∞
− 1

N
log

 ∑
l:m�=l

α
(N)
m|l

 / max
l:m�=l

α
(N)
m|l

 = min
l:m�=l

Em|l.

The last equality is a consequence of the fact that for all m and N

1 ≤ (
∑
l:m �=l

α
(N)
m|l )/ max

l:m �=l
α

(N)
m|l ≤ M − 1.

In the case M = 2, the reliability matrix is

E =
(
E1|1 E1|2
E2|1 E2|2

)
(4)

and it follows from (3) that there are only two different values of elements,
namely

E1|1 = E1|2 and E2|1 = E2|2, (5)

so in this case the problem is to find the maximal possible value of one of them,
given the value of the other.

In the case ofM hypotheses for givenpositive andfiniteE1|1, E2|2, . . . , EM−1,M−1

let us consider the regions of distributions

Rl = {Q : D(Q||Gl) ≤ El|l}, l ∈ [M − 1] , (6)

RM = {Q : D(Q||Gl) > El|l, l ∈ [M − 1]} = P(X ) −
M−1⋃
l=1

Rl, (7)

R(N)
l = Rl

⋂
P(N), l ∈ [M ]. (8)
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Let
E∗l|l = E∗l|l(El|l) = El|l, l ∈ [M − 1] , (9)

E∗m|l = E∗m|l(El|l) = inf
Q∈Rl

D(Q||Gm), m ∈ [M ] , m = l, l ∈ [M − 1] , (10)

E∗m|M = E∗m|M (E1|1, . . . , EM−1,M−1) = inf
Q∈RM

D(Q||Gm), m ∈ [M − 1] , (11)

E∗M|M = E∗M|M (E1|1, . . . , EM−1,M−1) = min
l∈[M−1]

E∗M|l. (12)

If some distribution Gm is not absolutely continuous relative to Gl the reliability
E∗m|l will be equal to the infinity, this means that corresponding α

(N)
m|l = 0 for

some large N .
The principal result of [11] is:

Theorem 1. If all the distributions Gm are different and all elements of the
matrix {D(Gl||Gm)}, l,m ∈ [M ], are positive, but finite, two statements hold:

a) when the positive numbers E1|1, E2|2, . . . , EM−1,M−1 satisfy conditions

E1|1 < min
l∈[2,M ]

D(Gl||G1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

Em|m < min[ min
l∈[m−1]

E∗m|l(El|l), min
l∈[m+1,M ]

D(Gl||Gm)], m ∈ [2,M − 1] ,

then there exists a LAO sequence of tests, the reliability matrix of which E∗ =
{E∗m|l} is defined in (9),(10),(11),(12) and all elements of it are positive;

b) even if one of conditions (13) is violated, then the reliability matrix of any
such test has at least one element equal to zero (that is the corresponding error
probability does not tend to zero exponentially).

The essence of the proof of Theorem 1 consists in construction of the following
optimal tests sequence. Let the decision l will be taken when x gets into the set

B(N)
l =

⋃
Q∈R(N)

l

T (N)
Q , l ∈ [M ] , N = 1, 2, . . . . (14)

The non-coincidence of the distributions Gm and the conditions (13) guarantee
that the sets from (14) are not empty, they meet conditions

B(N)
l

⋂
B(N)
m = ∅, l = m,

and
M⋃
l=1

B(N)
l = XN ,

and so they define a sequence of tests, which proves to be LAO.
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For the simplest particular case M = 2 elements of the reliability matrix (4)
satisfy equalities (5) and for given E1|1 from (5) and (7) we obtain the value of
E∗2|1 = E∗2|2:

E∗2|1(E1|1) = inf
Q:D(Q||G1)≤E1|1

D(Q||G2). (15)

Here, according to (13), we can take E1|1 from (0, D(G2‖G1)) and E∗2|1(E1|1)
will range between D(G1||G2) and 0.

3 Identification Problem for Model with Independent
Objects

We begin with study of the second model. To illustrate possibly arising devel-
opments and essential features we consider a particular case K = 2,M = 2. It
is clear that the case with M = 1 is trivial. The reliability matrix is (see (1))

E =


E1,1|1,1 E1,1|1,2 E1,1|2,1 E1,1|2,2
E1,2|1,1 E1,2|1,2 E1,2|2,1 E1,2|2,2
E2,1|1,1 E2,1|1,2 E2,1|2,1 E2,1|2,2
E2,2|1,1 E2,2|1,2 E2,2|2,1 E2,2|2,2

 .

Let us denote by α
(1)
m1|l1 , α

(2)
m2|l2 and E

(1)
m1|l1 , E

(2)
m2|l2 the error probabilities and

the reliabilities as in (4) for, respectively, the first and the second objects.

Lemma. If 0 < E
(i)
1|1 < D(G2||G1), i = 1, 2, then the following equalities hold

true:
Em1,m2|l1,l2 = E

(1)
m1|l1 + E

(2)
m2|l2 , if m1 = l1, m2 = l2, (16)

Em1,m2|l1,l2 = E
(i)
mi|li , if m3−i = l3−i, mi = li, i = 1, 2, (17)

Proof. From the independence of the objects it follows that

α
(N)
m1,m2|l1,l2 = α

(N,1)
m1|l1α

(N,2)
m2|l2 , if m1 = l1, m2 = l2, (18)

α
(N)
m1,m2|l1,l2 = α

(N,i)
mi|li(1 − α

(N,3−i)
m3−i|l3−i

), if m3−i = l3−i, mi = li, i = 1, 2, (19)

According to (1), from (18) we obtain (16), from (19) and the conditions of
positiveness of E(i)

1|1 and E
(i)
2|2, i = 1, 2, (17) follows.

Theorem 2. If the distributions G1 and G2 are different, the strictly positive
elements E1,1|1,2, E1,1|2,1 of the reliability matrix E are given and bounded above:

E1,1|1,2 < D(G2||G1), and E1,1|2,1 < D(G2||G1), (20)
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then the other elements of the matrix E are defined as follows:

E2,1|2,2 = E1,1|1,2, E1,2|2,2 = E1,1|2,1,

E1,2|1,1 = E2,2|2,1 = inf
Q: D(Q||G1)≤E1,1|1,2

D(Q||G2),

E2,1|1,1 = E2,2|1,2 = inf
Q: D(Q||G1)≤E1,1|2,1

D(Q||G2), (21)

E2,2|1,1 = E1,2|1,1 + E2,1|1,1, E2,1|1,2 = E2,1|1,1 + E1,2|2,2,

E1,2|2,1 = E1,2|1,1 + E1,2|2,2, E1,1|2,2 = E1,1|1,2 + E1,1|2,1,

Em1,m2|m1,m2 = min
(l1,l2) �=(m1,m2)

Em1,m2|l1,l2 , m1,m2 = 1, 2.

If one of the inequalities (20) is violated, then at least one element of the matrix
E is equal to 0.

Proof. The last equalities in (21) follow (as (3)) from the definition of

α
(N)
m1,m2|m1,m2

=
∑

(l1,l2) �=(m1,m2)

α
(N)
m1,m2|l1,l2 , m1,m2 = 1, 2.

Let us consider the reliability matrices of each of the objects X1 and X2

E(1) =

(
E

(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
and E(2) =

(
E

(2)
1|1 E

(2)
1|2

E
(2)
2|1 E

(2)
2|2

)
.

From (5) we know that E(i)
1|1 = E

(i)
1|2 and E

(i)
2|1 = E

(i)
2|2, i = 1, 2. From (20)

it follows that 0 < E
(1)
1|1 < D(G2||G1), 0 < E

(2)
1|1 < D(G2||G1). Really, if

0 < E1,1|1,2 < D(G2||G1), but E(2)
1|1 ≥ D(G2||G1), then from (19) and (1) we

arrive to
lim
N→∞

− 1
N

log(1 − α
(N,2)
1|2 ) < 0,

therefore index N0 exists, such that for subsequence of N > N0 we will have
1−α

(N,2)
1|2 > 1. But this is impossible because α(N,2)

1|2 is the probability and must
be positive.

Using Lemma we can deduce that the reliability matrix E can be obtained
from matrices E(1) and E(2) as follows:

E =


min(E(1)

1|2 , E
(2)
1|2) E

(2)
1|2 E

(1)
1|2 E

(1)
1|2 + E

(2)
1|2

E
(2)
2|1 min(E(1)

1|2 , E
(2)
2|1) E

(1)
1|2 + E

(2)
2|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|1 + E

(2)
1|2 min(E(1)

2|1 , E
(2)
1|2) E

(2)
1|2

E
(1)
2|1 + E

(2)
2|1 E

(1)
2|1 E

(2)
2|1 min(E(1)

2|1 , E
(2)
2|1)

 ,
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in other words, providing, that conditions (20) are fulfilled, we find that

E1,1|1,2 = E
(2)
1|2 = E

(2)
1|1 and E1,1|2,1 = E

(1)
1|2 = E

(1)
1|1 ,

E2,1|2,2 = E1,1|1,2 = E
(2)
1|2 , E1,2|2,2 = E1,1|2,1 = E

(1)
1|2 ,

E1,2|1,1 = E2,2|2,1 = E
(2)
2|1 , E2,1|1,1 = E2,2|1,2 = E

(1)
2|1 ,

E2,2|1,1 = E
(1)
2|1 + E

(2)
2|1 , E2,1|1,2 = E

(1)
2|1 + E

(2)
1|2 , (22)

E1,2|2,1 = E
(1)
1|2 + E

(2)
2|1 , E1,1|2,2 = E

(1)
1|2 + E

(2)
1|2 ,

Em1,m2|m1,m2 = min{E(1)
m1|m1

, E
(2)
m2|m2

}, m1,m2 = 1, 2,

From Theorem 1 we know that if E(i)
1|1 ∈ (0, D(G2||G1)), i = 1, 2, then the tests

of both objects are LAO and the elements E(i)
2|1, i = 1, 2, can be calculated (see

(15)) by

E
(i)
2|1 = inf

Q:D(Q||G1)≤E(i)
1|1

D(Q||G2), i = 1, 2, (23)

and if E(i)
1|1 ≥ D(G2||G1), then E

(i)
2|1 = 0.

According to (22) and (23), we obtain, that when (20) takes place, the el-
ements of the matrix E are determined by relations (21). When one of the
inequalities (20) is violated, then from (23) and the first and the third lines of
(22) we see, that some elements in the matrix E must be equal to 0 (namely,
either E1,2|1,1, or E2,1|1,1 and others).

Now let us show that the compound test for two objects is LAO, that is
it is optimal. Suppose that for given E1,1|1,2 and E1,1|2,1 there exists a test
with matrix E

′
, such that it has at least one element exceeding the respective

element of the matrix E. Comparing elements of matrices E and E
′

different
from E1,1|1,2 and E1,1|2,1, from (22) we obtain that either E1,2|1,1 < E

′
1,2|1,1, or

E2,1|1,1 < E
′
2,1|1,1 , i.e. either E(2)

2|1 < E
(2)′

2|1 , or E(1)
2|1 < E

(1)′

2|1 . It is contradiction
to the fact, that LAO tests have been used for the objects X1 and X2.

When it is demanded to take the same values for the reliabilities of the first
and the second objects E(1)

1|2 = E
(2)
1|2 = a1 and, consequently, E(1)

2|1 = E
(2)
2|1 = a2,

then the matrix E will take the following form

E =


a1 a1 a1 2a1

a2 min(a1, a2) a1 + a2 a1

a2 a1 + a2 min(a1, a2) a1

2a2 a2 a2 a2

 .
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4 Identification Problem for Models with Different
Objects

The K objects are not independent, they have different distributions, and so the
number M of the distributions is not less than K. This is the model studied in
[2]. For brevity we consider the case K = 2,M = 2. The matrix of reliabilities
will be the following:

E =
(
E1,2|1,2 E1,2|2,1
E2,1|1,2 E2,1|2,1

)
. (24)

Since the objects are strictly dependent this matrix coincides with the reliability
matrix of the first object (see (4))

E(1) =

(
E

(1)
1|1 E

(1)
1|2

E
(1)
2|1 E

(1)
2|2

)
,

because the distribution of the second object is uniquely defined by the distrib-
ution of the first one.

We can conclude that among 4 elements of the reliability matrix of two de-
pendent objects only 2 elements are distinct, the second of which is defined by
given E

(1)
1|1 = E1,2|1,2.

From symmetry it follows that the reliability matrix of the second object also
may determine the matrix (24).

5 Identification of the Probability Distribution of an
Object

Let we have one object, K = 1, and there are known M ≥ 2 possible distribu-
tions. The question is whether r-th distribution occured, or not. There are two
error probabilities for each r ∈ [M ] the probability α(N)

m=r|l �=r to accept l different

from r, when r is in reality, and the probability α
(N)
m �=r|l=r that r is accepted,

when it is not correct.
The probability α

(N)
m=r|l �=r is already known, it coincides with the probability

α
(N)
r|r which is equal to

∑
l:l �=r

α
(N)
r|l . The corresponding reliability Em=r|l �=r is equal

to Er|r which satisfies the equality (3).
We have to determine the dependence of Em �=r|l=r upon given Em=r|l �=r =

Er|r, which can be assigned values satisfying conditions (13), this time we will
have the conditions:

0 < Er|r < min
l:l �=r

D(Gl‖Gr), r ∈ [M ].
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We need the probabilities of different hypotheses. Let us suppose that the
hypotheses G1, . . . , GM have, say, probabilities Pr(r), r ∈ [M ]. The only sup-
position we shall use is that Pr(r) > 0, r ∈ [M ]. We will see, that the result
formulated in the following theorem does not depend on values of Pr(r), r ∈
[M ], if they all are strictly positive.

Now we can make the following reasoning for each r ∈ [M ]:

α
(N)
m �=r|l=r =

Pr(N)(m = r, l = r)
Pr(m = r)

=
1∑

m:m �=r
Pr(m)

∑
m:m �=r

Pr(N)(m, r).

From here we see that for r ∈ [M ]

Em �=r|l=r = lim
N→∞

(
− 1
N

logα(N)
m �=r|l=r

)
=

= lim
N→∞

1
N

log
∑
m:m �=r

Pr(m) − log
∑
m:m �=r

α
(N)
m|rPr(m)

 = min
m:m �=r

E∗m|r. (25)

Using (25) by analogy with the formula (15) we conclude (with Rr defined as in
(6) for each r including r = M by the values of Er|r from (0,min

l:l �=r
D(Gl||Gr)))

that
Em �=r|l=r(Er|r) = min

m:m �=r
inf
Q∈Rr

D(Q‖Gm) =

= min
m:m �=r

inf
Q:D(Q‖Gr)≤Er|r

D(Q‖Gm), r ∈ [M ]. (26)

We can summarize this result in

Theorem 3. For the model with different distributions, for the given sample x
we define its type Q, and when Q ∈ R(N)

r we accept the hypothesis r. Under
condition that the probabilities of all M hypotheses are positive the reliability
of such test Em �=r|l=r for given Em=r|l �=r = Er|r is defined by (26).

For presentation of examples let us consider the set X = {0, 1} with only 2
elements. Let 5 probability distributions are given on X :

G1 = {0.1, 0.9}

G2 = {0.65, 0.35}

G3 = {0.45, 0.55}

G4 = {0.85, 0.15}

G5 = {0.23, 0.77}

On Fig. 1 the results of calculations of Em �=r|l=r as function of Em=r|l �=r are
presented.
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Em�=r|l=r

[
Er|r

]
r = 1, 2, 3, 4, 5

Er|r

Fig. 1.

The elements of the matrix of divergences of all pairs of distributions are used
for calculation of conditions (13) for this example.

{D(Gm‖Gl)}l∈[5]
m∈[5] =


0 0.956 0.422 2.018 0.082

1.278 0 0.117 0.176 0.576
0.586 0.120 0 0.618 0.169
2.237 0.146 0.499 0 1.249
0.103 0.531 0.151 1.383 0

 .

In figures 2 and 3 the results of calculations of the same dependence are
presented for 4 distributions taken from previous 5.

Em�=t|l=t

[
Et|t

]
t = 1, 2, 3, 4

Et|t

Fig. 2.
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Em�=t|l=t

[
Et|t

]
t = 1, 2, 3, 4

Et|t

Fig. 3.

6 r-Identification and Ranking Problems

The model was introduced in [5] and named K-identification. Since in this paper
the letter K is already used we speak of r-identification. Given N -sample x of
measurements of the object the problem is to answer to the question: is the
distribution of the object in the part S of M possible distributions or in its
complement, here r is the number of elements of the set S.

Again we can make decision on the base of the type Q of the sample x and
suppose that before experiments all hypotheses have some positive probabilities

Pr(1), . . . ,Pr(M). (27)

Using (6) – (8) with some E1,1, . . . , EM−1,M−1 meeting the conditions (13) when
Q ∈

⋃
l∈S

R(N)
l decision “l is in S” follows.

The model of ranking is the particular case of the model of r-identification
with S = {1, 2, . . . , r}. But conversely the r-identification problem without loss
of generality may be considered as the ranking problem, to this end we can
renumber the hypotheses placing the hypotheses of S in the r first places. Be-
cause these two models are mathematically equivalent we shall speak below only
of the ranking model.

It is enough to consider the cases r ≤ 	M/2
, because in the cases of larger
r we can replace S with its complement. Remark that the case r = 1 was
considered in section 5.

We study two error probabilities of a test: the probability α
(N)
m≤r|l>r to make

incorrect decision when m is not greater than r and the probability α(N)
m>r|l≤r to

make error when m is greater than r. The corresponding reliabilities are
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E1(r) = Em≤r|l>r and E2(r) = Em>r|l≤r, 1 ≤ r ≤ 	M/2
. (28)

With supposition (27) we have

α
(N)
m≤r|l>r =

Pr(N)(m ≤ r, l > r)
Pr(m ≤ r)

=

=
1∑

m≤r
Pr(m)

∑
m≤r

∑
l>r

Pr(N)(m, l) =
1∑

m≤r
Pr(m)

∑
m≤r

∑
l>r

α
(N)
m|lPr(m). (29)

The definition (28) of E1(r) and the equality (29) give

E1(r) = lim
N→∞

− 1
N

logα(N)
m≤r|l>r =

= lim
N→∞

− 1
N

log
∑
m≤r

∑
l>r

Pr(m)α(N)
m|l − log

∑
m≤r

Pr(m)

 = min
m≤r,l>r

Em|l. (30)

Analogously, at the same time

E2(r) = lim
N→∞

− 1
N

logα(N)
m>r|l≤r =

= lim
N→∞

− 1
N

log
∑
m>r

∑
l≤r

α
(N)
m|l − log

∑
m>r

Pr(m)

 = min
m>r,l≤r

Em|l. (31)

For any test the value ofE1(r) must satisfy the condition (compare (3) and (30))

E1(r) ≥ min
m:m≤r

Em|m. (32)

Thus for any test meeting all inequalities from (13) for m ≤ r and inequality
(32) the reliabilityE2(r) may be calculated with the equality (31). For given value
of E1(r) the best E2(r) will be obtained if we use liberty in selection of the biggest
values for reliabilities Em|m, r < m ≤ M − 1, satisfying for those m-s conditions
(13). These reasonings may be illuminated by Fig.4.



E1|1 E1|M

EM|1 EM|M



Er|r

E2(r)[E1(r)] =

= min
m>r,l≤r

Em|l

E1(r)= min
m≤r,l>r

Em|l

m = 1

2

.

.

.

r

r + 1

.

.

.

.

.

.

.

.

.

.

.

.

M

l = 1, 2, . . . , r, r + 1, . . . . . . . , M

Fig. 4. Calculation of E2(r) [E1(r)]
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and resumed as follows:

Theorem 4. When the probabilities of the hypotheses are positive, for given
E1(r) for m ≤ r not exceeding the expressions on the right in (13), E2(r) may
be calculated in the following way:

Em�=t|l=t

[
Et|t

]
t = 1, 2, 3

Et|t

Fig. 5.

E2(r)

E1(r)

Fig. 6.
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E2(r) [E1(r)] = max
{Em|l, m,l∈[M ]}: min

m≤r, l>r
E∗

m|l=E1(r)

[
min

m>r, l≤r
E∗m|l

]
(33)

with E∗m|l defined in (9),(10),(11),(12).

Remark. One can see from (33) that for r = 1 we arrive to (26) for r = 1.

Em�=t|l=t

[
Et|t

]
t = 1, 2, 3

Et|t

Fig. 7.

E2(r)

E1(r)

Fig. 8.
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In figures 5 and 7 for 2 subsets by 3 distributions taken from 5 defined for Fig.1
the results of calculation of the dependence (26) and in figures 6 and 8 the
corresponding results of the formula (33) are presented.

7 Conclusion and Extensions of Problems

The paper is a contribution to influence of the information theory methods on
statistical theory. We have shown by simple examples what questions arise in
different models of statistical identification.

Problems and results of the paper may be extended in several directions some
of which have been already noted above.

It is necessary to examine models in which measurements are described by
more general classes of random variables and processes [14]–[16], [25].

One of the directions is connected with the use of compressed data of mea-
surements [22]–[26].

One may see perspectives in application of identification approach and meth-
ods to the authentication theory [32] and steganography [33].
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Correlation Inequalities in Function Spaces

R. Ahlswede and V. Blinovsky

Abstract. We give a condition for a Borel measure on R[0,1] which is
sufficient for the validity of an AD-type correlation inequality in the
function space1

In [1] was proved that if ϕ1, ϕ2, ϕ3, ϕ4 are bounded real non negative measurable
functions on the space with measure (Rn,B, µ) which satisfy for all x̄, ȳ ∈ Rn

the following inequality

ϕ1(x̄)ϕ2(ȳ) ≤ ϕ3(x̄
∨

ȳ)ϕ4(x̄
∧

ȳ) a.s., (1)

then ∫
ϕ1(x̄)µ(dx̄)

∫
ϕ2(x̄)µ(dx̄) ≤

∫
ϕ3(x̄)µ(dx̄)

∫
ϕ4(x̄)µ(dx̄), (2)

where µ(dx̄) is the product σ−finite measure on B, (x̄∨ ȳ)i = xi∨yi, (x̄∧ ȳ)i =
xi ∧ yi. That proof was simplified in [2] via induction on dimension n suggested
in [3], [7] ,[8]. The question we consider here is how the problem can be viewed
in the case of not arbitrary measure ν on RT , when possibly T = [0, 1]? The
next theorem answers this question.

Let for arbitrary real functions x(t), y(t), t ∈ T =[0, 1], (x
∨
y)(t)=x(t)

∨
y(t)

and (x
∧
y)(t) = x(t)

∧
y(t). Let also νi(dx̄), i = 1, 2, 3, 4 be measures on the

Borel sets B(C) of the linear space C of continuous functions from RT with the
norm ||·||∞, which are finite on the compact subsets of C. Let also ϕi, i = 1, 2, 3, 4
be four uniformly bounded nonnegative Borel real functions from RT .

Theorem 1. If the following conditions are valid

ϕ1(f)ϕ2(g) ≤ ϕ3(f
∨

g)ϕ4(f
∧

g) (3)

ν1(A)ν2(B) ≤ ν3(A
∨

B)ν4(A
∧

B), A,B ∈ B(C), (4)

then ∫
ϕ1(x̄)ν1(dx̄)

∫
ϕ2(x̄)ν2(dx̄) ≤

∫
ϕ3(x̄)ν3(dx̄)

∫
ϕ4(x̄)ν4(dx̄). (5)

Here A
∨
B = {a

∨
b : a ∈ A, b ∈ B}, A

∧
B = {a

∧
b : a ∈ A, b ∈ B}.

Condition (4) is also necessary for (5). Indeed indicator functions IA, IB, IA∨
B,

IA
∧
B satisfy (3) and substitution of them in (5) gives (4).

1 This work is partially supported by RFFI grants No 03-01-00592 and 03-01-00098
and INTAS grant No 00-738.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 572–577, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We call a measure ν which satisfies the relation

ν(A)ν(B) ≤ ν(A
∨

B)ν(A
∧

B), A,B ∈ B(C)

an FKG measure.

Proof. If ∫
ϕ3(x̄)ν3(dx̄)

∫
ϕ4(x̄)ν4(dx̄) = ∞

then (5) follows. Next we consider that∫
ϕ3(x̄)ν3(dx̄)

∫
ϕ4(x̄)ν4(dx̄) <∞

and propose at first that∫
ϕ1(x̄)ν1(dx̄)

∫
ϕ2(x̄)ν2(dx̄) < ∞. (6)

Then
∫
ϕi(x̄)νi(dx̄), i = 1, 2, 3, 4 are finite Borel measures which are regular

and hence there exists a compact set K ⊂ C, such that for given ε > 0∣∣∣∣∫
K
ϕi(x̄)νi(dx̄) −

∫
ϕi(x̄)νi(dx̄)

∣∣∣∣ ≤ ε, i = 1, 2, 3, 4 (7)

and ν(K) < ∞. This compact set is by Ascoli’s Lemma the set of equicontinuous
functions {xt} which for some N > 0 satisfy the relation

|xt| ≤ N.

Without loss of generality we will consider that K is the set of all such functions.
It is easy to see that this set is a distributive lattice. Indeed if

|xi(t) − y(t)| < ε, |xi| ≤ N, i = 1, 2

then

|(x1

∨
x2)(t) − y(t)| < ε, |(x1

∧
x2)(t) − y(t)| < ε, (8)

|(x1

∨
x2)(t)| < N, |(x1

∧
x2)(t)| ≤ N.

We consider the partition of the interval T into m consecutive subintervals ∆i =
[ti−1, ti), i = 1, 2, . . .m − 1, t0 = 0, ∆m = [tm−1, 1] of equal length choosing m
in such a way that if t, t′ ∈ ∆i, then

|xt − xt′ | < δ/2. (9)

Without loss of generality we assume that N is integer and that δ = L−1 for some
natural L. Next we divide the interval [−N,N ] into 2N/δ = 2LN consecutive
subintervals Γj = [sj−1, sj), j = 1, 2, . . . , 2LN − 1, Γ2LN = [s2LN−1, 2LN ] of
equal length δ. At last we consider the partition of the compact K into the set
of cylinders (m = 2LN + 1)

πt0,t1,...,tm(i0, i1, . . . , im) = {xt : xtj ∈ Γij}, ij = 1, 2, . . . , 2LN.
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Consider the finite set of rectangles

K(i0, i1, . . . , im)
∆
= Kt0,t1,...,tm(i0, i1, . . . , im) = {xt :xtj ∈ Γij ; |xt −yj |<δ, t∈∆j}⊂RT ,

where yj is the center of the interval Γj . Then from (9) it follows that

K ⊂
⋃
ij

Kt0,t1,...,tm(i0, i1, . . . , im).

Note also that
diam(K(i0, i1, . . . , im)) = 2δ. (10)

Now we approximate in L1(RT , νi) functions ϕi on the compact K by contin-
uous functions fi on K : ∫

K
|ϕi(x̄) − fi(x̄)|νi(dx̄) < ε. (11)

Using a standard procedure we can choose fi in such a way that

fi ≤ ϕi, i = 1, 2; fi ≥ ϕi, i = 3, 4.

Note, that functions fi are uniformly continuous on K and consequently, choosing
δ sufficiently small, we can choose new functions ξi, i = 1, 2, 3, 4 on K such that
0 ≤ fi − ξi < ε/νi(K), i = 1, 2; 0 ≤ ξi − fi < ε/νi(K), i = 3, 4 and every ξi is
constant on every set Kt0,t1,...,tm(i0, i1, . . . , im)

⋂
K. At last note that the family

A of sets
K(i0, i1, . . . , im)

⋂
K , ij = 1, 2, . . . , 2LN

is a distributive lattice under the operations
∨
,
∧

on the set of indices ij :

K(i0
∨

i′0, i1
∨

i′1, . . . , im
∨

i′m)
⋂

K,

K(i0
∧

i′0, i1
∧

i′1, . . . , im
∧

i′m)
⋂

K ∈ A.

Hence we have eight families of values

νi(i0, i1, . . . , im) ∆= νi(K(i0, i1, . . . , im)), i = 1, 2, 3, 4,

ξi(i0, i1, . . . , im) ∆= ξi(x̄), x̄ ∈ K(i0, i1, . . . , im)

and

ν1(i0, i1, . . . , im)ξ1(i0, i1, . . . , im)ν2(j0, j1, . . . , jm)ξ2(j0, j1, . . . , jm) ≤ (12)

≤ ν3(i0
∨

j0, i1
∨

j1, . . . , im
∨

jm)ξ3(i0
∨

j0, i1
∨

j2, . . . , im
∨

jm) ×

× ν4(i0
∧

j0, i1
∧

j1, . . . , im
∧

jm)ξ4(i0
∧

j0, i1
∧

j1, . . . , im
∧

jm).

Hence we are in the condition (1), (2) with counting measure µ on Rm+1

µ(A) =
∑
ij

δx̄,(i0,i1,...,im)(A)
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and
ϕi(i0, i1, . . . , im) = νi(i0, i1, . . . , im)ξi(i0, i1, . . . , im).

It follows that∑
ij

ν1(i0, i1, . . . , im)ξ1(i0, i1, . . . , im)
∑
ij

ν2(j0, j1, . . . , jm)ξ2(j0, j1, . . . , jm) (13)

≤
∑
ij

ν3(i0, i1, . . . , im)ξ3(i0, i1, . . . , im)
∑
ij

ν4(i0, i1, . . . , im)ξ4(i0, i1, . . . , im).

Because∣∣∣∣∑
ij

νi(i0, i1, . . . , im)ξi(i0, i1, . . . , im) −
∫
ξi(x̄)νi(dx̄)

∣∣∣∣ ≤ 3ε

and ε > 0 is arbitrary from (13) it follows statement of the theorem in the case
when (6) is valid. Let’s consider now that (6) is not valid. Let’s for example∫

ϕ3(x̄)ν3(dx̄) = ∞,

∫
ϕ4(x̄)ν4(dx̄) <∞. (14)

Then we use the same consideration, but instead of relations (7), (11) we apply
relations ∫

K
ϕ3(x̄)ν3(dx̄) > M,∫

K
f3(x̄)|ν3(dx̄) > M − ε, f3 < M1

correspondingly. Here M,M1 are given constants which we will an consider ar-
bitrary large. Repeating the proof as in the case of finite integrals we obtain
that the product integrals over measures ν3, ν4 is arbitrary large which gives the
contradiction to their finiteness. Cases other than (14) are considered similarly.
This proves the theorem.

Let’s show that (4) is valid if we consider the all equal for different i measures,
generated by Wiener process. Actually it is not difficult to see that for the
validness of (4) it is necessary and sufficient the inequality (4) to be valid for
the cylinders A,B which bases are rectangles. It easily follows from the proof of
Theorem.

Hence all we should do when the random process is given by its finite di-
mensional distributions is to check whether it has continuous modification and
whether the measure on cylinders which bases are rectangles generated by the
finite dimensional distributions satisfy the inequality (4).

It is easy to see that Wiener process is the case. Indeed it is well known that in
finite dimensional case Gauss distribution generate the measure, satisfying (4) if
ri,j ≤ 0, i = j, whereW = ||wi,j ||ni,j=1 is the matrix inverse to the correlation ma-
trix R [2]. In the case of Wiener process R = ||ti

∨
tj ||ni,j=1, ti > tj , i > j and the

inverse matrix W has nonzero elements only on the diagonal and also elements
in the strip above and belong the diagonal wp,p+1 = wp+1,p = (tp − tp+1)−1,
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p = 1, 2, . . . , n− 1. Hence measure ν , generated by the Wiener process ωt sat-
isfies (4) (νi = ν, i = 1, 2, 3, 4).

Also introduce one important example of the function which satisfies (3). Such
function is

ϕi(ω·) = ϕ(ω·) = exp
(∫ 1

0

b(t)ωtdt
)

where b(t) is some function for which the integral has sense. This functions
satisfy (3) because the expression in the exponent is linear function of ωt and
the obvious relation

a+ b = a
∨

b+ a
∧

b.

Next we introduce some corollaries of the theorem. Note that if  is a nonde-
creasing non negative function, then functions ϕ1 = ϕ3 = , ϕ2 = ϕ4 = 1 satisfy
inequality (3). If νi are probability distributions then from the theorem it follows
that

E1() ≤ E2(), (15)

where Ei is the mathematical expectation under the probability measure νi.
Note that the theorem is valid also if instead of T = [0, 1] one consider T =
n. In other words the theorem is valid in n−dimensional space. To see it is
enough to make minor changes in the proof mostly concerning notations. But
in this case we have the extending of the result from [3],[7],[8] to the case
of the arbitrary measure, not only such that is discrete or have density. The
same note is valid concerning the FKG inequality [6]. Note also that the con-
dition that  ≥ 0 is ambitious because if it is negative we can consider the
truncated version of  and add the positive constant and then take a lim-
it when the level of the truncation tends to infinity. If we have probability
measure which satisfies inequality (4) (all νi are equal) then for any pair of
nondecreasing (non increasing) functions 1, 2 the following inequality
is valid

E(12) ≥ E(1)E(2). (16)

In the case of finite dimension it is a strengthening of the FKG inequality for the
case of an arbitrary probability measure. To prove this inequality it is sufficient
to use inequality (15) with ν2(dx̄) = �2ν(dx̄)

E(�2)
, ν1 = ν and assume that 2 is non

negative.
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Lower Bounds for Divergence in the Central

Limit Theorem

Peter Harremoës

Abstract. A method for finding asymptotic lower bounds on informa-
tion divergence is developed and used to determine the rate of conver-
gence in the Central Limit Theorem

1 Introduction

Recently Oliver Johnson and Andrew Barron [7] proved that the rate of con-
vergence in the information theoretic Central Limit Theorem is upper bounded
by c

n under suitable conditions for some constant c. In general if r0 > 2 is the
smallest number such that the r’th moment do not vanish then a lower bound
on total variation is c

n
r0
2 −1

for some constant c. Using Pinsker’s inequality this

gives a lower bound on information divergence of order 1
nr0−2 . In this paper more

explicit lower bounds are computed. The idea is simple and follows general ideas
related to the maximum entropy principle as described by Jaynes [6]. If some of
the higher moments of a random variable X are known the higher moments of
the centered and normalized sum of independent copies of X can be calculated.
Now, maximize the entropy given these moments. This is equivalent to minimize
the divergence to the normal distribution. The distribution maximizing entropy
with given moment constraints can not be calculated exactly but letting n go to
infinity asymptotic results are obtained.

2 Existence of Maximum Entropy Distributions

Let X be a random variable for which the moments of order 1, 2, ..., R exist. Wlog
we will assume that E (X) = 0 and V ar (X) = 1. The r’th central moment is
denoted µr (X) = E (Xr) . The Hermite polynomials which are orthogonal poly-
nomials with respect to the normal distribution. The first Hermite polynomials
are

H0 (x) = 1
H1 (x) = x

H2 (x) = x2 − 1

H3 (x) = x3 − 3x

H4 (x) = x4 − 6x2 + 3

H5 (x) = x5 − 10x3 + 15x

H6 (x) = x6 − 15x4 + 45x2 − 15

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 578–594, 2006.
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H7 (x) = x7 − 21x5 + 105x3 − 105x

H8 (x) = x8 − 28x6 + 210x4 − 420x2 + 105

One easily translate between moments and the Hermite moments E (Hr (X)) .
Let r0 denote the smallest number bigger than 1 such that E (Hr (X)) = 0. Put
γ0 = E (Hr0 (X)) .

It is well known that the normal distribution is the maximum entropy distri-
bution for a random variable with specified first and second moment. It is also
known that there exists no maximum entropy distribution if the first 3 moments
are specified and the skewness is required to be non-zero [2]. In this case a little
wiggle far away from 0 on the density function of the normal distribution can
contribute a lot to the third moment but only contribute with a marginal de-
crease in the entropy. Then normal distribution is the center of attraction of the
problem [13].

Lemma 1. Let K be the convex set of distributions for which the first R mo-
ments are defined and satisfies the following equations and inequality

E (Hr (X)) = hr for r < R (1)
E (HR (X)) ≤ hR .

If R is even then the maximum entropy distribution exists.

Proof. Let G ∈ RR−1 be a vector and let CG be the set of distributions
satisfying the following equations

E (HR (X) − hR) ≤
∑
n<R

Gr · E (Hr (X) − hr) .

This inequality is equivalent to E
(
HR (X)−hR −

∑
r<RGr · (Hr (X) − hr)

)
≤ 0.

We see that CG is closed because HR (X)−hR−
∑
r<RGr (Hr (X) − hr) → ∞

for |x| → ∞. Therefore the intersection K =
⋂

G∈RR−1 CG is closed. Using that
K is closed we get that there exists a distribution P ∗ ∈ K such that the entropy
is maximal. �

Theorem 1. Let C be the convex set of distributions for which the first R mo-
ments are defined and satisfies the following equations

E (Hr (X)) = hr for r ≤ R .

If any of the following conditions are fulfilled

– r0 is odd and R = r0 + 1
– r0 is even and R = r0 and γ0 < 0
– r0 is even and R = r0 + 2 and γ0 > 0

then the maximum entropy distribution in C exists.
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Proof. Let P ∗ be the maximum entropy distribution in theK determined by (1).
Assume r0 is odd and R = r0 + 1. If EP∗ (HR (X)) < hR then P ∗ maximizes

entropy with respect to the conditions

E (Hr (X)) = hr for r < R .

which is not possible because γ0 = 0 and r0 is odd. Therefore P ∗ satisfy also
satisfy E (HR (X)) = hR.

Assume r0 is even and R = r0 and γ0 < 0. Assume EP∗ (Hr0 (X)) < γ0 then
P ∗ maximizes entropy with respect to the conditions

E (Hr (X)) = 0 for 1 ≤ r ≤ r0 − 1 .

and P ∗ is the normal distribution N (0, 1) . But then EP∗ (Hr0 (X)) = 0 and we
get a contradiction.

Assume r0 is even and R = r0 + 2 and γ0 > 0. Assume EP∗ (HR (X)) < hR
then P ∗ maximizes entropy with respect to the conditions

E (Hr (X)) = hr for r < R

which is not possible because γ0 > 0 and r0 is even. Therefore P ∗ satisfy also
satisfy E (HR (X)) = hR. �

The most important case is when r0 = 3 and skewness is non-zero. Then the
theorem states that if the first 4 moments are fixed the maximum entropy dis-
tribution exists.

3 Asymptotic Lower Bounds

The method described in this section was first developed for finding lower bound
for the rate of convergence in Poisson’s law [5]. LetQ be a probability distribution
and let X be a m-dimensional random vector such that EP (X) = 0, where EP
denotes mean with respect to P. We are interested in the minimal divergence
from a distribution P satisfying certain constraints of the form EP (X) = f (t)
to the fixed probability distribution P. Let I ⊆ R be the domain of f . We will
assume that f : I → Rm is a smooth curve with f (0) = 0. Define

Dt = inf D (P ‖ Q) (2)

where the infimum is taken over all P for which EP (X) = f (t) . In this section
we will assume that the infimum is attained, and therefore D0 = 0 so if t � Dt
is smooth we also have dD

dt |t=0
= 0. Therefore we are interested in d2D

dt2 |t=0
. To

solve this problem we will use the exponential family.
Let Z be the partition function defined by

Z (α) = E (exp (〈α | X〉))
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for α ∈ A ⊆ Rm. For α ∈ A the distribution Pα is defined by the equation

dPα

dP
=

exp (〈α | X〉)
Z (α)

.

Then

EPα (X) =
� (Z)
Z

where

� =


∂
∂α1
∂
∂α2
...
∂
∂αm

 .

We put X (α) = EPα (X) as a function of α. Assume that

f (t) = EPα (X) .

Then

f (t) =
� (Z)
Z

and

f ′ (t) =
∑ ∂

∂αi

� (Z)
Z

· dαi
dt

=

(∑
i

∂

∂αi

∂
∂αj

(Z)

Z
· dαi
dt

)
j

=

∑
i

Z ∂2Z
∂αi∂αj

− ∂Z
∂αi

∂Z
∂αj

Z2
· dαi
dt


j

.

The quotient can be written as

Z ∂2Z
∂αi∂αj

− ∂Z
∂αi

∂Z
∂αj

Z2
=

∂2Z
∂αi∂αj

Z
−

∂Z
∂αi

Z

∂Z
∂αj

Z
= EPα (Xi ·Xj) − EPα (Xi) ·EPα (Xj)
= CovPα (Xi, Xj) .

Let ρ = ∇ log dPα

dP denote the score function associated with the family Pα.
Then

ρ = ∇
(

log
exp (〈α | X〉)

Z (α)

)
= ∇ (〈α | X〉 − logZ (α))

= X − � (Z)
Z

= X − EPα (X) .
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Therefore the Fisher information matrix I is

I = EPα

(
ρ · ρT

)
= CovPα (X) ,

and therefore

f ′ (t) = I · dα
dt

.

For a more detailed treatment of Fisher information and families of probability
measures, see [10] and [1].

Now
D (Pα ‖ P ) = 〈α | X〉 − log (Z (α)) ,

and from now on we will consider D as a function of α. Then

dD

dt
=

〈
dα

dt
| X

〉
+
〈

α | dX
dt

〉
−

〈
dα
dt | � (Z)

〉
Z

=
〈

α | dX
dt

〉
.

Therefore

d2D

dt2
=
〈
dα

dt
| dX
dt

〉
+
〈

α | d
2X

dt2

〉
=
〈
I−1 · f ′ (t) | f ′ (t)

〉
+ 〈α | f ′′ (t)〉

=
〈
I−1 · f ′ (t) | f ′ (t)

〉
+
〈α

t
| t · f ′′ (t)

〉
.

If the last term in this equation vanish we get a lower bound on the second
derivative of the divergence expressed in terms of the covariance matrix which
in this case equals the fisher information matrix. Therefore it is a kind of Cramér-
Rao inequality.

4 Skewness and Kurtosis

The quantity skewness minus excess kurtosis has been studied in several papers,
see [11], [12],[4] and [8]. The quantity is well behaved in the sense that one
can give bound on it for important classes of distribution. We shall see that
the quantity appears in a natural way when one wants to minimize information
divergence under moment constraints.

For a random variable X with finite third moment the coefficient of skewness
τ is defined by

τ =
E
(
(X − µ)3

)
σ3

. (3)
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where µ and σ denotes mean and spread. If X has finite forth moment the excess
kurtosis κ is defined by

κ =
E
(
(X − µ)4

)
σ4

− 3 . (4)

Pearson proved that τ2−κ ≤ 2 with equality for Bernoulli random variables [11].
For unimodal distributions the upper bound is 186

125 with equality for one-sided
boundary-inflated uniform distributions [8]. If mean and mode coincides of the
distribution is symmetric unimodal the upper bound 6

5 is obtained for uniform
distributions. Finally, 0 is an upper bound when the distribution is infinitely
divisible, and the upper bound is attained when the distribution is normal or
Poisson [12]. Using the last property squared skewness minus excess kurtosis has
been proposed for testing Poisson/normal distributions versus other infinitely
distributions [4].

As usual when C is a set of probability measures and Q is a probability
measure we put

D (C ‖ Q) = inf
P∈C

D (P ‖ Q) .

Theorem 2. Let X be a random variable with distribution Q which is not a
Bernoulli random variable. Assume that the forth moment is finite. For y ∈ [0; 1]
let Cy be the set of distributions of random variables S such that E (S) = E (X)
and V ar(X)−V ar(S)

V ar(X) = y. Define

g (y) = D (Cy ‖ Q) . (5)

Then

g (0) = 0 (6)
g′ (0) = 0 (7)

g′′ (0) =
1

2 − (τ2 − κ)
. (8)

Proof. According to our general method we have to compute the Fisher infor-
mation matrix of the random vector

(
X,X2

)
. The Fisher information is(

1 τ
τ κ+ 2

)
and the inverse is

1
2 + κ− τ2

(
κ+ 2 −τ
−τ 1

)
.

The derivative in zero is (0, 1) and therefore the second derivative of the infor-
mation divergence is 1

2+κ−τ2 . �

If Q is the normal distribution then the asymptotic result can be strengthened
to an inequality. Let S be a random variable with E (S) = µ and V ar (S) = V1.
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Let N (µ, V2) denote a normal distribution with mean µ and variance V2 ≥ V1.
We are interested in a lower bound on D (S ‖ N). The minimum of D (S ‖ N) is
obtained when the distribution of S is the element in the exponential family giv-
en by the densities Nα (x) = eα(x−µ)2

Z(α) ·N (x) , for which V ar (Nα (x)) = V1. Here

Z (α) is a constant which can be computed as
∫∞
−∞ eα(x−µ)2 dN (µ, V2, x). All

the members of the exponential family are normal distributions which simplifies
the calculations considerably. We put y = V2−V1

V2
.

D (S ‖ N (µ, V2)) ≥ D (N (µ, V1) ‖ N (µ, V2)) (9)

= D (N (0, V1) ‖ N (0, V2)) (10)

= EN(0,V1)

(
log

dN (0, V1)
dN (0, V2)

)
(11)

= EN(0,V1)

log

exp
(
− x2

2V1

)
(2πV1)

1
2

exp
(
− x2

2V2

)
(2πV2)

1
2

 (12)

= EN(0,V1)

(
1
2

log
V2

V1
+

x2

2V2
− x2

2V1

)
(13)

=
1
2

log
(
V2

V1

)
+

V1

2V2
− V1

2V1
(14)

=
1
2

(y − log (1 + y)) . (15)

Expanding the logarithm we get the desired lower bound

D (S ‖ N (µ, V2)) ≥
1
2

(
y −

(
y − 1

2
y2

))
(16)

=
y2

4
. (17)

A similar inequality holds when the normal distribution is replaced with a Pois-
son distribution, but the proof is much more involved [5].

5 Rate of Convergence in Central Limit Theorem

The n’th cumulant is denoted cr (X) . Let X1, X2, ... be independent random
variables with the same distribution as X, and put

Un =
∑n
i=1 Xi

n
1
2

.
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Then

cr (Un) = cr

(∑n
i=1 Xi

n
1
2

)
=

∑n
i=1 cr (Xi)
n

r
2

=
cr (X)
n

r
2−1

.

Put t = 1

n
r0
2 −1

so that n =
(

1
t

) 2
r0−2 . Then

cr (Un) =
cr (X)
n

r
2−1

= cr (X) · t
r−2

r0−2 for r ≥ r0 .

Put γr = cr+2 (X) and γ0 = γr0−2 and δr = r
r0

for r ≥ r0 and remark that δr ≥ 1.

Remark that γ0 = µr0+2(X)

σr0+2 =
E(Hr0+2(X))

σr0+2 . We see that the R dimensional

vector (cr (Un))r lies on the curve t � g (t) =
(
0, 1, 0, 0, ..., 0, ..., γr · tδr , ...

)T
r
.

We also see that g is C1 [0;∞[ and g′′ is defined on ]0;∞[ and satisfies

g (0) = (0, 1, 0, ..., 0)T

g′ (0) = (0, 0, ..., 0, γ0, 0, ..., 0)T

t · g′′ (t) → (0, 0, ..., 0)T for t → 0.

The central moments can be calculated from the cumulants by

µr =
∑

λ1+λ2+...+λk=r

1
k!

(
r

λ1 λ2 · · · λk

) k∏
p=1

cλp

where the summation is taken over all unordered sets (λ1, λ2, ..., λk) . Therefore
the curve g in the set of cumulants is mapped into a curve h in the set of central
moments. The curve h is obviously C1 [0;∞[ and h′′ is defined on ]0;∞[ and
satisfies

h (0) = (µr (N (0, 1)))r
t · h′′ (t) → (0, 0, ..., 0)T for t → 0.

Then the curve h is transformed into a new curve f in the space of Hermite
moments i.e. mean values of Hermite polynomials. For this curve we easily get

f (0) = (µr (N (0, 1)))r
t · f ′′ (t) → (0, 0, ..., 0)T for t → 0.

To find the derivative f ′ (0) we can write the Hermite polynomials in terms of
the cumulants as done in the appendix for R = 8. But to get the following
general result we need an explicit formula.
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Lemma 2. For all r0 and R ≥ r0 we have f ′ (0) = (0, 0, ..., 0, γ0, 0, ..., 0)T .

Proof. It is clear that all terms before coordinate no. r0 are zero.
Assume that k ≥ r0 and use the result stated in [9] that

E (Hk (Un)) = k!
∑

j0+j3+j4+···+jk=n
3j3+4j4+···+kjk=k

(
n

j0 j3 j4 · · · jk

)
(
E (H3 (X))

3!n
3
2

)j3 (E (H4 (X))
4!n2

)j4
· · ·

(
E (Hk (X))

k!n
k
2

)jk
.

Using that E (Hr (X)) = 0 for r < r0 we get

E (Hk (Un)) =
k!

n
k
2

∑
j0+jr0+jr0+1+···+jk=n

r0jr0+(r0+1)jr0+1+···+kjk=k

(
n

j0 jr0 j4 · · · jk

)

(
E (Hr0 (X))

r0!

)jr0
(
E (Hr0+1 (X))

(r0 + 1)!

)r0+1

· · ·
(
E (Hk (X))

k!

)jk
.

Now we use that r0 (jr0 + jr0+1 + · · · + jk) ≤ r0jr0 +(r0 + 1) jr0+1+· · ·+kjk = k
and get

n− j0 = (jr0 + jr0+1 + · · · + jk) ≤
k

r0
.

Therefore (
n

j0 jr0 jr0+1 · · · jk

)
=

n[n−j0]

jr0 ! jr0+1! · · · jk!

≤ n
k

r0

jr0 ! jr0+1! · · · jk!
.

This gives

|E (Hk (Un))| ≤
k!

n
k
2

∑
j0+jr0+jr0+1+···+jk=n

r0jr0+(r0+1)jr0+1+···+kjk=k

n
k

r0

jr0 ! jr0+1! · · · jk!

∣∣∣∣E (Hr0 (X))
r0!

∣∣∣∣jr0
∣∣∣∣E (Hr0+1 (X))

(r0 + 1)!

∣∣∣∣r0+1

· · ·
∣∣∣∣E (Hk (X))

k!

∣∣∣∣jk
≤ 1

n
k
2−

k
r0

∑
r0jr0+(r0+1)jr0+1+···+kjk=k

k!
jr0 ! jr0+1! · · · jk!∣∣∣∣E (Hr0 (X))

r0!

∣∣∣∣jr0
∣∣∣∣E (Hr0+1 (X))

(r0 + 1)!

∣∣∣∣r0+1

· · ·
∣∣∣∣E (Hk (X))

k!

∣∣∣∣jk .
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For k = r0 we get E (Hr0 (Un)) =O
(

1

n
r0
2 −1

)
. For k > r0 we get E (Hk (Un)) =

O

(
1

n
k
2 − k

r0

)
and to finish the proof we just have to remark that k2−

k
r0
≥r02 −1. �

This result is closely related to the results of Brown (1982), but it does not follow
from his results. In the appendix detailed formulas for the Hermite moments can
be found.

It is convenient to put Xi = Hi (X) . Then the covariance of the normal
distributions is

COV = E (XiXj) = δi,j · j! .
The inverse is

COV −1 =
δi,j
j!

.

Theorem 3. Assume that R ≥ 2r0. Then the rate of convergence in the infor-
mation theoretic Central Limit Theorem lower bounded by

lim inf
n→∞

nr0−2 ·D (Un ‖ N (0, 1)) ≥ γ2
0

2 · r0!
.

Proof. The conditions ensure that the maximum entropy distribution exists.
We put t = 1

n
r0
2 −1

and combine the previous results and get

lim inf
t→0

D (Un ‖ N (0, 1))
t2

≥ 1
2
(
COV −1 · f ′ (0) | f (0)

)
=

γ2
0

2 · r0!
.

The result is obtained by the substitution n = n =
(

1
t

) 2
r0−2 . �

If H̃r denotes the normalized Hermite polynomials Hr/ (r!)1/2 then the result
can be stated as

lim inf
n→∞

nr−2 ·D (Un ‖ N (0, 1)) ≥

(
E
(
H̃r (X)

))2

2
.

Remark that this inequality also holds for r different from r0. This for r = r0
this can also be written as

lim inf
n→∞

D (Un ‖ N (0, 1))(
E
(
H̃r (Un)

))2 ≥ 1
2
.

In the most important case where r0 = 3 and R = 4 we get

lim
t→0

inf n ·D (Un ‖ N (0, 1)) ≥ τ2

12
,

where τ is the skewness of X1. If r0 = 4 and the excess kurtosis κ is negative we
get

lim
t→0

inf n2 ·D (Un ‖ N (0, 1)) ≥ κ2

48
. (18)
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6 Edgeworth Expansion

The sequence of maximum entropy distributions we have used is closely related
to the Edgeworth expansion as described in [3]. The first term is given by the
following theorem.

Theorem 4. Suppose that µ3 exists and that |φ|ν is integrable for some ν ≥ 1.
Then fn exists for n ≥ ν and as n → ∞

fn (x) − n (x) − µ3

6σ3n1/2

(
x3 − 3x

)
n (x) = o

(
1

n1/2

)
uniformly in x.

Putting t = 1
n1/2 and σ = 1 and µ3 = γ0 this can be rewritten as

dPn
dN

(x) = 1 +
γ0

6
H3 (x) · t+

o (t)
n (x)

.

In this approach the whole distribution of X is known. In general a distribution
is not determined by its moments, but with regularity conditions it is. We will
assume that X is sufficiently regular so that the distribution is determined by its
moments. Then we can put R = ∞ and write P t instead of Pn. By the central
limit theorem we should put P o = N and therefore

dP o

dN
(x) = 1

For t = 0 we get that

dP t

dN
(x) =

exp (
∑∞
i=1 αiHi (x))
Z (α)

where the parameters αi are functions of t. Then

∂

∂t

(
dP t

dN
(x)

)
=

Z ·
(∑ dαi

dt
· Hi (x) exp

(∑∞
α=i αiHi (x)

))
−dZ

dt
· exp

(∑∞
α=i αiHi (x)

)
Z2

.

For t = 0 we get

∂

∂t

(
dP t

dN
(x)

)
|t=0

=
∑ dαi

dt |t=0
·Hi (x)

=
γ0

6
H3 (x) .

We see that the first term in the Edgeworth expansion corresponds to the as-
ymptotic behavior of the maximum entropy distribution. If r0 = 4 then a similar
expansion gives the next term in the Edgeworth expansion. To get more than
the first nontrivial term in the Edgeworth expansion would require a full power
expansion of the parameter α in terms of t.
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7 An Inequality for Platykurtic Distributions

For r0 = 4 the asymptotic lower bound (18) can be improved to an inequality as
demonstrated in the next theorem. This is useful if one is interested in a lower
bound on the divergence for a sum of random variables which are not i.i.d. Recall
that a distribution is said to be platykurtic if the excess kurtosis is negative.

Theorem 5. For any platykurtic random variable X with excess kurtosis κ the
following inequality holds

D
(
X ‖ N

(
µ, σ2

))
≥ κ2

48
where µ is the mean and σ2 is the variance of X.

Proof. Without loss of generality we may assume that µ = 0 and σ = 1.
Remark that

κ = E
(
X4

)
− 3

≥
(
E
(
X2

))2 − 3

= 12 − 3
= −2.

Let H4 (x) = x4 − 6x2 + 3 be the 4th Hermite polynomial. For a distribution P
with

E
(
X2

)
= 1

we have
EP (H4 (X)) = κ. (19)

Therefore
D (X ‖ N (0, 1)) ≥ D (Pα ‖ N (0, 1))

where Pα is the distribution minimizing D (P ‖ N (0, 1)) subjected to the con-
dition (19).

Put
Z (α) = EN (exp (αH4 (X)))

defined for α ≤ 0. For α ≤ 0 define Pα by

dPα
dN

=
exp (αH4 (X))

Z (α)
.

Then the distribution minimizing D (P ‖ N (0, 1)) is Pα for the α satisfying
EPα (H4 (X)) = κ. For any α ≤ 0 define κα by κα = EPα (H4 (X)) . Then we
have to prove

κ2
α

48
≤ D (Pα ‖ N (0, 1))

= EPα

(
log

dPα
dN

)
= α · κα − log (Z (α)) .
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For α = 0 the inequality is fulfilled so we calculate the derivative and just have
to prove

κ · κ′
24

≥ κ+ α · κ′ − Z ′

Z
= α · κ′,

which is equivalent to

24α ≤ κ =
Z ′

Z
.

This is obvious for α = 0 so we differentiate once more and have to prove

24 ≥ Z · Z ′′ − (Z ′)
Z2

=
Z ′′

Z
−
(
Z ′

Z

)2

.

Therefore it is sufficient to prove that 24 ≥ Z′′
Z . Obviously

Z (0) = 1, Z ′ (0) = 0, Z ′′ ≥ 0.

Therefore Z ≥ 1 and we just have to prove Z ′′ ≤ 24.
We have

Z ′′ (α) = EN

(
(H4 (X))2 exp (αH4 (X))

)
which is convex in α so if Z ′′ ≤ 24 is proved for 2 values of α it is also proved
for all values in between.

Z ′′ (0) = EN

(
H4 (x)2

)
= 4! = 24.

The function y � y2 exp (αy) has derivative

2y exp (αy) + αy2 exp (αy) = (2 + αy) y exp (αy)

and the 2 stationary points (0, 0) and
(
− 2
α ,

(
2
α

)2 exp (−2)
)
. Now we solve the

equation (
2
α

)2

exp (−2) = 24

and get α0 = (±) e

6
1
2

= −. 150 19.

Now we know that (H4 (x))2 exp (αH4 (x)) ≤ 24 for H4 (x) ≥ 0 and α ≥ α0.
Therefore this will also hold for α = α1 = −0.18

The equation H4 (x) = 0 has the solutions ±
(
3 ± 6

1
2

) 1
2

and therefore the
H4 (x) is positive for

|x| ≥ x0 =
(
3 + 6

1
2

) 1
2

= 2. 334 4 .
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Plot of y � y2 exp (α0 · y) .

Plot of x � H4 (x) .
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We have to check that

∫ x0

−x0
(H4 (x))2 exp (α1H4 (x)) ·

exp
(
− x2

2

)
(2π)

1
2

dx

∫ x0

−x0

exp
(
− x2

2

)
(2π)

1
2

dx

≤ 24

which is done numerically.
We have to check that all values of κ ∈ [−2; 0] are covered. For α = 0 we get

Z′
Z = 0. For α = α0 we have to prove that

Z ′ (α0)
Z (α0)

=

∫∞
−∞H4 (x) exp (α1H4 (x)) ·

exp
(
− x2

2

)
(2π)

1
2

dx

∫∞
−∞ exp (α0H4 (x)) ·

exp
(
− x2

2

)
(2π)

1
2

dx

≤ −2

or equivalently

∫ ∞

−∞

(
x4 − 6x2 + 5

)
exp (α1H4 (x)) ·

exp
(
−x2

2

)
(2π)

1
2

dx ≤ 0

which can easily be checked numerically since
(
x4 − 6x2 + 5

)
exp (α1H4 (x)) is

bounded. �

x �
(
x4 − 6x2 + 3

)2
exp

(
α
(
x4 − 6x2 + 3

))
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5. P.Harremoës, Convergence to the Poisson distribution in information divergence,

Technical Report 2, Mathematical department, University of Copenhagen, 2003.
6. E.T. Jaynes, Information theory and statistical mechanics, I and II, Physical Re-

views, 106 and 108, 620–630 and 171–190, 1957.
7. O.Johnson and A.Barron, Fisher information inequalities and the central limit

theorem, Preprint, 2001.
8. C.A.J. Klaassen, P.J. Mokveld, and B.van Es, Squared skewness minus kurtosis

bounded by 186/125 for unimodal distributions, Statistical and Probability Letters,
50, 2, 131–135, 2000.

9. A.E. Kondratenko, The relation between a rate of convergence of moments of
normed sums and the Chebyshev-Hermite moments, Theory Probab. Appl., 46, 2,
352–355, 2002.

10. E.Mayer-Wolf, The Cramér-Rao functional and limiting laws, Ann. of Probab., 18,
840–850, 1990.

11. K.Pearson, Mathematical contributions to the theory of evolution, xix; second sup-
plement to a memoir on skew variation, Philos. Trans. Roy. Soc. London Ser. A
216, 429–257, 1916.
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Appendix

The moments can be calculated from the cumulants by the formulas

µ1 = 0, µ2 = c2, µ3 = c3, µ4 = c4 + 3c22, µ5 = c5 + 10c2c3,
µ6 = c6 + 15c2c4 + 10c23 + 15c32,
µ7 = c7 + 21c2c5 + 35c3c4 + 105c22c3,
µ8 = c8 + 1

2

(
28c2c6 + 56c3c5 + 70c24 + 56c5c3 + 28c6c2

)
+ 1

6

(
420c22c4 + 560c2c23 + 420c2c4c2+560c3c2c3+560c23c2 + 420c4c22

)
+105c42

= c8 + 28c2c6 + 56c3c5 + 35c24 + 210c22c4 + 280c2c23 + 105c42,
where we assume that first moment is 0. If the first moment is 0 and the second
is 1 we get

µ1 = 0, µ2 = 1, µ3 = c3, µ4 = c4+3, µ5 = c5+10c3, µ6 = c6+15c4+10c23+15,
µ7 = c7+21c5+35c3c4+105c3, µ8 = c8+28c6+56c3c5+35c24+210c4+280c23+105 .
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Then the Hermite moments can be calculated as follows.

E (H1 (X)) = 0
E (H2 (X)) = 1
E (H3 (X)) = c3

E (H4 (X)) = c4

E (H5 (X)) = c5

E (H6 (X)) = c6 + 10c23
E (H7 (X)) = c7 + 35c3c4
E (H8 (X)) = c8 + 56c3c5 + 35c24



V
Identification Entropy

R. Ahlswede

Abstract. Shannon (1948) has shown that a source (U , P, U) with out-
put U satisfying Prob (U = u) = Pu, can be encoded in a prefix code
C = {cu : u ∈ U} ⊂ {0, 1}∗ such that for the entropy

H(P ) =
∑
u∈U

−pu log pu ≤
∑

pu||cu|| ≤ H(P ) + 1,

where ||cu|| is the length of cu.
We use a prefix code C for another purpose, namely noiseless identi-

fication, that is every user who wants to know whether a u (u ∈ U) of
his interest is the actual source output or not can consider the RV C
with C = cu = (cu1 , . . . , cu||cu||) and check whether C = (C1, C2, . . . )
coincides with cu in the first, second etc. letter and stop when the first
different letter occurs or when C = cu. Let LC(P, u) be the expected
number of checkings, if code C is used.

Our discovery is an identification entropy, namely the function

HI(P ) = 2

(
1 −

∑
u∈U

P 2
u

)
.

We prove that LC(P, P ) =
∑

u∈U
Pu LC(P, u) ≥ HI(P ) and thus also

that
L(P ) = min

C
max
u∈U

LC(P, u) ≥ HI(P )

and related upper bounds, which demonstrate the operational signifi-
cance of identification entropy in noiseless source coding similar as Shan-
non entropy does in noiseless data compression.

Also other averages such as L̄C(P ) = 1
|U|

∑
u∈U

LC(P, u) are discussed in

particular for Huffman codes where classically equivalent Huffman codes
may now be different.

We also show that prefix codes, where the codewords correspond to
the leaves in a regular binary tree, are universally good for this average.

1 Introduction

Shannon’s Channel Coding Theorem for Transmission [1] is paralleled by a
Channel Coding Theorem for Identification [3]. In [4] we introduced noiseless
source coding for identification and suggested the study of several performance
measures.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 595–613, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Interesting observations were made already for uniform sources PN =(
1
N , . . . ,

1
N

)
, for which the worst case expected number of checkings L(PN) is

approximately 2. Actually in [5] it is shown that lim
N→∞

L(PN ) = 2.

Recall that in channel coding going from transmission to identification leads
from an exponentially growing number of manageable messages to double ex-
ponentially many. Now in source coding roughly speaking the range of average
code lengths for data compression is the interval [0,∞) and it is [0, 2) for an
average expected length of optimal identification procedures. Note that no ran-
domization has to be used here.

A discovery of the present paper is an identification entropy, namely the
functional

HI(P ) = 2

(
1 −

N∑
u=1

P 2
u

)
(1.1)

for the source (U , P ), where U = {1, 2, . . . , N} and P = (P1, . . . , PN ) is a prob-
ability distribution.

Its operational significance in identification source coding is similar to that
of classical entropy H(P ) in noiseless coding of data: it serves as a good lower
bound.

Beyond being continuous in P it has three basic properties.

I. Concavity
For p = (p1, . . . , pN ), q = (q1, . . . , qN ) and 0 ≤ α ≤ 1

HI(αp + (1 − α)q) ≥ αHI(p) + (1 − α)HI(q).

This is equivalent with

N∑
i=1

(αpi+(1−α)qi)2 =
N∑
i=1

α2p2
i+(1−α)2q2i+

∑
i�=j

α(1−α)piqj ≤
N∑
i=1

αp2
i+(1−α)q2i

or with

α(1 − α)
N∑
i=1

p2
i + q2i ≥ α(1 − α)

∑
i�=j

piqj ,

which holds, because
N∑
i=1

(pi − qi)2 ≥ 0.

II. Symmetry
For a permutation Π : {1, 2, . . . , N} → {1, 2, . . . , N} and ΠP = (P1Π , . . . , PNΠ)

HI(P ) = HI(ΠP ).

III. Grouping identity
For a partition (U1,U2) of U = {1, 2, . . . , N}, Qi =

∑
u∈Ui

Pu and P
(i)
u = Pu

Qi
for

u ∈ Ui(i = 1, 2)

HI(P ) = Q2
1HI(P

(1)) +Q2
2HI(P

(2)) +HI(Q), where Q = (Q1, Q2).



Identification Entropy 597

Indeed,

Q2
12

1 −
∑
j∈U1

P 2
j

Q2
1

 +Q2
22

1 −
∑
j∈U2

P 2
j

Q2
2

 + 2(1 −Q2
1 −Q2

2)

= 2Q2
1 − 2

∑
j∈U1

P 2
j + 2Q2

2 − 2
∑
j∈U2

P 2
j + 2 − 2Q2

1 − 2Q2
2

= 2

1 −
N∑
j=1

P 2
j

 .

Obviously, 0 ≤ HI(P ) with equality exactly if Pi = 1 for some i and by concavity
HI(P ) ≤ 2

(
1 − 1

N

)
with equality for the uniform distribution.

Remark. Another important property of HI(P ) is Schur concavity.

2 Noiseless Identification for Sources and Basic Concept
of Performance

For the source (U , P ) let C = {c1, . . . , cN} be a binary prefix code (PC) with
||cu|| as length of cu. Introduce the RV U with Prob(U = u) = Pu for u ∈ U
and the RV C with C = cu = (cu1, cu2, . . . , cu||cu||) if U = u. We use the PC
for noiseless identification, that is a user interested in u wants to know whether
the source output equals u, that is, whether C equals cu or not. He iteratively
checks whether C = (C1, C2, . . . ) coincides with cu in the first, second etc. letter
and stops when the first different letter occurs or when C = cu. What is the
expected number LC(P, u) of checkings?

Related quantities are

LC(P ) = max
1≤u≤N

LC(P, u), (2.1)

that is, the expected number of checkings for a person in the worst case, if code
C is used,

L(P ) = min
C

LC(P ), (2.2)

the expected number of checkings in the worst case for a best code, and finally, if
users are chosen by a RV V independent of U and defined by Prob(V = v) = Qv
for v ∈ V = U , (see [5], Section 5) we consider

LC(P,Q) =
∑
v∈U

QvLC(P, v) (2.3)

the average number of expected checkings, if code C is used, and also

L(P,Q) = min
C

LC(P,Q) (2.4)

the average number of expected checkings for a best code.
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A natural special case is the mean number of expected checkings

L̄C(P ) =
N∑
u=1

1
N
LC(P, u), (2.5)

which equals LC(P,Q) for Q =
(

1
N , . . . ,

1
N

)
, and

L̄(P ) = min
C

L̄C(P ). (2.6)

Another special case of some “intuitive appeal” is the case Q = P . Here we write

L(P, P ) = min
C

LC(P, P ). (2.7)

It is known that Huffman codes minimize the expected code length for PC.
This is not the case for L(P ) and the other quantities in identification (see Ex-

ample 3 below). It was noticed already in [4], [5] that a construction of code trees
balancing probabilities like in the Shannon-Fano code is often better. In fact
Theorem 3 of [5] establishes that L(P ) < 3 for every P = (P1, . . . , PN )!

Still it is also interesting to see how well Huffman codes do with respect to
identification, because of their classical optimality property. This can be put into
the following

Problem: Determine the region of simultaneously achievable pairs (LC(P ),
∑
u
Pu

||cu||) for (classical) transmission and identification coding, where the C’s are PC.
In particular, what are extremal pairs? We begin here with first observations.

3 Examples for Huffman Codes

We start with the uniform distribution

PN = (P1, . . . , PN ) =
(

1
N
, . . . ,

1
N

)
, 2n ≤ N < 2n+1.

Then 2n+1 − N codewords have the length n and the other 2N − 2n+1 code-
words have the length n+ 1 in any Huffman code. We call the N − 2n nodes of
length n of the code tree, which are extended up to the length n+ 1 extended
nodes.

All Huffman codes for this uniform distribution differ only by the positions of
the N − 2n extended nodes in the set of 2n nodes of length n.

The average codeword length (for data compression) does not depend on the
choice of the extended nodes.

However, the choice influences the performance criteria for identi-
fication!

Clearly there are
(

2n

N−2n

)
Huffman codes for our source.
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Example 1. N = 9, U = {1, 2, . . . , 9}, P1 = · · · = P9 = 1
9 .

1
9 c9

1
9 c8

1
9 c1

1
9 c2

1
9 c3

1
9 c4

1
9 c5

1
9 c6

1
9 c7

2
9

2
9

2
9

2
9

3
9

4
9

5
9

1

Here LC(P ) ≈ 2.111, LC(P, P ) ≈ 1.815 because

LC(P ) = LC(c8) =
4
9
· 1 +

2
9
· 2 +

1
9
· 3 +

2
9
· 4 = 2

1
9

LC(c9) = LC(c8), LC(c7) = 1
8
9
, LC(c5) = LC(c6) = 1

7
9
,

LC(c1) = LC(c2) = LC(c3) = LC(c4) = 1
6
9

and therefore

LC(P, P ) =
1
9

[
1
6
9
· 4 + 1

7
9
· 2 + 1

8
9
· 1 + 2

1
9
· 2
]

= 1
22
27

= L̄C ,

because P is uniform and the
(

23

9−23

)
= 8 Huffman codes are equivalent for

identification.

Remark. Notice that Shannon’s data compression gives

H(P ) + 1 = log 9 + 1 >
9∑
u=1

Pu||cu|| = 1
93 · 7 + 1

94 · 2 = 3 2
9 ≥ H(P ) = log 9.

Example 2. N = 10. There are
(

23

10−23

)
= 28 Huffman codes.

The 4 worst Huffman codes are maximally unbalanced.
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1
10 c̃1

10
1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

2
10

2
10

2
10

2
10

2
10

4
10

4
10

6
10

1

Here LC(P ) = 2.2 and LC(P, P ) = 1.880, because

LC(P ) = 1 + 0.6 + 0.4 + 0.2 = 2.2

LC(P, P ) =
1
10

[1.6 · 4 + 1.8 · 2 + 2.2 · 4] = 1.880.

One of the 16 best Huffman codes

1
10 c̃1

10
1
10

1
10

2
10

1
10

1
10

1
10

1
10

1
10

1
10

2
10

3
10

2
10

2
10

3
10

5
10

5
10

1
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Here LC(P ) = 2.0 and LC(P, P ) = 1.840 because

LC(P ) = LC(c̃) = 1 + 0.5 + 0.3 + 0.2 = 2.000

LC(P, P ) =
1
5
(1.7 · 2 + 1.8 · 1 + 2.0 · 2) = 1.840

Table 1. The best identification performances of Huffman codes for the uniform
distribution

N 8 9 10 11 12 13 14 15
LC(P ) 1.750 2.111 2.000 2.000 1.917 2.000 1.929 1.933

LC(P, P ) 1.750 1.815 1.840 1.860 1.861 1.876 1.878 1.880

Actually lim
N→∞

LC(PN ) = 2, but bad values occur for N = 2k + 1 like N = 9

(see [5]).
One should prove that a best Huffman code for identification for the uniform

distribution is best for the worst case and also for the mean.
However, for non-uniform sources generally Huffman codes are not best.

Example 3. Let N = 4, P (1) = 0.49, P (2) = 0.25, P (3) = 0.25, P (4) = 0.01.
Then for the Huffman code ||c1|| = 1, ||c2|| = 2, ||c3|| = ||c4|| = 3 and thus
LC(P ) = 1+0.51+0.26 = 1.77,LC(P, P ) = 0.49·1+0.25·1.51+0.26·1.77 = 1.3277,
and L̄C(P ) = 1

4 (1 + 1.51 + 2 · 1.77) = 1.5125.
However, if we use C′ = {00, 10, 11, 01} for {1, . . . , 4} (4 is on the branch

together with 1), then LC′(P, u) = 1.5 for u = 1, 2, . . . , 4 and all three criteria
give the same value 1.500 better than LC(P ) = 1.77 and L̄C(P ) = 1.5125.

But notice that LC(P, P ) < LC′(P, P )!

4 An Identification Code Universally Good for All
P on U = {1, 2, . . . , N}

Theorem 1. Let P = (P1, . . . , PN ) and let k = min{ : 2� ≥ N}, then the
regular binary tree of depth k defines a PC {c1, . . . , c2k}, where the codewords
correspond to the leaves. To this code Ck corresponds the subcode CN = {ci : ci ∈
Ck, 1 ≤ i ≤ N} with

2
(

1 − 1
N

)
≤ 2

(
1 − 1

2k

)
≤ L̄CN (P ) ≤ 2

(
2 − 1

N

)
(4.1)

and equality holds for N = 2k on the left sides.

Proof. By definition,

L̄CN (P ) =
1
N

N∑
u=1

LCN (P, u) (4.2)
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and abbreviating LCN (P, u) as L(u) for u = 1, . . . , N and setting L(u) = 0 for
u = N + 1, . . . , 2k we calculate with Pu � 0 for u = N + 1, . . . , 2k

2k∑
u=1

L(u) =
[
(P1 + · · · + P2k)2k

]
+
[
(P1 + · · · + P2k−1)2k−1 + (P2k−1+1 + · · · + P2k)2k−1

]
+
[
(P1 + · · · + P2k−2)2k−2 + (P2k−2+1 + · · · + P2k−1)2k−2

+ (P2k−1+1 + · · · + P2k−1+2k−2)2k−2

+ (P2k−1+2k−2+1 + · · · + P2k)2k−2
]

+ . . .

·
·
·
+
[
(P1 + P2)2 + (P3 + P4)2 + · · · + (P2k−1 + P2k)2

]
=2k + 2k−1 + · · · + 2 = 2(2k − 1)

and therefore
2k∑
u=1

1
2k
L(u) = 2

(
1 − 1

2k

)
. (4.3)

Now

2
(

1 − 1
N

)
≤ 2

(
1 − 1

2k

)
=

2k∑
u=1

1
2k
L(u) ≤

N∑
u=1

1
N
L(u) =

2k

N

2k∑
u=1

1
2k
L(u) =

2k

N
2
(

1 − 1
2k

)
≤ 2

(
2 − 1

N

)
,

which gives the result by (4.2). Notice that for N = 2k, a power of 2, by (4.3)

L̄CN (P ) = 2
(

1 − 1
N

)
. (4.4)

Remark. The upper bound in (4.1) is rough and can be improved significantly.

5 Identification Entropy HI(P ) and Its Role as Lower
Bound

Recall from the Introduction that

HI(P ) = 2

(
1 −

N∑
u=1

P 2
u

)
for P = (P1 . . . PN ). (5.1)

We begin with a small source
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Example 4. Let N = 3. W.l.o.g. an optimal code C has the structure

P3P2

P1 P2 + P3

Claim.

L̄C(P ) =
3∑
u=1

1
3
LC(P, u) ≥ 2

(
1 −

3∑
u=1

P 2
u

)
= HI(P ).

Proof. Set L(u) = LC(P, u).
3∑
u=1

L(u) = 3(P1 + P2 + P3) + 2(P2 + P3).

This is smallest, if P1 ≥ P2 ≥ P3 and thus L(1) ≤ L(2) = L(3). Therefore
3∑
u=1

PuL(u) ≤ 1
3

3∑
u=1

L(u). Clearly L(1) = 1, L(2) = L(3) = 1 + P2 + P3 and

3∑
u=1

PuL(u) = P1 + P2 + P3 + (P2 + P3)2.

This does not change if P2 +P3 is constant. So we can assume P = P2 = P3 and
1 − 2P = P1 and obtain

3∑
u=1

PuL(u) = 1 + 4P 2.

On the other hand

2

(
1 −

3∑
u=1

P 2
u

)
≤ 2

(
1 − P 2

1 − 2
(
P2 + P3

2

)2
)
, (5.2)

because P 2
2 + P 2

3 ≥ (P2+P3)2

2 .
Therefore it suffices to show that

1 + 4P 2 ≥ 2
(
1 − (1 − 2P )2 − 2P 2

)
= 2(4P − 4P 2 − 2P 2)

= 2(4P − 6P 2) = 8P − 12P 2.

Or that 1 + 16P 2 − 8P = (1 − 4P )2 ≥ 0.
We are now prepared for the first main result for L(P, P ).
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Central in our derivations are proofs by induction based on decomposition
formulas for trees.

Starting from the root a binary tree T goes via 0 to the subtree T0 and via 1
to the subtree T1 with sets of leaves U0 and U1, respectively. A code C for (U , P )
can be viewed as a tree T , where Ui corresponds to the set of codewords Ci,
U0 ∪ U1 = U .

The leaves are labelled so that U0 = {1, 2, . . . , N0} and U1 = {N0+1, . . . , N0+
N1}, N0 +N1 = N . Using probabilities

Qi =
∑
u∈Ui

Pu, i = 0, 1

we can give the decomposition in

Lemma 1. For a code C for (U , PN )

LC((P1, . . . , PN ), (P1, . . . , PN ))

= 1 + LC0

((
P1

Q0
, . . . ,

PN0

Q0

)
,

(
P1

Q0
, . . . ,

PN0

Q0

))
Q2

0

+ LC1

((
PN0+1

Q1
, . . . ,

PN0+N1

Q1

)
,

(
PN0+1

Q1
, . . . ,

PN0+N1

Q1

))
Q2

1.

This readily yields

Theorem 2. For every source (U , PN )

3 > L(PN) ≥ L(PN , PN ) ≥ HI(PN ).

Proof. The bound 3 > L(PN ) restates Theorem 3 of [5]. For N = 2 and any C
LC(P 2, P 2) ≥ P1 + P2 = 1, but

HI(P 2) = 2(1 − P 2
1 − (1 − P1)2) = 2(2P1 − 2P 2

1 ) = 4P1(1 − P1) ≤ 1. (5.3)

This is the induction beginning.
For the induction step use for any code C the decomposition formula in Lemma

1 and of course the desired inequality for N0 and N1 as induction hypothesis.

LC((P1, . . . , PN ), (P1, . . . , PN ))

≥ 1 + 2

(
1 −

∑
u∈U0

(
Pu
Q0

)2
)
Q2

0 + 2

(
1 −

∑
u∈U1

(
Pu
Q1

)2
)
Q2

1

≥ HI(Q) +Q2
0HI(P

(0)) +Q2
1HI(P

(1)) = HI(PN ),

where Q = (Q0, Q1), 1 ≥ H(Q), P (i) =
(
Pu

Qi

)
u∈Ui

, and the grouping iden-

tity is used for the equality. This holds for every C and therefore also for
min
C

LC(PN ). �
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6 On Properties of L̄(P N)

Clearly for PN =
(

1
N , . . . ,

1
N

)
L̄(PN ) = L(PN , PN) and Theorem 2 gives

therefore also the lower bound

L̄(PN ) ≥ HI(PN ) = 2
(

1 − 1
N

)
, (6.1)

which holds by Theorem 1 only for the Huffman code, but then for all distribu-
tions.

We shall see later in Example 6 that HI(PN ) is not a lower bound for general
distributions PN ! Here we mean non-pathological cases, that is, not those where
the inequality fails because L̄(P ) (and also L(P, P )) is not continuous in P , but
HI(P ) is, like in the following case.

Example 5. Let N = 2k + 1, P (1) = 1 − ε, P (u) = ε
2k for u = 1, P (ε) =(

1 − ε, ε2k , . . . ,
ε
2k

)
, then

L̄(P (ε)) = 1 + ε2
(

1 − 1
2k

)
(6.2)

and lim
ε→0

L̄(P (ε))=1 whereas lim
ε→0

HI(P (ε))=lim
ε→0

(
2
(
1−(1−ε)2−

(
ε
2k

)2 2k
))

= 0.

However, such a discontinuity occurs also in noiseless coding by
Shannon.

The same discontinuity occurs for L(P (ε), P (ε)).
Furthermore, for N = 2 P (ε) = (1 − ε, ε), L̄(P (ε)) = 1 L(P (ε), P (ε)) = 1

and HI(P (ε)) = 2(1 − ε2 − (1 − ε)2) = 0 for ε = 0.
However, max

ε
HI(P (ε)) = max

ε
2(−2ε2 + 2ε) = 1 (for ε = 1

2 ). Does this have
any significance?

There is a second decomposition formula, which gives useful lower bounds on
L̄C(PN ) for codes C with corresponding subcodes C0, C1 with uniform
distributions.

Lemma 2. For a code C for (U , PN ) and corresponding tree T let

TT (PN ) =
∑
u∈U

L(u).

Then (in analogous notation)

TT (PN ) = N0 +N1 + TT0(P
(0))Q0 + TT1(P

(1))Q1.

However, identification entropy is not a lower bound for L̄(PN ). We strive now
for the worst deviation by using Lemma 2 and by starting with C, whose parts
C0, C1 satisfy the entropy inequality.
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Then inductively

TT (PN ) ≥ N+2

(
1 −

∑
u∈U0

(
Pu
Q0

)2
)
N0Q0+2

(
1 −

∑
u∈U1

(
Pu
Q1

)2
)
N1Q1 (6.3)

and
TT (PN )

N
≥ 1 +

1∑
i=0

2

(
1 −

∑
u∈Ui

(
Pu
Qi

)2
)
NiQi
N

� A, say.

We want to show that for

2

(
1 −

∑
u∈U

P 2
u

)
� B, say,

A−B ≥ 0. (6.4)

We write

A−B =

[
−1 + 2

1∑
i=0

NiQi
N

]
+ 2

[∑
u∈U

P 2
u −

1∑
i=0

∑
u∈Ui

(
Pu
Qi

)2
NiQi
N

]
= C +D, say. (6.5)

C and D are functions of PN and the partition (U0,U1), which determine the
Qi’s and Ni’s. The minimum of this function can be analysed without reference
to codes. Therefore we write here the partitions as (U1,U2), C = C(PN ,U1,U2)
and D = D(PN ,U1,U2). We want to show that

min
PN ,(U1,U2)

C(PN ,U1,U2) +D(PN ,U1,U2) ≥ 0. (6.6)

A first idea
Recall that the proof of (5.3) used

2Q2
0 + 2Q2

1 − 1 ≥ 0. (6.7)

Now if Qi = Ni

N (i = 0, 1), then by (6.7)

A−B =

[
−1 + 2

1∑
i=0

N2
i

N2

]
+ 2

[∑
u∈U

P 2
u −

∑
u∈U

P 2
u

]
≥ 0.

A goal could be now to achieve Qi ∼ Ni

N by rearrangement not increasing A−B,
because in case of equality Qi = Ni

N that does it.
This leads to a nice problem of balancing a partition (U1,U2) of U . More

precisely for PN = (P1, . . . , PN )



Identification Entropy 607

ε(PN ) = min
φ �=U1⊂U

∣∣∣∣∣∑
u∈U1

Pu −
|U1|
N

∣∣∣∣∣ .
Then clearly for an optimal U1

Q1 =
|U1|
N

± ε(PN) and Q2 =
N − |U1|

N
∓ ε(PN ).

Furthermore, one comes to a question of some independent interest. What is

max
PN

ε(PN ) = max
PN

min
φ �=U1⊂U

∣∣∣∣∣∑
u∈U1

Pu −
|U1|
N

∣∣∣∣∣?
One can also go from sets U1 to distributions R on U and get, perhaps, a

smoother problem in the spirit of game theory.
However, we follow another approach here.

A rearrangement
We have seen that for Qi = Ni

N D = 0 and C ≥ 0 by (6.7). Also, there is “air”
up to 1 in C, if Ni

N is away from 1
2 . Actually, we have

C = −
(
N1

N
+
N2

N

)2

+ 2
(
N1

N

)2

+ 2
(
N2

N

)2

=
(
N1

N
− N2

N

)2

. (6.8)

Now if we choose for N = 2m even N1 = N2 = m, then the air is out here,
C = 0, but it should enter the second term D in (6.5).

Let us check this case first. Label the probabilities P1 ≥ P2 ≥ · · · ≥ PN and
define U1 =

{
1, 2, . . . , N2

}
, U2 =

{
N
2 + 1, . . . , N

}
. Thus obviously

Q1 =
∑
u∈U1

Pu ≥ Q2 =
∑
u∈U2

Pu

and

D = 2

(∑
u∈U

P 2
u −

2∑
i=1

1
2Qi

∑
u∈Ui

P 2
u

)
.

Write Q = Q1, 1 −Q = Q2. We have to show

∑
u∈U1

P 2
u

(
1 − 1

(2Q)2

)
≥

∑
u∈U2

P 2
u

(
1

(2Q2)2
− 1

)
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or ∑
u∈U1

P 2
u

(2Q)2 − 1
(2Q)2

≥
∑
u∈U2

P 2
u

(
1 − (2(1 −Q))2

(2(1 −Q))2

)
. (6.9)

At first we decrease the left hand side by replacing P1, . . . , PN
2

all by 2Q
N . This

works because
∑

P 2
i is Schur-concave and P1 ≥ · · · ≥ PN

2
, 2Q
N =

2(P1+···+PN
2

)

N ≥
PN

2 +1, because 2Q
N ≥ PN

2
≥ PN

2 +1. Thus it suffices to show that

N

2

(
2Q
N

)2 (2Q)2 − 1
(2Q)2

≥
∑
u∈U2

P 2
u

1 − (2(1 −Q))2

(2(1 −Q))2
(6.10)

or that
1

2N
≥

∑
u∈U2

P 2
u

1 − (2(1 −Q))2

(2(1 −Q))2((2Q)2 − 1)
. (6.11)

Secondly we increase now the right hand side by replacing PN
2 +1, . . . , PN all by

their maximal possible values
(

2Q
N , 2Q

N , . . . , 2Q
N , q

)
= (q1, q2, . . . , qt, qt+1), where

qi = 2Q
N for i = 1, . . . , t, qt+1 = q and t · 2Q

N + q = 1−Q, t =
⌊

(1−Q)N
2Q

⌋
, q < 2Q

N .
Thus it suffices to show that

1
2N

≥
(⌊

(1 −Q)N
2Q

⌋
·
(

2Q
N

)2

+ q2

)
1 − (2(1 −Q))2

(2(1 −Q))2((2Q)2 − 1)
. (6.12)

Now we inspect the easier case q = 0. Thus we have N = 2m and equal proba-
bilities Pi = 1

m+t for i = 1, . . . ,m+ t = m, say for which (6.12) goes wrong! We
arrived at a very simple counterexample.

Example 6. In fact, simply for PNM =
(

1
M , . . . , 1

M , 0, 0, 0
)

lim
N→∞

L̄(PNM ) = 0,

whereas

HI(PNM ) = 2
(

1 − 1
M

)
for N ≥M.

Notice that here
sup
N,M

|L̄(PNM ) −HI(PNM )| = 2. (6.13)

This leads to the

Problem 1. Is sup
P

|L̄(P ) −HI(P )| = 2? which is solved in the next section.

7 Upper Bounds on L̄(P N)

We know from Theorem 1 that

L̄(P 2k

) ≤ 2
(

1 − 1
2k

)
(7.1)
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and come to the

Problem 2. Is L̄(PN ) ≤ 2
(
1 − 1

2k

)
for N ≤ 2k?

This is the case, if the answer to the next question is positive.

Problem 3. Is L̄
((

1
N , . . . ,

1
N

))
monotone increasing in N?

In case the inequality in Problem 2 does not hold then it should with a very
small deviation. Presently we have the following result, which together with
(6.13) settles Problem 1.

Theorem 3. For PN = (P1, . . . , PN )

L̄(PN ) ≤ 2
(

1 − 1
N2

)
.

Proof. (The induction beginning L̄(P 2) = 1 ≤ 2
(
1 − 1

4

)
holds.) Define now

U1 =
{
1, 2, . . . ,

⌊
N
2

⌋}
, U2 =

{⌊
N
2

⌋
+ 1, . . . , N

}
and Q1, Q2 as before. Again by

the decomposition formula of Lemma 2 and induction hypothesis

T (PN) ≤ N + 2

(
1 − 1⌊

N
2

⌋2

)
Q1

⌊
N

2

⌋
+ 2

(
1 − 1⌈

N
2

⌉2

)
Q2 ·

⌈
N

2

⌉
and

L̄(PN ) =
1
N
T (PN ) ≤ 1 +

2
⌊
N
2

⌋
Q1 + 2

⌈
N
2

⌉
Q2

N
− 2⌊

N
2

⌋ · Q1

N
− 2Q2⌈

N
2

⌉
N

(7.2)

Case N even: L̄(PN ) ≤ 1 + Q1 + Q2 −
(

4
N2Q1 + 4

N2Q2

)
= 2 − 4

N2 =
2
(
1 − 2

N2

)
≤ 2

(
1 − 1

N2

)
Case N odd: L̄(PN ) ≤ 1 + N−1

N Q1 + N+1
N Q2 − 4

(
Q1

(N−1)N + Q2
(N+1)N

)
≤

1 + 1 + Q2−Q1
N − 4

(N+1)N

Choosing the
⌈
N
2

⌉
smallest probabilities in U2 (after proper labelling) we get

for N ≥ 3

L̄(PN ) ≤ 1+1+
1

N ·N − 4
(N + 1)N

= 2+
1 − 3N

(N + 1)N2
≤ 2− 2

N2
= 2

(
1 − 1

N2

)
,

because 1 − 3N ≤ −2N − 2 for N ≥ 3.

8 The Skeleton

Assume that all individual probabilities are powers of 1
2

Pu =
1

2�u
, u ∈ U . (8.1)

Define then k = k(PN ) = max
u∈U

u.
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Since
∑
u∈U

1
2�u

= 1 by Kraft’s theorem there is a PC with codeword lengths

||cu|| = u. (8.2)

Notice that we can put the probability 1
2k at all leaves in the binary regular

tree and that therefore

L(u) =
1
2
· 1 +

1
4
· 2 +

1
23

3 + · · · + 1
2t
t+ · · · + 2

2�u
. (8.3)

For the calculation we use

Lemma 3. Consider the polynomials G(x) =
r∑
t=1

t · xt + rxr and f(x) =
r∑
t=1

xt,

then

G(x) = x f ′(x) + r xr =
(r + 1)xr+1(x− 1) − xr+2 + x

(x− 1)2
+ r xr.

Proof. Using the summation formula for a geometric series

f(x) =
xr+1 − 1
x− 1

− 1

f ′(x) =
r∑
t=1

t xt−1 =
(r + 1)xr(x− 1) − xr+1 + 1

(x− 1)2
.

This gives the formula for G.
Therefore for x = 1

2

G

(
1
2

)
= −(r + 1)

(
1
2

)r
−
(

1
2

)r
+ 2 + r

(
1
2

)r
= − 1

2r−1
+ 2

and since L(u) = G
(

1
2

)
for r = u

L(u) = 2
(

1 − 1
2�u

)
= 2

(
1 − 1

2log 1
Pu

)
= 2(1 − Pu). (8.4)

Therefore
L(PN , PN) ≤

∑
u

Pu(2(1 − Pu)) = HI(PN ) (8.5)

and by Theorem 2
L(PN , PN ) = HI(PN ). (8.6)



Identification Entropy 611

Theorem 4. 1 For PN = (2−�1 , . . . , 2−�N ) with 2-powers as probabilities

L(PN , PN ) = HI(PN ).

This result shows that identification entropy is a right measure for identifi-
cation source coding. For Shannon’s data compression we get for this source∑
u
pu||cu|| =

∑
u
puu = −

∑
u
pu log pu = H(PN ), again an identity.

For general sources the minimal average length deviates there from H(PN),
but by not more than 1.

Presently we also have to accept some deviation from the identity.
We give now a first (crude) approximation. Let

2k−1 < N ≤ 2k (8.7)

and assume that the probabilities are sums of powers of 1
2 with exponents not

exceeding k

Pu =
α(u)∑
j=1

1
2�uj

, u1 ≤ u2 ≤ · · · ≤ uα(u) ≤ k. (8.8)

We now use the idea of splitting object u into objects u1, . . . , uα(u). (8.9)
Since ∑

u,j

1
2�uj

= 1 (8.10)

again we have a PC with codewords cuj (u ∈ U , j = 1, . . . , α(u)) and a regular
tree of depth k with probabilities 1

2k on all leaves.
Person u can find out whether u occurred, he can do this (and more) by

finding out whether u1 occurred, then whether u2 occurred, etc. until uα(u).
Here

L(us) = 2
(

1 − 1
2�us

)
(8.11)

and

∑
u,s

L(us)Pus = 2

(
1 −

∑
u,s

1
2�us

· 1
2�us

)
= 2

1 −
∑
u

α(u)∑
s=1

P 2
us

 . (8.12)

On the other hand, being interested only in the original objects this is to be

compared with HI(PN ) = 2

(
1 −

∑
u

(∑
s
Pus

)2
)

, which is smaller.

1 In a forthcoming paper “An interpretation of identification entropy” the author and
Ning Cai show that LC(P, Q)2 ≤ LC(P, P )LC(Q,Q) and that for a block code C
min

P on U
LC(P, P ) = LC(R, R), where R is the uniform distribution on U ! Therefore

L̄C(P ) ≤ LC(P, P ) for a block code C.
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However, we get(∑
s

Pus

)2

=
∑
s

P 2
us +

∑
s�=s′

PusPus′ ≤ 2
∑
s

P 2
us

and therefore

Theorem 5

L(PN , PN) ≤ 2

1 −
∑
u

α(u)∑
s=1

P 2
us

 ≤ 2

(
1 − 1

2

∑
u

P 2
u

)
. (8.13)

For Pu = 1
N (u ∈ U) this gives the upper bound 2

(
1 − 1

2N

)
, which is better

than the bound in Theorem 3 for uniform distributions.
Finally we derive

Corollary
L(PN , PN) ≤ HI(PN ) + max

1≤u≤N
Pu.

It shows the lower bound of L(Pn, PN ) by HI(PN ) and this upper bound are
close.

Indeed, we can write the upper bound

2

(
1 − 1

2

N∑
u=1

P 2
u

)
as HI(PN ) +

N∑
u=1

P 2
u

and for P = max1≤u≤N Pu, let the positive integer t be such that 1−tp = p′ < p.

Then by Schur concavity of
N∑
u=1

P 2
u we get

N∑
u=1

P 2
u ≤ t · p2 + p′2, which does not

exceed p(tp+ p′) = p.

Remark. In its form the bound is tight, because for P 2 = (p, 1 − p)

L(P 2, P 2) = 1 and lim
p→1

HI(P 2) + p = 1.

Remark. Concerning L̄(PN ) (see footnote) for N = 2 the bound 2
(
1 − 1

4

)
= 3

2

is better than HI(P 2)+max
u

Pu for P 2 =
(

2
3 ,

1
3

)
, where we get 2(2p1−2p2

1)+p1 =

p1(5 − 4p1) = 2
3

(
5 − 8

3

)
= 14

9 > 3
2 .

9 Directions for Research

A. Study

L(P,R) for P1 ≥ P2 ≥ · · · ≥ PN and R1 ≥ R1 ≥ · · · ≥ RN .

B. Our results can be extended to q-ary alphabets, for which then identification
entropy has the form
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HI,q(P ) = q
q−1

(
1 −

∑N
i=1 P

2
i

)
.2

C. So far we have considered prefix-free codes. One also can study
a. fix-free codes
b. uniquely decipherable codes

D. Instead of the number of checkings one can consider other cost measures
like the αth power of the number of checkings and look for corresponding
entropy measures.

E. The analysis on universal coding can be refined.
F. In [5] first steps were taken towards source coding for K-identification. This

should be continued with a reflection on entropy and also towards GTIT.
G. Grand ideas: Other data structures

a. Identification source coding with parallelism: there are N identical
code-trees, each person uses his own, but informs others

b. Identification source coding with simultaneity:m(m = 1, 2, . . . , N) per-
sons use simultaneously the same tree.

H. It was shown in [5] that L(PN) ≤ 3 for all PN . Therefore there is a universal
constant A = sup

PN

L(PN). It should be estimated!

I. We know that for λ ∈ (0, 1) there is a subset U of cardinality exp{f(λ)H(P )}
with probability at least λ for f(λ) = (1 − λ)−1 and lim

λ→0
f(λ) = 1.

Is there such a result for HI(P )?
It is very remarkable that in our world of source coding the classical range
of entropy [0,∞) is replaced by [0, 2) – singular, dual, plural – there is some
appeal to this range.
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Optimal Information Measures for Weakly

Chaotic Dynamical Systems

V. Benci and S. Galatolo

Abstract. The study of weakly chaotic dynamical systems suggests that
an important indicator for their classification is the quantity of infor-
mation that is needed to describe their orbits. The information can be
measured by the use of suitable compression algorithms. The algorithms
are “optimal” for this purpose if they compress very efficiently zero en-
tropy strings. We discuss a definition of optimality in this sense. We also
show that the set of optimal algorithms is not empty, showing a concrete
example. We prove that the algorithms which are optimal according to
the above definition are suitable to measure the information needed to
describe the orbits of the Manneville maps: in these examples the infor-
mation content measured by these algorithms has the same asymptotic
behavior as the algorithmic information content.

1 Introduction

The study of weakly chaotic (0-entropy) dynamical systems is a growing subject in
the physical literature and in the science of complexity. There are connections with
many physical phenomena: self organized criticality, anomalous diffusion process,
transition to turbulence, formation of complex structures and many others.

Some conceptual instruments have been developed to understand and classify
this kind of phenomena. Among them we recall the generalized entropies, no-
tions related to fractal dimension, notions related to diffusion processes etc.
To get an idea of this fast growing literature one can consult for example
http://tsallis.cat.cbpf.br/biblio.htm for an updated bibliography about Tsallis
generalized entropy or [3] for the diffusion entropy. The subject is still far from
being understood. Many of these works are heuristic or experimental (mainly
computer simulations) and few rigorous definitions and results can be found.

Conversely there are rigorous negative results ([24], [7]) about the use of gen-
eralized entropies for the construction of invariants for 0-entropy measure pre-
serving systems.

We approach the study of weak chaos by considering the asymptotic behavior
of the information needed to describe the evolution of the orbits of the system
under consideration.

Roughly speaking in a positive entropy system the information relative to a
generic orbit increases linearly with the time and it is proportional to the entropy
of the system.

On the other hand when a system has zero entropy the information increases
less than linearly with time (e.g. increases as log(t), tα with 0 < α < 1, ...)
and we consider this asymptotic behavior as an indicator able to classify various
kind of weakly chaotic dynamics.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 614–627, 2006.
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Conversely, when we have an experimental time series, we can measure the
behavior of its information content to gain knowledge on the underlying unknown
system: this is a new method in the analysis of time series.

To describe our method in a rigorous framework, we first must state precisely
what we mean by information. This will be done mainly in section 2, for the
moment we remark that in our framework this concept has to be well posed even
for a single string, thus we need a pointwise (not average) notion of information.

The most powerful concept of this kind is the AIC (Algorithmic Information
Content, see the Appendix). The AIC is a flexible notion and it allows to prove
many interesting and deep theorems, but unfortunately is not a computable func-
tion and some other tool needs to be considered for practical purposes. As we will
see later, the use of suitable data compression algorithms allows to estimate the
information content of finite strings and this is the main topic of this paper.

In order to apply these tools of information theory to dynamical systems, we
translate the orbits into symbolic sequences (symbolic orbits) and we measure
the information content of them.

Let (X,T ) be a dynamical system where X is a compact metric space and
T : X → X is continuous. Sometimes, we assume that X is equipped with a
Borel invariant probability measure µ (namely a measure such that for each
measurable A, µ(T−1(A)) = µ(A)). In this case, in a probabilistic sense, we get
a stationary system. However, the stationarity of the system is not necessary to
apply our method; actually in Section 4 we will show an application to a non
stationary system.

The simplest way to obtain symbolic orbits from real orbits is to consider a par-
tition

β = {β1, ..., βm}

of the space. Then, given an orbit x, T (x), T 2(x), ..., we associate the symbolic
string which lists the sets of β visited by the orbit of x.

In this way an infinite string is associated to x. Actually, we get the infinite
string ω(x) = (ωi)i∈N with ωi ∈ {1, ...,m} such that ωi = j implies T i(x) ∈ βj .
We will also consider the string ωn(x) = (ωi)i∈{1,...,n} of the first n digits of
ω(x). Now, it is possible to consider the asymptotic behavior of the sequence
n �→ I(ωn), where I(ωn) is the information content of ωn, the symbolic string
related to the first n steps of the orbits of x.

We remark that the association x �→ ω(x) depends on the choice of β. Chang-
ing the partition, the properties of the symbolic model might change as well.
This is a delicate and important technical point 1 but it will be not treated in
the present work.

A more refined approach to the definition of information content of orbits in
dynamical systems is obtained by using open covers instead of partitions. In this

1 This is the point where the construction of generalized entropies as metric invariants
fails (see [24]). The very important feature of the Kolmogorov-Sinai entropy with
respect to a partition is that this entropy changes continuously if we slightly modify
the partition and this fact allows to avoid pathologies when taking the supremum of
the entropy over all partitions.
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case the open sets overlap in some points and a set of possible symbolic orbits
is associated to a single orbit in X . In this case, the information content of n
steps of the real orbit with respect to β is defined as the minimum information
content among all the possible n steps symbolic orbits (see [13], [8]).

This approach makes the definition of information content of an orbit more
involved but it allows to get rid of the choice of the cover β taking the supremum
over all open covers 2 and the definition of orbit information content depends only
on x and on its dynamics. Moreover the orbit information content is invariant
under topological conjugation (see [25], [8] for the positive entropy case, [13]
for the 0 entropy case). Thus we get new invariants for topological dynamical
systems.

Moreover, using this method we recover some relation between entropy, infor-
mation, initial condition sensitivity and Hausdorff dimension which are known
in the positive entropy case (see [21] and [13], [11] for the zero entropy case).

Thus the main features of chaotic dynamics such as sensitivity, dimension,
entropy etc. are strictly related to the orbit information content. Since the AIC
is not computable it seems necessary to define a notion of information content
by a lossless data compression algorithm.

The above considerations motivate the study of the various features of com-
pression algorithms, the various possible definitions of information content and
the properties which follow from them.

In the compressed string there is all the information needed to recover the
original string then the length of the compressed string is an upper bound of the
information content of the original one. Clearly this upper bound is sharp and
it is close to the AIC if the algorithms compresses the string in an efficient way.

If a string is generated by positive entropy systems, there are many algorithms
which give optimal results [12]; on the contrary if a string is generated by a
0-entropy system the traditional definition of optimality is not sufficient (see
section 3).

In section 3, we will discuss a stronger condition of (asymptotic optimality, cf.
Def 2) and in section 4 we will prove that this condition is sufficient to give the
same results than the AIC for an an important class of dynamical systems such
as the Manneville maps.

In section 5, we will show that the set of algorithms that are asymptotically
optimal is not empty, producing a concrete example.

2 Information

There are different notions of information, the first one is due to Shannon. In
his pioneering work, Shannon defined the quantity of information as a statistical
notion using the tools of probability theory. Thus in Shannon framework, the
quantity of information which is contained in a string depends on its context
([16]). For example the string ′pane′ contains a certain information when it is
2 Referring to the previous footnote: in some sense the use of open covers recovers

continuity.
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considered as a string coming from a given language. For example this word
contains a certain amount of information in English; the same string ′pane′

contains much less Shannon information when it is considered as a string coming
from the Italian language because it is much more common (in fact it means
”bread”). Roughly speaking, the Shannon information of a string s is given by

I(s) = log2

1
p(s)

(1)

where p(s) denotes the probability of s in a given context. The logarithm is taken
in base two so that the information can be measured in binary digits (bits).3

If in a language the occurrences of the letters are independent of each other,
the information carried by each letter is given by

I(ai) = log
1
pi
.

where pi is the probability of the letter ai. Then the average information of each
letter is given by

h =
∑
i

pi log
1
pi
. (2)

Shannon called the quantity h entropy for its formal similarity with Boltzmann’s
entropy.

We are interested in giving a definition of quantity of information of a single
string independent on the context, and independent on any probability measure.
Of course we will require this definition to be strictly related to the Shannon
entropy when we equip the space of all the strings with a suitable probability
measure. Such a definition will be suitable for the analysis of experimental data,
where often we have a single time series to analyze.

In our approach the intuitive meaning of quantity of information I(s) con-
tained in s is the following one:

I(s) is the length of the smallest binary message from which you can
reconstruct s.

In this framework Kolmogorov and Chaitin proposed in 1965 a definition of
information content (AIC) that is defined for a single string. This definition is
very flexible and allows to prove very interesting theorems, but unfortunately
it is not computable; there are no algorithms to calculate the AIC of any given
string.

Let us suppose to have some recursive lossless (reversible) coding procedure
(for example, the data compression algorithms that are in any personal com-
puter). Since the coded string contains all the information that is necessary to
reconstruct the original string, we can consider the length of the coded string as

3 From now on, we will use the symbol ”log” just for the base 2 logarithm ”log2” and
we will denote the natural logarithm by ”ln′′ .
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an approximate measure of the quantity of information that is contained in the
original string.

Of course not all the coding procedures are equivalent and give the same
performances, so some care is necessary in the definition of information content.
For this reason we introduce various notions of optimality (Definitions 1 and 2)
of an algorithm Z, defined by comparing its compression ratio with the empirical
entropy (defined in the following section).

3 Empirical Entropy and Optimal Compression

Let us consider a finite alphabet A and the set of finite strings on A, that is
A∗ =

⋃∞
n=1 An. Moreover we will be interested also in the set of infinite strings

AN; AN has a natural structure of dynamical system with the dynamics defined
by the shift map

σ (ω) = σ ({ωi}) = {ωi+1} .
If

(
AN, σ

)
is equipped with a invariant measure µ, this is called symbolic dy-

namical system and provides a dynamical model for an information source and
the Kolmogorov entropy of the system coincides with the Shannon entropy of
the information source.

Now let
Z : A∗ → {0, 1}∗

be a recursive injective function (the compression algorithm) and let us consider
the information content as it is measured by Z as

IZ(s) = |Z(s)| (3)

and the relative compression ratio

KZ(s) =
|Z(s)|
|s| (4)

where |s| is the length of the string s.
In the following we will also see that choosing Z in a suitable way, it is possible

to investigate interesting properties of dynamical systems.
In a zero entropy system we are interested to the asymptotic behavior of

IZ(sn) when sn represents a n steps symbolic orbits of a dynamical system or
equivalently the speed of convergence to 0 of the corresponding compression
ratio KZ(s).

The empirical entropy is a quantity that can be thought to be in the middle
between Shannon entropy and a pointwise definition of information content. The
empirical entropy of a given string is a sequence of numbers Ĥl giving statistical
measures of the average information content of the digits of the string s.

Let s be a finite string of length n. We now define Ĥl(s), l ≥ 1, the lth

empirical entropy of s. We first introduce the empirical frequencies of a word
in the string s: let us consider w ∈ Al, a string on the alphabet A with length l;
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let s(m1,m2) ∈ Am2−m1 be the string containing the segment of s starting from
the m1-th digit up to the m2-th digit; let

δ(s(i+1,i+l), w) =
{

1 if s(i+1,i+l) = w
0 otherwise

( 0 ≤ i ≤ n− l).

The relative frequency of w (the number of occurrences of the word w divided
by the total number of l-digit sub words) in s is then

P (s, w) =
1

n− l + 1

n−l∑
i=0

δ(s(i+1,i+l), w).

This can be interpreted as the “empirical” probability of w relative to the
string s. Then the l-empirical entropy is defined by

Ĥl(s) = −1
l

∑
w∈Al

P (s, w) logP (s, w). (5)

The quantity lĤl(s) is a statistical measure of the average information content
of the l−digit long substrings of s.

As it was said before not all the coding procedures are equivalent and give
the same performances, so some care is necessary in the definition of informa-
tion content. For this reason we introduce the notion of coarse optimality of
an algorithm Z, defined by comparing its compression ratio with the empirical
entropy.

An algorithm Z is said to be coarsely optimal if its compression ratio |Z(s)|/|s|
is asymptotically less than or equal to Ĥk(s) for each k.

Next we will see how this definition is not sufficient to define a suitable notion
of optimality for zero entropy strings.

Definition 1 (Coarse Optimality).A reversible coding algorithm Z is coarsely
optimal if ∀k ∈ N there is a function fk, with fk(n) = o(n), such that for all finite
strings s

|Z(s)|
|s| ≤ Ĥk(s) +

fk(|s|)
|s| .

Many data compression algorithms that are used in applications are proved to
be coarsely optimal.

Remark 1. The universal coding algorithms LZ77 and LZ78 ([26],[27]) satisfy
Definition 1. For the proof see [18].

It is not difficult to prove that coarse optimal algorithms give a correct estima-
tion of the information content in the cases of positive entropy. In this case all
measures of information agree.

Theorem 1. If (Ω,µ, σ) is a symbolic dynamical system, Z is coarsely optimal
and µ is ergodic, then for µ-almost ω

lim
n→∞

KZ(ωn) = lim
l→∞

limsup
n→∞

Ĥl(ωn) = lim
n→∞

AIC(ωn)
n

= hµ(σ) .
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Proof. The statement is substantially proved in [4], Theorem 14. In [4] the state-
ment is given with limsup

n→∞
KZ(ωn) instead of lim

n→∞
KZ(ωn). The proof of The-

orem 1 follows similarly using the White’s results [25] stating that under the
above assumptions for almost each ω ∈ Ω limsup

n→∞

AIC(ωn)
n =liminf

n→∞

AIC(ωn)
n . �

The notion of coarse optimality is not enough if we ask a coding algorithm to be
able to reproduce the rate of convergence of the sequence Ĥk(s) as |s| → ∞ for
strings generated by weakly chaotic dynamical systems, for which lim

|s|→∞
Ĥk(s) =

0. In fact in the positive entropy systems optimality implies that lim
|s|→∞

|Z(s)|
|s| ≤

Ĥk(s). In the zero entropy systems, it is possible that Ĥk(sn) → 0 faster than
Z(s)
|s| .
For example let us consider the string 0n1 and the LZ78 algorithm, then

Ĥk(0n1) goes like log(n)/n (and also AIC(ωn)
n does) while LZ78(0n1)/n goes

like n1/2log(n)
n (see also [1]). Then the compression ratio of LZ78 converges to 0

much slower than the empirical entropy. This implies that coarse optimality is
not sufficient to have a coding algorithm able to characterize 0-entropy strings
according to the rate of convergence of their entropy to 0. For this reason, we look
for an algorithm having the same asymptotic behavior as the empirical entropy.
In this way even in the 0-entropy case our algorithm will give a meaningful
measure of the information. The following definition (from [18]) is an approach
to define optimality of a compression algorithm for the 0-entropy case.

Definition 2 (Asymptotic Optimality). A compression algorithm Z is called
asymptotically optimal with respect to Ĥk if

– it is coarsely optimal
– there is a function gk with gk(n) = o(n) and λ>0 such that ∀s with Ĥk(s) =0

|Z(s)| ≤ λ|s|Ĥk(s) + gk(|Z(s)|).

It is not trivial to construct an asymptotically optimal algorithm. For instance
the well known Lempel-Ziv compression algorithms are not asymptotically opti-
mal. LZ78 is not asymptotically optimal even with respect to Ĥ0 ([18]). In [18]
some examples are described of algorithms (LZ78 with RLE and LZ77) which are
asymptotically optimal with respect to Ĥ0. But these examples are not asymp-
totically optimal for all Ĥk with k ≥ 1. The asymptotic optimality of LZ77 with
respect to Ĥ0 however it is enough to prove (see Section 4 , Theorem 2) that LZ77
can estimate correctly the information coming from the Manneville type maps.

The set of asymptotically optimal compression algorithms with respect to
each Ĥk is not empty. In section 5 an example is given of a compression algo-
rithm which is asymptotically optimal for all Ĥk. The algorithm is similar to the
Kolmogorov frequency coding algorithm. This compression algorithm is not of
practical use because of its computational time cost.
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To our knowledge the problem of finding a ”fast” asymptotically optimal com-
pression algorithm is still open. The Ryabko double universal code [23] seems a
good candidate for solving this problem. In this direction the work in in progress.

4 Optimality with Respect to H0 and Manneville Map

The Manneville maps Tz : [0, 1] → [0, 1] defined as Tz(x) = x + xz (mod 1) are
dynamical systems over the unit interval.

The Manneville maps come from the theory of turbulence. They are intro-
duced in [20] as an extremely simplified model of intermittent behavior in fluid
dynamics. This maps have been studied and applied also to other areas of physics
(see e.g. [2],[17],[22]). The main part of these works concentrates on the study
of the case 1 ≤ z ≤ 2. In the following we will consider the case z > 2 which
gives a weakly chaotic dynamical system. When z > 2, the maps has stretched
exponential sensitivity to initial conditions and information content of the orbits
that increases as a power law (cf. Th. 2).

The first study of the mathematical features of complexity of the Manneville
maps for z > 2 was done by Gaspard and Wang in [14]. Another study of the
complexity of the Manneville maps was done in [13] and [5].

Next theorem states that if a compression algorithm is optimal with respect
to Ĥ0 the associated information content measure is correct for the Manneville
maps in the sense that it has the same asymptotic behavior as the AIC on this
kind of maps.

Theorem 2. Let us consider the dynamical system ([0, 1], Tz) with z > 2. Let
x̃ ∈ (0, 1) be such that Tz(x̃) = 1. Let us consider the partition α = {[0, x̃], (x̃, 1]}
of the unit interval [0, 1]. Let Z be an universal coding which is optimal with
respect to Ĥ0. If ω(x) is the symbolic orbit of x with respect to the partition α,
then there are C1, C2, C3 > 0 s.t. ∀n

C1n
p ≤

∫
[0,1]

AIC(ωn(x))dx + C2 ≤
∫

[0,1]

IZ(ωn(x))dx ≤ C3n
p log2(n) (6)

where p = 1
z−1 and the measure is the usual Lebesgue measure on the interval.

Proof. (sketch) This result is substantially proved in [4] we sketch the proof
because here the statement is given in a slight more general form. The first
inequality is given in [5] or [13] Proposition 33, the second inequality follows
easily from Theorem 4 (Appendix). To prove the third inequality we see that

1) there are probabilistic results ([13] Section 8) showing that

lim
n→∞

∫
[0,1] nP (1, ωn(x))dx

np
= 1

where P (1, ω) is the empirical probability of the digit 1 in the word ω as in the
definition of empirical entropy.
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2) this result and the Jensen inequality allows to calculate that

lim
n→∞

∫
[0,1]H0(ωn(x))dx

nplog(n)
<∞

and then by the 0-optimality we have an estimation of the IZ of the string and
we can conclude �

Now we will recall some results from [18], concerning the optimality of the LZ77
algorithm.

Proposition 1. The algorithm LZ77 is 8-optimal with respect to Ĥ0, The al-
gorithm LZ78 +RLE is 3-optimal with respect to Ĥ0.

Since LZ77 and LZ78 + RLE are Ĥ0 optimal then they can be applied to the
Manneville map and give the same asymptotic behaviour as the AIC. In [4],
there are numerical experiments with LZ77 and other algorithms illustrating
this kind of phenomena.

5 Frequency Coding and Optimality

We now give a description of an asymptotically optimal coding procedure which
we will call FC. This procedure is similar to the Kolmogorov Frequency Coding.

Let us consider a binary string s with length N . Let us consider the following
coding procedure FC′. The procedure FC′(s, l, k) (depending on two integer
parameters l, k with k < l < |s| = N) first cuts a k digit long initial segment sk
of the string s. This initial segment will be codified in any usual way (e.g. letter
by letter) at the beginning of the coded string.

The remaining part of the string is parsed in l digit long segments (words)
(wi)i≤[ N−k

l ] and the remainder is a string s(N−k)(mod l) with length (N−k)(mod l).
In this way we can write

s = skw1...w[ N−k
l ]s(N−k)(mod l).

Also the final string s(N−k)(mod l) will be codified as you like.
This coding procedure considers each of the l-bits long word, ordered in lexico-

graphic order, it counts how many times it appears in the sequence (w1, w2, ...).
Thus for 1 ≤ i ≤ 2l an integer number ni, is associated to each of these

strings.
For example, the first word 0l = 00000...0 and n1 is the number of times which

0l appears in the parsing. This number is the empirical frequency of 00000...0
relative to the parsing w1, w2... Then the procedure will consider the second
word 0l−11 = 00000...1 obtaining a number n2, and so on obtaining a sequence
(n1, ..., n2l).

The string s will be coded by

FC′(s, l, k) = (N, sk, sN−k(mod l), n1, n2, ..., n2l ,W ).
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Let us explain the meaning of the number W . The string w1w2... is composed
by n =

∑
ni words from a vocabulary made of 2l words. The number a of strings

having the same empirical frequencies (n1, n2, ...) as s is

a =
n!∏
i ni!

.

These a strings can be ordered lexicographically and a natural number between
0 and a can be associated to each of them. The number W determines which
string we choose among all these strings. With a suitable coding the number W
will take not more than

[1 + log a] ≈ log
(

n!∏
i ni!

)
= logn! −

∑
i

log(ni!)

bits. A this point we can define

FC(s) = FC′(s, l̂, k̂)

where
(l̂, k̂) =min

l,k
(|FC′(s, l, k)|).

Proposition 2. The compression algorithm FC is asymptotically optimal with
respect to Ĥk for all k.

Proof. 4 We have

|FC′(s, l, k)| ≤
∑
i≤2l

logni + logn! −
∑
i≤2l

logni! + logN + C (l)

The first term is necessary to specify the numbers n1, n2.... C (l) is the number
of bits necessary to codify the separation symbols ”,” and the parentheses in the
coded string

(sk, sN−k(mod l), n1, n2, ..., n2l ,W );

(it depends on l but nor on N), logN is the number of bits necessary to specify
N and the remaining terms are necessary to specify W .

By the Stirling formula we have the following approximation of lnn! :

lnn! = n lnn− n +
1
2

lnn + ln(2π)
1
2 + o(1).

Then

|FC′(s, l, k)| ≤
∑
i

logni + logn! −
∑
i

logni! + logN + C

4 We remark that the first part of this proof can be made shorter by the use of results
coming from the theory of types (see [10] or [15]), however we prefer to give here an
elementary and self contained proof.
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≤
∑
i

logni + n logn− n

ln 2
+

1
2

log n−

−
∑
i

(
ni logni −

ni
ln 2

+
1
2

logni

)
+ logN + C

≤
∑
i

(
1
2

logni − ni logni) + n logn +
1
2

logn+ logN + C.

Now, if we denote by pi = ni/n the “empirical probability” of the i-th word
in the set {w1, w2...}, we have

|FC′(s, l, k)| ≤
∑
i

1
2

logni −
∑
i

npi log (npi) + n logn+
1
2

logn+ logN + C =

=
∑
i

1
2

logni − n
∑
i

pi logn+ n
∑
i

pi log
1
pi

+ n logn +
1
2

logn+ logN + C =

=
1
2

logn+
∑
i

1
2

logni + n
∑
i

pi log
1
pi

+ logN + C =

=
1
2

logn+
∑
i

[
1
2

logni + nh(wi)
]

+ logN + C (7)

where h(wi) = pi log 1
pi

.

Now let us consider l ∈ N. We prove that there is a C′ > 0 such that |FC(s)| ≤
C′|s|Ĥl(s)+ o(|FC(s)|). Let us consider k < l and the corresponding parsing Pk
of s:

Pk = {w1 = s(1,k), w2 = s(k,k+l)...}
we have that for each k < l (Eq. 7)

|FC(s)| ≤ |FC′(s, l, k)| ≤ 3
2
logN +

1
2

∑
logni + [

N − k

l
]hk(s) + C

where hk(s) =
∑

h(wi) (we recall that N = |s|). The number of l−length words
is at most 2l then ∀k

∑
logni ≤ 2llog|s|, then

|FC(s)| ≤ [
N − k

l
]hk(s) + (2l +

3
2
)logN + C.

Now the statement follows from the remark that for some k, hk(s) ≤ lĤl(s) and
that if Ĥl(s) > 0 then Ĥl(s) ≥ 1

|s| (log(|s|) + 1). The former can be proved from
the following remark. Let ω ∈ Al, let nω be the number of occurrences of ω in s as
in the definition of empiric entropy and let nkω be the number of occurrences of the
word ω in the parsing Pk (before, when k was fixed these numbers were called ni

and their dependence on k was not specified). Let also pω = nω

N−l and pkω = nk
ω

[ N−k
l ]
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be the corresponding empirical probabilities. pω is a convex combination of the
pkω , pω =

∑
k ckp

k
ω (the total empirical probability of the word w is a weighted

average of the empirical probability of w in the partitions Pk). By the concavity
of the entropy function we have

∑
w pwlogpw = lĤl(s) ≥

∑
kck h

k(s) and then
hk(s) ≤ lĤl(s) for some k, and this end the proof. �
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Appendix: The Algorithmic Information Content

The most important measure for the information content is the Algorithmic
Information Content (AIC). In order to define it, it is necessary to define the
notion of partial recursive function. We limit ourselves to give an intuitive idea
which is very close to the formal definition. We can consider a partial recursive
function as a computer C which takes a program p (namely a binary string) as
an input, performs some computations and gives a string s = C(p), written in
the given alphabet A, as an output. The AIC of a string s is defined as the
shortest binary program p which gives s as its output, namely

AIC(s, C) = min{|p| : C(p) = s}

We require that our computer is a universal computing machine. Roughly speak-
ing, a computing machine is called universal if it can emulate any other machine.
In particular every real computer is a universal computing machine, provided
that we assume that it has virtually infinite memory. For a precise definition see
e.g. [19] or [9]. We have the following theorem due to Kolmogorov

Theorem 3. If C and C′ are universal computing machines then

|AIC(s, C) −AIC(s, C′)| ≤ K (C,C′)

where K (C,C′) is a constant which depends only on C and C′ but not on s.

This theorem implies that the information content AIC of s with respect to C
depends only on s up to a fixed constant, then its asymptotic behavior does not
depend on the choice of C. For this reason from now on we will write AIC(s)
instead of AIC(s, C). The shortest program which gives a string as its output is a
sort of encoding of the string. The information which is necessary to reconstruct
the string is contained in the program. We have the following result (for a proof
see for example [12] Lemma 6) :
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Theorem 4. Let
ZC : A∗ → {0, 1}∗

be the function which associates to a string s the shortest program whose output
is s itself5 (namely, AIC(s) = |ZC(s)|). If Z is any reversible recursive coding,
there exists a constant M which depends only on C such that for each s

|ZC (s)| ≤ |Z (s)| +M (8)

The inequality (8) says that ZC in some sense is the best possible compression
procedure. Unfortunately this coding procedure cannot be performed by any
algorithm (Chaitin Theorem)6. This is a very deep statement and, in some sense,
it is equivalent to the Turing halting problem or to the Gödel incompleteness
theorem. Then the AIC is not computable by any algorithm.

5 If two programs of the same length produce the same string, we choose the program
which comes first in lexicographic order.

6 Actually, the Chaitin theorem states a weaker statement: an algorithm (computer
program) which states that a string σ of length n can be produced by a program
shorter than n, must be longer than n.



Report on Models of Write–Efficient Memories

with Localized Errors and Defects

R. Ahlswede and M.S. Pinsker

Abstract. Write–efficient memories (WEM) as a model for storing and
updating information were introduced by R. Ahlswede and Z. Zhang [2].
We consider now three new models of WEM with localized errors and
defects, resp.

In the situation (E+, D−), where the encoder is informed but the
decoder is not informed about the previous state of the memory we
study

1. WEM codes correcting defects,
2. WEM codes detecting localized errors.

Finally, in the situation (E+, D+), where both, the encoder and the
decoder, are informed about the previous state of the memory we study.
3. WEM codes correcting localized errors.

In all three cases we determine for binary alphabet the optimal rates
under a cost constraint defined in terms of the Hamming distance.

1 Introduction

We recall first the model and a result of [2]. A write–efficient memory (WEM)
is a model for storing and updating information on a rewritable medium. There
is a cost ϕ : X ×X → R∞ assigned to changes of letters. A collection of subsets
C = {Ci : 1 ≤ i ≤M} of Xn is an (n,M, d) WEM code, if

Ci ∩ Cj = ∅ for all i = j (1)

and, if

dmax = max
1≤i,j≤M

max
xn∈Ci

min
yn∈Cj

n∑
k=1

C(xk, yk) ≤ d. (2)

dmax is called the minimax correction cost with respect to the given cost
function ϕ. The performance of a code C can also be measured by two parameters,
namely, the maximal cost per letter δC = n−1dmax and the rate of the size
RC = n−1 logM . The rate achievable with a maximal per letter cost δ is thus
R(δ) = supC:δC≤δ RC .

This is the most basic quantity, the storage capacity of a WEM (Xn, ϕn)∞n=1.
It has been characterized in [2] for every ϕ.

The operational significance of a WEM code is as follows. For a set M =

{1, 2, . . . ,M} of possible messages and the state xn = (x1, . . . , xn) ∈ C =
M⋃
i=1

Ci

of the memory the encoder can store any message i ∈ M by any state yn in Ci.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 628–632, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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It is guaranteed that the cost of changing xn to yn does not exceed d, provided
that the encoder knows the original state xn. The decoder votes for message j,
if yn ∈ Cj . He does not use and therefore does not need knowledge about the
previous state xn. We are thus in a case (E+, D−).

In this model there is no error in encoding and decoding. Solely the cost
function ϕ defines it. Clearly, by the forgoing explanation the encoder can update
any message i stored by a state of Ci to any message j stored by a suitable state
in Cj .

In this note we confine ourselves to the binary Hamming case, that is, X =
{0, 1} and the encoder cannot change symbols in more than d = δn, 0 ≤ δ ≤ 1

2 ,
positions of a state. In this case the result of [2] specialized to

R(δ) = h(δ), (3)

where h(δ) = −δ log δ − (1 − δ) log(1 − δ).
WEM codes can be considered, where we take instead of Xn a subset with

restrictions on codewords, for instance on the weight of the codewords, on the
distribution of 0 and 1, etc.

Such a partition can be used in some other situations, for example WEM
codes correcting defects, WEM codes detecting localized errors, i.e. the encoder
has an additional information about errors.

In Section 2 we present our three models. In Section 3 – 5 we present capacity
theorems for them.

2 Three Models of WEM with Errors

We study three types of WEM codes with additional properties.

1. WEM code correcting t = τn defects (E+, D−)
Denote the t element subsets of [n] = {1, 2, . . . , n} by Et =

(
[n]
t

)
. Any E ∈ Et can

be the set of defect positions and any eE = (ek)k∈E can specify the defects ek
in position k. Both, E and eE , are known to the encoder, who also knows the
present state xn whereas the decoder knows nothing.

The decoder, reading yn ∈ Cj votes for message j. Necessarily the Cj ’s are

again disjoint. Moreover, for every xn ∈ C =
M⋃
j=1

Cj , E, and eE there must be

for every j a yn ∈ Cj with

yk = ek for k ∈ E (4)

and ∑
k∈[n]�E

ϕ(dk, yk) ≤ d. (5)

2. WEM code detecting t localized errors (E+, D−)
Any E ∈ Et can be the set of positions with possible errors. At any updating E is
known to the encoder. We want to be able to have a large set M = {1, 2, . . . ,M}
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of messages as candidates for an updating. The code {Ci : 1 ≤ i ≤ M} has to
be designed such that the decoder decides correctly, if no error occurs in the
positions E, and otherwise he detects an error.

It will be shown that optimal rates are achieved with codes of the following
structure:

The elements in C =
M⋃
i=1

Ci have weight
⌊
n−t
2

⌋
.

For j ∈ M and xn ∈ C we require that yn = yn(xn, E, j) satisfies yk = xk for
k ∈ E, yn ∈ Cj , and D(xn, yn) ≤ d.

If for the output state v v ∈ Cj , then v is decoded into j, and if v /∈ Cj , then
necessarily |v| >

⌊
n−t
2

⌋
and an error is detected.

Actually, we shall make sure by additional assumptions on the model that
always the state sequence xn satisfies xk = 0 for k ∈ E.

This can be achieved by a.) having the same E (unknown to the decoder for
all updatings) or by b.) allowing only errors which change a 1 into a 0.

In case of a detection the memory has to be cleaned by writing a 0 everywhere.

3. WEM code correcting t localized errors (E+, D+)
Let E ∈ Et be the set of possible positions for errors in updating. It is known
to the encoder, who also knows the present state, say xn. He encodes a mes-
sage j ∈ {1, 2, . . . ,M} by a yn(xn, j, E) satisfying D(xn, yn) ≤ d. For the
output state v D(yn, v) ≤ t holds. The decoder knows xn and bases his
decoding Ψ on xn and v. Therefore Ψ : Xn × Xn → M must satisfy
Ψ(xn, v) = j.

Of course by the distance constraint there is no loss in assuming that yk = xk
for k ∈ E. Since both, encoder and decoder, know xn the coding problem is
practically equivalent to the coding problem for transmission in the presence of
localized errors, except that there is now the constraint for the codewords to
have weights not exceeding d.

Remark 1. An interesting more difficult coding problem arises, if model 3 is
altered such that the encoder does not remember the previous state, that is, we
are in case (E+, D−).

3 The Capacity in Model 1

We denote by Rdef(δ, τ) the optimal rate, that is, the capacity of WEM codes
correcting t = τn defects at maximal cost d = δn. We need the quantity

R(w, τ) =

{
(1 − τ)h

(
w

1−τ

)
, if w ≤ 1

2 (1 − τ)

1 − τ, if w ≥ 1
2 (1 − τ).

Theorem 1. For any 0 ≤ τ ≤ 1 and 0 ≤ δ ≤ 1

Rdef(δ, τ) = R(δ, τ).
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We recall the Color Carrying Lemma. (see [2])

The hypergraph H=(V, E) carries M colors, if M ≤
(

�n|E|min
E∈E

|E|
)−1

min
E∈E

|E|.

Remark 2: Misprints in Lemma in [2] have been corrected.

Proof of Theorem 1
For xn ∈ Xn and xk = ek(k ∈ E) define

Sd(xn, E, eE) =
{
yn ∈ Xn : yk = ek for k ∈ E,D(yn, xn) ≤ d

}
. (6)

Clearly, M ≤ |Sd(xn, E, eE)| and |Sd(xn, E, eE)|=
d∑
i=0

(
n−t
i

)
∼ exp

{
R(δ, τ)n

}
.

By applying the previous lemma to the hypergraph with vertex set Xn and
edges defined in (6) we can achieve the rate R(δ, τ).

Remark 3: Actually, Theorem 1 is also an immediate consequence of the results
of [3].

The capacity for model 2
Here Rdetect

loc (δ, τ) denotes the optimal rate (capacity) of WEM codes detecting
t = τn, 0 ≤ τ ≤ 1

2 , localized errors with cost d = δn. The encoder knows the set
E of error positions E and the previous state of the memory.

Theorem 2. Under conditions a.) or b.)

Rdetect
loc (δ, τ) = R(δ, τ).

Remarks

4. The expression R(δ, τ) also occurs as the capacity in correcting localized
errors with constant weight δn codes (see [4]). That result also follows from
the proof of Theorem 2.

5. The work of [6] does not assume restrictions on the weight of codewords.

Proof: The inequality Rdetect
loc (δ, τ) ≤ R(δ, τ) is obvious and the opposite in-

equality follows again by the Color Carrying Lemma.

The capacity for model 3
We denote by Rloc(δ, τ) the optimal rate (capacity) of WEM codes correcting
t = τn, 0 < τ ≤ 1

2 , localized errors with cost d = δn. Recall that the encoder
knows the set of error positions E and both encoder and decoder, are informed
about the previous state of the memory.

We define now a quantityRL which describes the capacity in correcting t = τn
localized errors with binary constant weight w = wn, 0 < w ≤ 1, codes

RL(w, τ) =


h(w + τ) − h(τ), if 0 < w ≤ 1

2

1 − h(τ), if 1
2 − τ ≤ w ≤ 1

2

h(w − τ) − h(τ), if 1
2 + τ ≤ w < 1

(7)

(see [4]).
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Combining this result with the capacity theorem of [2] for error free WEM
codes one gets

Theorem 3
Rloc(δ, τ) = RL(δ, τ).

Remark 6. Some facts about WEM codes in the situation (E+, D+) can be
carried over to ordinary codes with constant weight.

Theorem 3 can be extended to the situation (E+, D−), when positions E of
t possible errors do not change during updating, namely, we have the capacity
R0

loc(δ, τ).

Theorem 4
RL(w, τ) ≤ R0

loc(δ, τ) ≤ RL(δ, τ), (8)

where w is defined by the equation

δ = 2w(1 − w).

However, if w + τ ≥ 1
2 , then we have equalities in (8).
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Percolation on a k-Ary Tree

K. Kobayashi, H. Morita, and M. Hoshi

Abstract. Starting from the root, extend k branches and append k
children with probability p, or terminate with probability q = 1 − p.
Then, we have a finite k-ary tree with probability one if 0 ≤ p ≤ 1/k.
Moreover, we give the expectation and variance of the length of ideal
codewords for representing the finite trees. Furthermore, we establish the
probability of obtaining infinite tree, that is, of penetrating to infinity
without termination for case 1/k ≤ p ≤ 1.

1 Preliminaries

In the study of computer science and information theory, there are many oc-
casions when we encounter combinatorial structures called trees. Most common
trees appearing in this field are the rooted ordered trees. We simply denote them
as trees in this paper. It would be quite important to devise efficient mechanisms
to encode them for many applications such as data compression.

When we studied the pre-order coding of binary tree, we found an interesting
identity [7] with respect to Catalan numbers, that is:

Theorem 1
∞∑
n=0

1
2n+ 1

(
2n+ 1
n

)
2−(2n+1) = 1. (1)

The following proof provides the speed of convergence of summation to the limit
one.

Proof. Let an = c2,n4−n, where c2,n = 1
2n+1

(
2n+1
n

)
is the Catalan number.

Then we find that an satisfies{
(2n+ 4)an+1 = (2n+ 1)an, n ≥ 0

a0 = 1. (2)

Moreover, letting bn = (2n+ 1)an, we have the recurrence

bn+1 + an+1 = bn for n ≥ 0 with b0 = a0 = 1. (3)

By summing up (3) from n = 0 to N , we obtain bN +
∑N
n=1 an = b0. Therefore,

N∑
n=0

an = a0 + b0 − bN = 2 −
(
2N + 1
N

)
4−N . (4)
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From Stirling’s formula, the second term of (4) can be expressed by

2√
πN3

(1 +O(1/N)) . (5)

Since (5) goes to zero as N → ∞, the theorem holds.

This identity means that the pre-order coding for binary trees shows the best
possible performance in the sense that its length function tightly satisfies the
Kraft inequality.

On the other hand, we have shown inequalities [7] for cases of k ≥ 3:

1
2
<

∞∑
n=0

ck,n2−(kn+1) < 1, (6)

where the ck,n’s are the generalized Catalan numbers (see the definition (8) in
the next section). The above inequalities guarantee the existence of a prefix
code with the length function kn+ 1 for k-ary trees with n internal nodes, but
unfortunately denies that of a code with the length function kn. With respect
this point, refer to the remark 3.

An aim of this paper is to show that the identity (1) can be generalized as in
the next equation:

∞∑
n=0

1
2n+ 1

(
2n+ 1
n

)
pnqn+1 =

{
1 for 0 ≤ p ≤ 1/2
q
p for 1/2 ≤ p ≤ 1 , (7)

where q = 1 − p. Thus, the case p = 1/2 of the identity (1) corresponds to the
critical point separating the conditions in the equation (7).

Remark 1. The pre-order coding is a well known code for binary trees in the
computer science. See books [3] and [6]. The natural code defined in the paper [5]
of Willems, Shtarkov and Tjalkens is a truncated version of the preorder code that
is used for binary trees with finite depth. We consider the whole set of (binary)
trees without any depth constraint. Thus, we intend to study a code for an infinite
number of combinatorial objects (various kinds of trees). Especially, Lemma 2
of their paper cannot be extended for case of non-binary alphabet without some
kind of modifications.

2 Percolation Model on k-Ary Tree

Let us consider a stochastic generation of a k-ary tree. Here, we denote a k-
ary tree to be a rooted ordered tree, each internal node of which has k distinct
branches, usually corresponding to k characters in an alphabet. Starting from
the root, extend k branches and append k children with probability p, or termi-
nate with probability q = 1 − p. Then, we have two distinct events. One is the
event Ef that we ultimately obtain a finite tree, and the other one is the event
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E∞ that the coin flipping process will never be stopped, and we have an infinite
tree.

From the argument by Raney[2],[4], the number ck,n of k-ary tree having n
internal nodes is given by

ck,n =
1

kn+ 1

(
kn+ 1
n

)
. (8)

Using the generalized Catalan numbers, we can express the probability of the
event Ef as

Pr{Ef} =
∞∑
n=0

ck,np
nq(k−1)n+1. (9)

In order to evaluate the series of the above equation, let us introduce the
generating function Fk,p(z) as follows.

Fk,p(z) =
∞∑
n=0

ck,np
nq(k−1)n+1zn. (10)

Thus,
Pr{Ef} = Fk,p(1). (11)

With respect to this generating function, we can easily find the functional
equation by the symbolic consideration.

Fk,p(z) = q + pzFk,p(z)k. (12)

For the case k = 2, we can explicitly solve the functional equation as follows.

F2,p(1) =
1 −

√
1 − 4pq
2p

=
1 − |2p− 1|

2p
=

{
1for 0 ≤ p ≤ 1/2 qp for 1/2 ≤ p ≤ 1 .

(13)

Also, for the case k = 3,

F3,p(1) =

{
1 for 0 ≤ p ≤ 1/3√

4p−3p2−p
2p for 1/3 ≤ p ≤ 1

. (14)

In general, we have

Theorem 2. The probability of the event Ef of having a finite k-ary tree for
the extending probability p is given by

Pr{Ef} = Fk,p(1) =
{

1 for 0 ≤ p ≤ 1/k
f(p)for 1/k ≤ p ≤ 1 , (15)

where f(p) is a unique real value f in the interval [0,1] satisfying the equation,

fk−1 + fk−2 + · · · + f + 1 =
1
p
, (16)

for 1/k ≤ p ≤ 1.
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Fig. 1. Probability of getting a finite k-ary tree versus the extending probability p,
(the curves correspond to the cases of k = 2, 3, . . . from the right)

Remark 2. On pages 255–256 in a classical book[1] on probability theory, Feller
described the first passage time in biased Bernoulli trial, gave a similar form
of the recursion (12) for k = 2, and provided the same formula (13) for the
ultimate winning probability. It is well known that the set of paths that start
from the origin and don’t touch the positive axis until the time 2n + 1 in the
discrete lattice is precisely equivalent to the set of binary trees with n internal
nodes. Indeed, that is the reason of obtaining the identical form for k = 2, and
appearing Catalan numbers in our discussion. Here, our aim is to introduce a
special kind of combinatorial source, and to give a characteristic formula for
specifying the length of codeword. Therefore, we consider that Theorem 2 is not
a particular case of Feller’s, but is an extension of his result in a different or an
information theoretic context.

Remark 3. Previously, we showed an identity [8] with respect to the generalized
Catalan numbers,

∞∑
n=0

ck,n2−{g(k)n+log2(k/(k−1))} = 1, (17)

where g(k) = k log2 k − (k − 1) log2(k − 1) = kh(1/k) and h(p) = −p log2 p −
(1 − p) log2(1 − p) is the binary entropy function.

The above equation is rewritten as
∞∑
n=0

ck,n(
1
k

)n(
k − 1
k

)(k−1)n+1 = 1. (18)

Thus, the identity (17) corresponds to the critical case p = 1/k of the equation (15).

3 Ideal Codeword Length

For case 0 ≤ p ≤ 1/k, we will eventually have a finite k-ary tree with probability
1. At that time, we can consider that the tree with n internal nodes has been
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produced with the probability pnq(k−1)n+1. Here, we notice that the number of
leaves (or external nodes) is (k − 1)n + 1. Thus, the ideal length of a codeword
for representing the k-ary tree is −(log p+(k−1) log q)n− log q. The expectation
L of the ideal codeword length is given by

L =
∞∑
n=0

ck,np
nq(k−1)n+1{−(log p+ (k − 1) log q)n− log q}. (19)

This expectation should be considered to be the entropy of a tree generated in
our percolation model.

Therefore, we have to evaluate the sum,
∞∑
n=0

ck,np
nq(k−1)n+1n = F ′p,k(1). (20)

Differentiating the functional equation (12), we get

F ′p,k(1) =
p

1 − kp
, (21)

for the case 0 ≤ p ≤ 1/k. Inserting this evaluation into the equation (19), we
obtain

L = −(log p+ (k − 1) log q)
p

1 − kp
− log q =

h(p)
1 − kp

. (22)

The variance var(L) is calculated by

var(L)

=
∞∑
n=0

ck,np
nq(k−1)n+1{−(log p+ (k − 1) log q)n− log q − L}2

=
∞∑
n=0

ck,np
nq(k−1)n+1{(log p+ (k − 1) log q)2n2

+2 log q(log p+ (k − 1) log q)n + (log q)2} − L
2
. (23)

Here, we notice from the functional equation (12) that

∞∑
n=0

ck,np
nq(k−1)n+1n2 = F ′k,p(1) + F ′′k,p(1), (24)

and
F ′′k,p(1) =

2 − kp− p

(1 − kp)3
kp2. (25)

Substituting the equations (21),(22),(24) and (25) into (23), we have

var(L) =
pq

(1 − kp)3
(log p+ (k − 1) log q)2 .
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Summarizing the previous results, we established the following theorem.

Theorem 3. The expectation L and variance var(L) of the ideal length of code-
words for k-ary tree generated by the extending probability 0 ≤ p ≤ 1/k are given
by

L =
h(p)

1 − kp
, (26)

and
var(L) =

pq

(1 − kp)3
(log p+ (k − 1) log q)2 . (27)
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On Concepts of Performance Parameters

for Channels

R. Ahlswede

Abstract. Among the mostly investigated parameters for noisy chan-
nels are code size, error probability in decoding, block length; rate, ca-
pacity, reliability function; delay, complexity of coding. There are sev-
eral statements about connections between these quantities. They carry
names like “coding theorem”, “converse theorem” (weak, strong, ...), “di-
rect theorem”, “capacity theorem”, “lower bound”, “upper bound”, etc.
There are analogous notions for source coding.

This note has become necessary after the author noticed that Infor-
mation Theory suffers from a lack of precision in terminology. Its purpose
is to open a discussion about this situation with the goal to gain more
clarity.

There is also some confusion concerning the scopes of analytical and
combinatorial methods in probabilistic coding theory, particularly in the
theory of identification. We present a covering (or approximation) lemma
for hypergraphs, which especially makes strong converse proofs in this
area transparent and dramatically simplifies them.

1 Channels

It is beyond our intention to consider questions of modelling, like what is a
channel in reality, which parts of a communication situation constitute a channel
etc. Shannon’s mathematical description in terms of transmission probabilities
is the basis for our discussion.

Also, in most parts of this note we speak about one–way channels, but there
will be also comments on multi–way channels and compound channels.

Abstractly, let I be any set, whose elements are called input symbols and let
Ø be any set, whose elements are called output symbols.

An (abstract) channel W : I → (Ø, E) is a set of probability distributions

W =
{
W (·|i) : i ∈ I

}
(1.1)

on (Ø, E).
So for every input symbol i and every (measurable) E ∈ E of output symbols

W (E|i) specifies the probability that a symbol in E will be received, if symbol
i has been sent.

The set I does not have to carry additional structure.
Of particular interest are channels with “time–structure”, that means, sym-

bols are words over an alphabet, say X for the inputs and Y for the outputs.

Here Xn =
n∏
t=1

Xt with Xt = X for t ∈ N (the natural numbers) are the input

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 639–663, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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words of (block)–length n and Yn =
n∏
t=1

Yt with Yt = Y for t ∈ N are the output

words of length n.
Moreover, again for the purpose of this discussion we can assume that a trans-

mitted word of length n leads to a received word of length n. So we can define
a (constant block length) channel by the set of stochastic matrices

K = {Wn : Xn → Yn : n ∈ N}. (1.2)

In most channels with time–structure there are (compatibility) relations be-
tween these matrices.

We don’t have to enter these delicate issues. Instead, we present now three
channel concepts, which serve as key examples in this note.

DMC: The most familiar channel is the discrete memoryless channel, defined
by the transmission probabilities

Wn(yn|xn) =
n∏
t=1

W (yt|xt) (1.3)

for W : X → Y, xn = (x1, . . . , xn) ∈ Xn, yn = (y1, . . . , yn) ∈ Yn, and n ∈ N.

NDMC: The nonstationary discrete memoryless channel is given by a sequence
(Wt)∞t=1 of stochastic matrices Wt : X → Y and the rule for the transmission of
words

Wn(yn|xn) =
n∏
t=1

Wt(yt, xt). (1.4)

Other names are “inhomogeneous channel”, “non–constant” channel.

Especially, if Wt =

{
W for t even
V for t odd

one gets a “periodic” channel of period 2 or a “parallel” channel. (c.f. [32], [2])

ADMC: Suppose now that we have two channels K1 and K2 as defined in (1.2).
Then following [3] we can associate with them an averaged channel

A =
{(

1
2
Wn

1 +
1
2
Wn

2 : Xn → Yn
)

: n ∈ N
}

(1.5)

and when both constituents, K1 and K2 are DMC’s (resp. NDMC’s) we term it
ADMC (resp. ANDMC).

It is a very simple channel with “strong memory”, suitable for theoretical
investigations. They are considered in [3] in much greater generality (any number
of constituents, infinite alphabets) and have been renamed by Han and Verdu
“mixed channels” in several papers (see [29]).

We shall see below that channel parameters, which have been introduced for
the DMC, where their meaning is without ambiguities, have been used for gen-
eral time–structured channels for which sometimes their formal or operational
meaning is not clear.

NONSTATIONARITY and MEMORY, incorporated in our examples of chan-
nels, are tests for concepts measuring channel performance.
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2 Three Unquestioned Concepts: The Two Most Basic,
Code Size and Error Probability, Then Further Block
Length

Starting with the abstract channel W : I → (Ø, E) we define a code

C =
{
(ui, Di) : i ∈ I

}
with ui ∈ I, Di ∈ E

for i ∈ I and pairwise disjoint Di’s.

M = |C| is the code size (2.1)

e(C) = max
i∈I

W (Dci |ui) (2.2)

is the (maximal) probability of error and

e(C) =
1
M

M∑
i=1

W (Dci |ui) (2.3)

is the average probability of error.
One can study now the functions

M(λ) = max
C

{
|C| : e(C) ≤ λ

}
(resp. M(λ)) (2.4)

and
λ(M) = min

C

{
e(C) : |C| = M

}
(resp. λ(M)), (2.5)

that is, finiteness, growth, convexity properties etc.
It is convenient to say that C is an (M,λ)–code, if

|C| ≥M and e(C) ≤ λ. (2.6)

Now we add time–structure, that means here, we go to the channel defined in
(1.2). The parameter n is called the block length or word length.

It is to be indicated in the previous definitions. So, if ui ∈ Xn and Di ⊂ Yn
then we speak about a code C(n) and definitions (2.4), (2.5), and (2.6) are to be
modified accordingly:

M(n, λ) = max
C(n)

{
|C(n)| : e

(
C(n)

)
≤ λ

}
(2.7)

λ(n,M) = min
C(n)

{
e
(
C(n)

)
: |C(n)| = M

}
(2.8)

C(n) is an (M,n, λ)–code, if |C(n)| ≥M, e
(
C(n)

)
≤ λ. (2.9)

Remark 1: One could study blocklength as function of M and λ in smooth
cases, but this would be tedious for the general model K, because monotonicity
properties are lacking for M(n, λ) and λ(M,n).

We recall next Shannon’s fundamental statement about the two most basic
parameters.
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3 Stochastic Inequalities: The Role of the Information
Function

We consider a channelW : X → Y with finite alphabets. To an input distribution
P , that is a PD on X , we assign the output distribution Q = PW , that is a PD
on Y, and the joint distribution P̃ on X × Y, where P̃ (x, y) = P (x)W (y|x).

Following Shannon [38] we associate with (P,W ) or P̃ the information func-
tion (per letter) I : X × Y → R, where

I(x, y) =

{
log P̃ (x,y)

P (x)Q(y)

0 , if P̃ (x, y) = 0.
(3.1)

If X is an (input) RV with values in X and distribution PX = P and if Y is
an (output) RV with values in Y and distribution PY = Q such that the joint
distribution PXY equals P̃ , then I(X,Y ) is a RV. Its distribution function will
be denoted by F , so

F (α) = Pr
{
I(X,Y ) ≤ α

}
= P̃

({
(x, y) : I(x, y) ≤ α

})
. (3.2)

We call an (M,λ)–code
{
(ui, Di) : 1 ≤ i ≤ M

}
canonical, if P (ui) = 1

M for
i = 1, . . . ,M and the decoding sets are defined by maximum likelihood decoding,
which results in a (minimal) average error probability λ.

Theorem. Shannon [38]
For a canonical (M,λ)–code and the corresponding information function there
are the relations

1
2
F

(
log

M

2

)
≤ λ ≤ F

(
log

M

2

)
. (3.3)

Remarks

2. Shannon carries in his formulas a blocklength n, but this is nowhere used in
the arguments. The bounds hold for abstract channels (without time struc-
ture). The same comment applies to his presentation of his random coding
inequality: there exists a code of length M and average probability of error

λ ≤ F (logM + θ) + e−θ, θ > 0.

3. Let us emphasize that all of Shannon’s bounds involve the information func-
tion (per letter), which is highlighted also in Fano [24], where it is called
mutual information. (One may argue which terminology should be used, but
certainly we don’t need the third “information spectrum” introduced more
recently by Han!) In contrast, Fano’s inequality is not a stochastic inequality.
It works with the average (or expected) mutual information I(X ∧ Y ) (also
written as I(X ;Y )), which is a constant. Something has been given away.
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4 Derived Parameters of Performance: Rates for
Code Sizes, Rates for Error Probabilities, Capacity,
Reliability

The concept of rate involves a renormalisation in order to put quantities into a
more convenient scale, some times per unit. Exponentially growing functions are
renormalized by using the logarithmic function. In Information Theory the prime
example is M(n, λ) (see 2.7). Generally speaking, with any function f : N → R+

(or, equivalently, any sequence
(
f(1), f(2), f(3), . . .

)
of non–negative numbers)

we can associate a rate function rate(f), where

rate
(
f(n)

)
=

1
n

log f(n). (4.1)

We also speak of the rate at n, when we mean

raten(f) � rate
(
f(n)

)
=

1
n

log f(n). (4.2)

This catches statements like “an increase of rate” or “rate changes”.
In Information Theory f is related to the channel K or more specifically f(n)

depends on Wn. For example choose f(n) = M(n, λ) for n ∈ N, λ constant.
Then rate(f) is a rate function for certain code sizes.

Now comes a second step: for many stationary systems like stationary channels
(c.f. DMC) f behaves very regular and instead of dealing with a whole rate
function one just wants to associate a number with it.

We state for the three channels introduced in Section 1 the results – not
necessarily the strongest known – relevant for our discussion.

DMC: There is a constant C = C(W ) (actually known to equal max
P

I(W |P ))

such that

(a) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for all
n ≥ n0 there exist

(n, e(C−δ)n, λ)–codes,

(b) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for all
n ≥ n0 there does not exist an

(n, e(C+δ)n, λ)–code.

ADMC: There is a constant C (actually known to equal max
P

min
i=1,2

I(Wi|P ) [3])

such that

(a) holds
(c) for every δ > 0 there exists a λ ∈ (0, 1) and an n0 = n0(λ, δ) such that for

all n ≥ n0 there does not exist an

(n, e(C+δ)n, λ)–code.
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NDMC: There is a sequence of numbers
(
C(n)

)∞
n=1

(which actually can be

chosen as C(n) = 1
n

n∑
t=1

max
P

I(Wt|P ) [2]) such that

(a′) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for
all n ≥ n0 there exist

(n, e(C(n)−δ)n, λ)–codes.

(b′) for every λ ∈ (0, 1) and δ > 0 there exists an n0 = n0(λ, δ) such that for
all n ≥ n0 there does not exist an

(n, e(C(n)+δ)n, λ)–code.

(This is still true for infinite output alphabets, for infinite input alphabets
in general not. There the analogue of (c), say (c′) is often still true, but
also not always.)

Notice that with every sequence
(
C(n)

)∞
n=1

satisfying (a′) and (b′) or (a′) and
(c′) also every sequence

(
C(n)+ o(1)

)∞
n=1

does. In this sense the sequence is not
unique, whereas earlier the constant C is.

The pair of statements ((a), (b)) has been called by Wolfowitz Coding theorem
with strong converse and the number C has been called the strong capacity in
[2]. For the ADMC there is no C satisfying (a) and (b), so this channel does not
have a strong capacity.

The pair of statements ((a), (c)) have been called by Wolfowitz coding theorem
with weak converse and the number C has been called in [2] the weak capacity.
So the ADMC does have a weak capacity.

(For completeness we refer to two standard textbooks. On page 9 of Gallager
[27] one reads “The converse to the coding theorem is stated and proved in
varying degrees of generality in chapter 4, 7, and 8. In imprecise terms, it states
that if the entropy of a discrete source, in bits per second, is greater than C, then
independent of the encoding and decoding used in transmitting the source output
at the destination cannot be less than some positive number which depends
on the source and on C. Also, as shown in chapter 9, if R is the minimum
number of binary digits per second required to reproduce a source within a given
level of average distortion, and if R > C, then, independent of the encoding
and decoding, the source output cannot be transmitted over the channel and
reproduced within that given average level of distortion.”

In spite of its pleasant preciseness in most cases, there seems to be no definition
of the weak converse in the book by Csiszár and Körner [22].)

Now the NDMC has in general no strong and no weak capacity (see
our example in Section 7)
However, if we replace the concept of capacity by that of a capacity function(
C(n)

)∞
n=1

then the pair ((a′), (b′)) (resp. ((a′), (c′)) may be called coding
theorem with strong (resp. weak) converse and accordingly one can speak about
strong (resp. weak) capacity functions, defined modulo o(1).
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These concepts have been used or at least accepted – except for the author
– also by Wolfowitz, Kemperman, Augustin and also Dobrushin [23], Pinsker
[35]. The concept of information stability (Gelfand/Yaglom; Pinsker) defined for
sequences of numbers and not – like some authors do nowadays – for a constant
only, is in full agreement at least with the ((a), (c)) or ((a′), (c′)) concepts.
Equivalent formulations are

(a′) inf
λ>0

lim
n→∞

(
1
n logM(n, λ) − C(n)

)
≥ 0

(b′) for all λ ∈ (0, 1) lim
n→∞

(
1
n logM(n, λ) − C(n)

)
≤ 0

(c′) inf
λ>0

lim
n→∞

(
1
n logM(n, λ) − C(n)

)
≤ 0.

(For a constant C this gives (a), (b), (c).)

Remarks

4. A standard way of expressing (c) is: for rates above capacity the error prob-
ability is bounded away from 0 for all large n. ([25], called “partial converse”
on page 44.)

5. There are cases (c.f. [3]), where the uniformity in λ valid in (b) or (b′)
holds only for λ ∈ (0, λ1) with an absolute constant λ1 – a “medium”
strong converse. It also occurs in “second order” estimates of [31] with
λ1 = 1

2 .
6. There are cases where (c) (or (c′)) don’t hold for constant λ’s but for

λ = λ(n) going to 0 sufficiently fast, in one case [17] like 1
n and in

another like 1
n4 [19]. In both cases λ(n) decreases reciprocal to a polyno-

mial and it makes sense to speak of polynomial–weak converses. The soft–
converse of [12] is for λ(n) = eo(n). Any decline condition on λn could be
considered.

7. For our key example in Section 7 ((a′), (c′) holds, but not ((a), (c)). It can
be shown that for the constant C = 0 and any δ > 0 there is a λ(δ) > 0 such
that (n, e(C+δ)n)–codes have error probability exceeding λ(δ) for infinitely
many n.
By Remark 1 this is weaker than (c) and equivalent to

inf
λ>0

lim
n→∞

1

n
log M(n, λ) = C.

Now comes a seemingly small twist. Why bother about “weak capacity”, “strong
capacity” etc. and their existence – every channel should have a capacity.

Definition: C is called the (pessimistic) capacity of a channel K, if it is the
supremum over all numbers C for which (a) holds. Since C = 0 satisfies (a), the
number C = C(K) exists. Notice that there are no requirements concerning (b)
or (c) here.

To every general K a constant performance parameter has been assigned !
What does it do for us?
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First of all the name “pessimistic” refers to the fact that another number
C = C(K) can be introduced, which is at least a large as C.

Definition: C is called the (optimistic) capacity of a channel K, if it is the
supremum over all numbers C for which in (a) the condition “for all n ≥ n0(λ, δ)”
is replaced by “for infinitely many n” or equivalently

C = inf
λ>0

lim
n→∞

1
n

logM(n, λ).

Here it is measured whether for every λ R < C this “rate” is occasionally, but
infinitely often achievable.

(Let us briefly mention that “the reliability function” E(R) is commonly de-
fined through the values

E(R) = − lim
n→∞

1
n

log λ(eRn, n)

E(R) = − lim
n→∞

1
n

log λ(eRn, n)

if they coincide. Again further differentiation could be gained by considering the
sequence

En(Rn) = − 1
n

logλ(eRnn, n), n ∈ N,

for sequences of rates (Rn)∞n=1. But that shall not be pursuit here.)

In the light of old work [2] we were shocked when we learnt that these two defi-
nitions were given in [22] and that the pessimistic capacity was used throughout
that book. Since the restriction there is to the DMC–situation it makes actually
no difference. However, several of our Theorems had just been defined away.
Recently we were even more surprised when we learned that these definitions
were not new at all and have indeed been standard and deeply rooted in the
community of information theorists (the pessimistic capacity C is used in [24],
[42], [21] and the optimistic capacity C is used in [22] on page 223 and in [33]).

Fano [24] uses C, but he at the same time emphasizes throughout the book
that he deals with “constant channels”.

After quick comments about the optimistic capacity concept in the next sec-
tion we report on another surprise concerning C.

5 A Misleading Orientation at the DMC: The Optimistic
Rate Concept Seems Absurd

Apparently for the DMC the optimistic as well as the pessimistic capacities, C
and C, equal C(W ). For multi–way channels and compound channels

{
W (·|·, s) :

s ∈ S
}

the optimistic view suggests a dream world.
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A. Recently Cover explained that under this view for the broadcast channel
(W : X → Y, V : X → Z) the rate pair (RY , RZ) =

(
C(W ), C(V )

)
is in

the capacity region, which in fact equals
{
(RY , RZ) : 0 ≤ RY ≤ C(W ),

0 ≤ RZ ≤ C(W )
}
.

Just assign periodically time intervals of lengthsm1, n1,m2, n2,m3, n3, . . .
to the DMC’s W and V for transmission. Just choose every interval very long
in comparison to the sum of the lengths of its predecessors. Thus again and
again every channel comes in its rate close, and finally arbitrary close, to
its capacity. The same argument applies to the MAC, TWC etc. – so in any
situation where the communicators have a choice of the channels for different
time intervals.

B. The reader may quickly convince himself that C = min
s∈S

C
(
W (·|·, s)

)
≥

max
P

min
s

I
(
W (·|·, s)|P

)
for the compound channel. For the sake of the ar-

gument choose S = {1, 2}. The sender not knowing the individual channel
transmits for channel W (·|·, 1) on the m–intervals and for channel W (·|·, 2)
on the n–intervals. The receiver can test the channel and knows in which
intervals to decode!

C. As a curious Gedankenexperiment: Is there anything one can do in this
context for the AVC?

For the semicontinuous compound channel, |S| = ∞, the ordinary weak
capacity (((a),(c)) hold) is unknown. We guess that optimism does not help
here, because it does seem to help if there are infinitely many proper cases.

The big issue in all problems here is of course delay. It ought to be incor-
porated (Space–time coding).

6 A “Paradox” for Product of Channels

Let us be given s channels (Wn
j )∞n=1, 1 ≤ j ≤ s. Here Wn

j : Xnj → Ynj , 1 ≤ j ≤ s.
The product of these channels (W ∗n)∞n=1 is defined by

W ∗n =
s∏
j=1

Wn
j :

s∏
j=1

Xnj →
s∏
j=1

Ynj .

A paper by Wyner [42] is very instructive for our discussion. We quote therefore
literally the beginning of the paper (page 423) and also its Theorem with a
sketch of the proof (page 425), because it is perhaps instructive for the reader
to see how delicate things are even for leading experts in the field.

“In this paper we shall consider the product or parallel combination of chan-
nels, and show that (1) the capacity of the product channel is the sum of the
capacities of the component channels, and (2) the “strong converse” holds for
the product channel if it holds for each of the component channels. The result is
valid for any class of channels (with or without memory, continuous or discrete)
provided that the capacities exist. “Capacity” is defined here as the supremum
of those rates for which arbitrarily high reliability is achievable with block coding
for sufficiently long delay.
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Let us remark here that there are two ways in which “channel capacity” is
commonly defined. The first definition takes the channel capacity to be the supre-
mum of the “information” processed by the channel, where “information” is the
difference of the input “uncertainty” and the “equivocation” at the output. The
second definition, which is the one we use here, takes the channel capacity to be
the maximum “error free rate”. For certain classes of channels (e.g., memoryless
channels, and finite state indecomposable channels) it has been established that
these two definitions are equivalent. In fact, this equivalence is the essence of
the Fundamental Theorem of Information Theory. For such channels, (1) above
follows directly. The second definition, however, is applicable to a broader class
of channels than the first. One very important such class are time–continuous
channels.”

Theorem

(1) Let C∗ be the capacity of the product of s channels with capacities C1, C2, . . . ,
Cs respectively. Then

C∗ =
s∑
j=1

Cj . ((6.1))

(2) If the strong converse holds for each of these s channels, then it holds for
the product channel.

The proof of (1) is divided into two parts. In the first (the “direct half”) we

will show that any R <
s∑
j=1

Cj is a permissible rate. This will establish that

C∗ �
∑s
j=1 Cj . In the second (“weak converse”) we will show that no R >

s∑
j=1

Cj

is a permissible rate, establishing that C∗ �
s∑
j=1

Cj . The proof of (2) parallels

that of the weak converse.
It will suffice to prove the theorem for the product of two channels (s = 2),

the result for arbitrary s following immediately by induction.”

Let’s first remark that C∗ ≥
s∑
j=1

Cj for the pessimistic capacities (appar-

ently used here) follows immediately from the fact that by taking products of
codes the errors at most behave additive. By proving the reverse inequality the
weak converse, statement (c) in Section 4 is tacitly assumed for the component
channels and from there on everything is okay. The point is that this assump-
tion does not appear as a hypothesis in the Theorem! Indeed our key example
of Section 7 shows that (6.1) is in general not true. The two factor channels
used in the example don’t have a weak converse (or weak capacity for that
matter).

The reader is reminded that having proved a weak converse for the number C,
the pessimistic capacity, is equivalent to having shown that the weak capacity
exists.
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7 The Pessimistic Capacity Definition: An Information
Theoretic Perpetuum Mobile

Consider the two matrices V 1 = ( 1 0
0 1 ) and V 0 =

( 1
2

1
2

1
2

1
2

)
. We know that C(V 1) =

1 and C(V 0) = 0.
Consider a NDMC K with Wt ∈ {V 0, V 1} for t ∈ N and a NDMC K∗ with

t–th matrix W ∗
t also from {V 0, V 1} but different from Wt. Further consider the

product channel (K,K∗) specified by W1W
∗
1W2W

∗
2 – again a NDMC.

With the choice (m1, n1,m2, n2, . . . ), where for instance ni ≥ 2mi, mi+1 ≥ 2ni

we define channel K completely by requiring that Wt = V 1 in the mi–length
intervals and Wt = V 0 in the ni–length intervals. By their growth properties
we have for the pessimistic capacities C(K) = C(K∗) = 0. However, apparently
C(K,K∗) = 1.

8 A Way Out of the Dilemma: Capacity Functions

If M(n, λ) fluctuates very strongly in n and therefore also raten(M), then it does
not make much sense to describe its growth by one number C. At least one has
to be aware of the very limited value of theorems involving that number.

For the key example in Section 7 C(K) = C(K∗) = 0 and on the other
hand C(K) = C(K∗) = 1. In contrast we can choose the sequence (cn)∞n=1 =(

1
n

n∑
t=1

C(Wt)
)∞
n=1

for channel K and (c∗n)
∞
n=1 =

(
1
n

n∑
t=1

C(W ∗
t )
)∞
n=1

for channel

K∗, who are always between 0 and 1.
They are (even strong) capacity functions and for the product channel K×K∗

we have the capacity function (cn + c∗n)
∞
n=1, which equals identically 1, what it

should be. Moreover thus also in general the “perpetuum mobile of information”
disappears. We have been able to prove the

Theorem. For two channels K1 and K2

(i) with weak capacity functions their product has the sum of those functions as
weak capacity function

(ii) with strong capacity functions their product has the sum of those functions
as strong capacity function.

We hope that we have made clear that capacity functions in conjunction with
converse proofs carry in general more information – perhaps not over, but about
channels – than optimistic or pessimistic capacities. This applies even for chan-
nels without a weak capacity function because they can be made this way at
least as large C and still satisfy (a).

Our conclusion is, that

1. when speaking about capacity formulas in non standard situations one must
clearly state which definition is being used.

2. there is no “true” definition nor can definitions be justified by authority.
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3. presently weak capacity functions have most arguments in their favour, also
in comparison to strong capacity functions, because of their wide validity and
the primary interest in direct theorems. To call channels without a strong
capacity “channels without capacity” ([41]) is no more reasonable than to
name an optimistic or a pessimistic capacity “the capacity”.

4. we must try to help enlightening the structure of channels. For that purpose
for instance C can be a useful bound on the weak capacity function, because
it may be computable whereas the function isn’t.

5. Similar comments are in order for other quantities in Information Theory,
rates for data compression, reliability functions, complexity measures.

9 Some Concepts of Performance from Channels with
Phases

In this Section we explore other capacity concepts involving the phase of the
channel, which for stationary systems is not relevant, but becomes an issue
otherwise. Again the NDMC (Wt)∞t=1 serves as a genuine example. In a phase
change by m we are dealing with (Wt+m)∞t=1. “Capacity” results for the class of
channels

{
(Wt+m)∞t=1 : 0 ≤ m < ∞

}
in the spirit of a compound channel, that

is, for codes which are good simultaneously for all m are generally unknown.
The AVC can be produced as a special case and even more so the zero–error
capacity problem.

An exception is for instance the case where (Wt)∞t=1 is almost periodic in the
sense of Harald Bohr. Because these functions have a mean also

(
C(Wt)

)∞
t=1

has
a mean and it has been shown that there is a strong capacity [2].

Now we greatly simplify the situation and look only at (Wt)∞t=1 where

Wt ∈
{
( 1 0

0 1 ) ,
( 1

2
1
2

1
2

1
2

)}
and thus C(Wt) ∈ {0, 1}. Moreover, we leave error probabilities aside and look

only at 0 − 1–sequences (C1, C2, C3, . . . ) and the associated C(n) = 1
n

n∑
t=1

Ct ∈

[0, 1].
So we just play with 0 − 1–sequences (an)∞n=1 and associated Cesaro–means

An = 1
n

n∑
t=1

at and Am+1,m+n = 1
n

m+n∑
t=m+1

at.

First of all there are the familiar

A = lim
n→∞

An (the pessimistic mean) (9.1)

A = lim
n→∞

An (the optimistic mean). (9.2)

We introduce now a new concept

A
=

= lim
n→∞

inf
m≥0

Am+1,m+n (the pessimistic phase independent mean). (9.3)
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The “inf” reflects that the system could be in any phase (known to but not
controlled by the communicators). Next we assume that the communicators can
choose the phase m for an intended n and define

=

A = lim
n→∞

sup
m≥0

Am+1,m+n (super optimistic mean). (9.4)

We shall show first

Lemma

lim
n→∞

inf
m≥0

Am+1,m+n = A
=

(9.5)

lim
n→∞

sup
m≥0

Am+1,m+n =
=

A (9.6)

Proof: We prove only (9.5), the proof for (9.6) being “symmetrically” the same.
We have to show that

A
=

= lim
n→∞

inf
m≥0

Am+1,m+n ≥ lim
n→∞

inf
m≥0

Am+1,m+n. (9.7)

For every n let m(n) give minimal Am+1,m+n. The number exists because these
means take at most n+1 different values. Let n∗ be such that Am(n∗)+1,m(n∗)+n∗

is within ε of A
=

and choose a much bigger N∗ for which Am(N∗)+1,m(N∗)+N∗ is

within ε of the expression at the right side of (9.7) and N∗ ≥ 1
εn
∗ holds.

Choose r such that rn∗ + 1 ≤ N∗ ≤ (r + 1)n∗ and write

N∗Am(N∗)+1,m(N∗)+N∗ =
r−1∑
s=0

m(N∗)+(s+1)n∗∑
t=m(N∗)+sn∗+1

at +
m(N∗)+N∗∑

t=m(N∗)+rn∗+1

at

≥ r · n∗Am(n∗)+n∗ ≥ r · n∗(A
=
− ε)

≥ (N∗ − n∗)(A
=
− ε) ≥ N∗(1 − ε)(A

=
− ε).

Finally, by changing the order of operations we get four more definitions, how-
ever, they give nothing new. In fact,

inf
m

lim
n→∞

Am+1,m+n = sup
m

lim
n→∞

Am+1,m+n = A (9.8)

inf
m

lim
n→∞

Am+1,m+n = sup
m

lim
n→∞

Am+1,m+n = A, (9.9)

because for an m0 close to an optimal phase the first m0 positions don’t affect
the asymptotic behaviour.

The list of quantities considered is not intended to be complete in any sense,
but serves our illustration.

We look now at A
=
≤ A ≤ A ≤

=

A in four examples to see what constellations
of values can occur.

We describe a 0−1–sequence (an)∞n=1 by the lengths of its alternating strings
of 1’s and 0’s: (k1, 1, k2, 2, k3, . . . )
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Example 1: kt = k, t =  for t = 1, 2, . . . ; a periodic case:

A
=

= A = A =
=

A =
k

k + 
.

Example 2: kt = t = t for t = 1, 2, . . . . Use
n∑
t=1

kt =
n∑
t=1

t = n(n+1)
2 and verify

0 = A
=
<

1
2

= A = A < 1 =
=

A.

Example 3: kt =
t−1∑
s=1

ks, t =
t−1∑
s=1

s for t = 1, 2, . . .

0 = A
=
<

1
2

= A <
2
3

= A < 1 =
=

A.

Here all four values are different.

Example 4: kt =
t−1∑
s=1

ks, t = t for t = 2, 3, . . . , k1 = 1

0 = A
=
< 1 = A = A =

=

A.

All four quantities say something about (An)∞n=1, they all say less than the full
record, the sequence itself (corresponding to our capacity function).

10 Some Comments on a Formula for the Pessimistic
Capacity

A noticeable observation of Verdu and Han [39] is that C can be expressed for
every channel K in terms of a stochastic limit (per letter) mutual information.

The renewed interest in such questions originated with the Theory of Identi-
fication, where converse proofs for the DMC required that output distributions
of a channel, generated by an arbitrary input distribution (randomized encoding
for a message), be “approximately” generated by input distributions of control-
lable sizes of the carriers. Already in [12] it was shown that essentially sizes of
∼ eCn would do and then in [30], [31] the bound was improved (strong converse)
by a natural random selection approach. They termed the name “resolvability”
of a channel for this size problem.

The approximation problem (like the rate distortion problem) is a “covering
problem” as opposed to a “packing problem” of channel coding, but often these
problems are very close to each other, actually ratewise identical for standard
channels like the DMC. To establish the strong second order identification capac-
ity for more general channels required in the approach of [30] that resolvability
must equal capacity and for that the strong converse for K was needed.
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This led them to study the ADMC [3], which according to Han [28] plaid a key
role in the further development. Jacobs has first shown that there are channels
with a weak converse, but without a strong converse. In his example the abstract
reasoning did not give a channel capacity formula. This is reported in [32] and
mentioned in [3], from where the following facts should be kept in mind.

1. The ADMC has no strong converse but a weak converse (see Section 4 for
precise terminology).

2. The term weak capacity was introduced.
3. The weak capacity (and also the λ–capacity were determined for the ADMC

by linking it to the familiar maxmin –formula for the compound channel in
terms of (per letter)–mutual information.

4. It was shown that lim
n→∞

1
n maxXn I(Xn ∧ Y n) does not describe the weak

capacity in general. Compare this with Wyner’s first capacity definition in
Section 6.

5. It was shown that Fano’s inequality, involving only the average mutual in-
formation I(Xn ∧ Y n), fails to give the weak converse for the ADMC.

The observation of [39] is again natural, one should use the information func-
tion of the ADMC directly rather than the max min –formula. They defined for
general K the sequence of pairs

(X,Y) = (Xn, Y n)∞n=1 (10.1)

and

I(X ∧ Y) = sup
{
α : lim

n→∞
Pr

{
(xn, yn) :

1
n
I(xn, yn) ≤ α

}
= 0

}
. (10.2)

Their general formula asserts

C = sup
X

I(X ∧ Y). (10.3)

The reader should be aware that

α.) The stochastic inequalities used for the derivation (10.3) are both (in par-
ticular also Theorem 4 of [39]) not new.

β.) Finally, there is a very important point. In order to show that a cer-
tain quantity K (for instance sup

X
I(X ∧ Y)) equals C one has to show

K ≥ C and then (by definition of C) that K + δ, any δ > 0, is not a
rate achievable for arbitrary small error probabilities or equivalently, that
inf
λ

lim
n→∞

logM(n, λ) < K + δ. For this one does not need the weak converse

(b) inf
λ

lim
n→∞

logM(n, λ) ≤ K, but only

inf
λ

lim
n→∞

logM(n, λ) ≤ K (10.4)

(see also Section 4) The statement may be termed the “weak–weak con-
verse” or the “weak–converse” or “occasional–converse” or whatever. Keep
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in mind that the fact that the weak converse does not hold for the fac-
tors led to the “information theoretic perpetuum mobile”. The remark on
page 1153 “Wolfowitz ... referred to the conventional capacity of Definition
1 (which is always defined) as weak capacity” is not only wrong, because
Wolfowitz never used the term “weak capacity”, it is – as we have explained
– very misleading. After we have commented on the drawbacks of the pes-
simistic capacity, especially also for channel NDMC, we want to say that
on the other hand the formula sup

X
I(X∧Y) and also its dual sup

X
I(X∧Y)

are helpful in characterizing or bounding quantities of interest not only in
their original context, Theory of Identification. Han has written a book [29]
in which he introduces these quantities and their analogues into all major
areas of Information Theory.

11 Pessimistic Capacity Functions

We think that the following concept suggests itself as one result of the discussion.

Definition: A sequence (Cn)∞n=1 of non–negative numbers is a capacity sequence
of K, if

inf
λ>0

lim
n→∞

(
1
n

logM(n, λ) − Cn

)
= 0.

The sequence (C,C,C, . . . ) is a capacity sequence, so by definition there are
always capacity sequences.

Replacing α by αn in (10.2) one can characterize capacity sequences in term of
sequences defined in terms of (per letter) information functions. Every channel
K has a class of capacity sequences C(K).

It can be studied. In addition to the constant function one may look for in-
stance at the class of functions of period m, say C(K,m) ⊂ C(K). More generally
complexity measures µ for the sequences may be used and accordingly one gets
say C(K, µ ≤ ρ), a space of capacity functions of µ–complexity less than ρ.

This seems to be a big machinery, but channels K with no connections between
Wn and Wn′ required in general constitute a wild class of channels. The capacity
sequence space C(K) characterizes a channel in time like a capacity region for
multi–way channels characterizes the possibilities for the communicators.

Its now not hard to show that for the product channel K1 × K2 for any
f ∈ C(K1 × K2) there exist fi ∈ C(Ki); i = 1, 2,; such that f1 + f2 ≥ f . The
component channels together can do what the product channel can do. This way,
both, the non–stationarity and perpetuum mobile problem are taken care of.

We wonder how all this looks in the light of “quantum parallelism”.
We finally quote statements by Shannon. In [37] he writes “Theorem 4, of

course, is analogous to known results for the ordinary capacity C, where the
product channel has the sum of the ordinary capacities and the sum channel has
an equivalent number of letters equal to the sum of the equivalent numbers of
letters for the individual channels. We conjecture, but have not been able to
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prove, that the equalities in Theorem 4 hold in general – not just under the
conditions given”. Both conjectures have been disproved (Haemers and Alon).

12 Identification

Ahlswede and Dueck, considering not the problem that the receiver wants to
recover a message (transmission problem), but wants to decide whether or not
the sent message is identical to an arbitrarily chosen one (identification problem),
defined an (n,N, λ1, λ2) identification (ID) code to be a collection of pairs

{(Pi,Di) : i = 1, . . . , N},

with probability distributions Pi on Xn and Di ⊂ Yn, such that the error prob-
abilities of first resp. second kind satisfy

PiW
n(Dci ) =

∑
xn∈Xn

Pi(xn)Wn(Dci |xn) ≤ λ1,

PjW
n(Di) =

∑
xn∈Xn

Pj(xn)Wn(Di|xn) ≤ λ2,

for all i, j = 1, . . . , N , i = j. Define N(n, λ1, λ2) to be the maximal N such that
a (n,N, λ1, λ2) ID code exists.

With these definitions one has for a DMC

Theorem. (Ahlswede, Dueck [12]) For every λ1, λ2 > 0 and δ > 0, and for
every sufficiently large n

N(n, λ1, λ2) ≥ exp(exp(n(C(W ) − δ))).

The next two sections are devoted to a (comparably short) proof of the following
strong converse

Theorem. Let λ1, λ2 > 0 such that λ1 +λ2 < 1. Then for every δ > 0 and every
sufficiently large n

N(n, λ1, λ2) ≤ exp(exp(n(C(W ) + δ))).

The strong converse to the coding theorem for identification via a DMC was
conjectured in [12] (In case of complete feedback the strong converse was estab-
lished already in [13]) and proved by Han and Verdu [31] and in a simpler way in
[30]. However, even the second proof is rather complicated. The authors empha-
size that they used and developed analytical methods and take the position that
combinatorial techniques for instance of [6], [7] find their limitations on this kind
of problem (see also Newsletter on Moscow workshop in 1994). We demonstrate
now that this is not the case (see also the remarks on page XIX of [C1]).

Here we come back to the very first idea from [12], essentially to replace the
distributions Pi by uniform distributions on “small” subsets of Xn, namely with
cardinality slightly above exp(nC(W )).
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13 A Novel Hypergraph Covering Lemma

The core of the proof is the following result about hypergraphs. Recall that a
hypergraph is a pair Γ = (V , E) with a finite set V of vertices, and a finite set E
of (hyper–) edges E ⊂ V . We call Γ e–uniform, if all its edges have cardinality
e. For an edge E ∈ E denote the characteristic function of E ⊂ V by 1E .

A result from large deviation theory will be used in the sequel:

Lemma 1. For an i.i.d. sequence Z1, . . . , ZL of random variables with values in
[0, 1] with expectation EZi = µ, and 0 < ε < 1

Pr

{
1
L

L∑
i=1

Zi > (1 + ε)µ

}
≤ exp(−LD((1 + ε)µ‖µ)),

Pr

{
1
L

L∑
i=1

Zi < (1 − ε)µ

}
≤ exp(−LD((1 − ε)µ‖µ)),

where D(α‖β) is the information divergence of the binary distributions (α, 1−α)
and (β, 1 − β). Since

D((1 + ε)µ‖µ) ≥ ε2µ

2 ln 2
for |ε| ≤ 1

2
,

it follows that

Pr

{
1
L

L∑
i=1

Zi ∈ [(1 − ε)µ, (1 + ε)µ]

}
≤ 2 exp

(
−L· ε

2µ

2 ln 2

)
.

Proof: The first two inequalities are for instance a consequence of Sanov’s The-
orem (c.f. [21], also Lemma LD in [12]). The lower bound on D is elementary
calculus.

Lemma 2. (Novel hypergraph covering, presented also in “Winter School on
Coding and Information Theory, Ebeltoft, Dänemark, Dezember 1998” and in
“Twin Conferences: 1. Search and Complexity and 2. Information Theory in
Mathematics, Balatonelle, Ungarn, July 2000”.)

Let Γ = (V , E) be an e–uniform hypergraph, and P a probability distribution
on E. Define the probability distribution Q on V by

Q(v) =
∑
E∈E

P (E)
1
e
1E(v),

and fix ε, τ > 0. Then there exist vertices V0 ⊂ V and edges E1, . . . , EL ∈ E such
that with

Q̄(v) =
1
L

L∑
i=1

1
e
1Ei(v)
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the following holds:
Q(V0) ≤ τ,

∀v ∈ V \ V0 (1 − ε)Q(v) ≤ Q̄(v) ≤ (1 + ε)Q(v),

L ≤ 1 +
|V|
e

2 ln 2 log(2|V|)
ε2τ

.

For ease of application we formulate and prove a slightly more general version
of this:

Lemma 3. Let Γ = (V , E) be a hypergraph, with a measure QE on each edge
E, such that QE(v) ≤ η for all E, v ∈ E. For a probability distribution P on E
define

Q =
∑
E∈E

P (E)QE ,

and fix ε, τ > 0. Then there exist vertices V0 ⊂ V and edges E1, . . . , EL ∈ E such
that with

Q̄ =
1
L

L∑
i=1

QEi

the following holds:
Q(V0) ≤ τ,

∀v ∈ V \ V0 (1 − ε)Q(v) ≤ Q̄(v) ≤ (1 + ε)Q(v),

L ≤ 1 + η|V|2 ln 2 log(2|V|)
ε2τ

.

Proof: Define i.i.d. random variables Y1, . . . , YL with

Pr{Yi = E} = P (E) for E ∈ E .

For v ∈ V define Xi = QYi(v). Clearly EXi = Q(v), hence it is natural to use
a large deviation estimate to prove the bounds on Q̄. Applying Lemma 1 to the
random variables η−1Xi we find

Pr

{
1
L

L∑
i=1

Xi /∈ [(1 − ε)Q(v), (1 + ε)Q(v)]

}
≤ 2 exp

(
−L · ε

2Q(v)
2ηln2

)
.

Now we define

V0 =
{
v ∈ V : Q(v) <

1
|V|τ

}
,

and observe that Q(V0) ≤ τ . Hence,

Pr

{
∃v ∈ V \ V0 :

1
L

L∑
i=1

QYi(v) /∈ [(1 − ε)Q(v), (1 + ε)Q(v)]

}

≤ 2|V| exp
(
−L · ε2τ

2η|V|ln2

)
.
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The right hand side becomes less than 1, if

L > η|V|2ln2 log(2|V|)
ε2τ

,

hence there exist instances Ei of the Yi with the desired properties.
The interpretation of this result is as follows: Q is the expectation measure

of the measures QE, which are sampled by the QEi . The lemma says how close
the sampling average Q̄ can be to Q. In fact, assuming QE(E) = q ≤ 1 for all
E ∈ E , one easily sees that

‖Q− Q̄‖1 ≤ 2ε+ 2τ.

14 Proof of Converse

Let {(Pi, Di) : i = 1, . . . , N} be a (n,N, λ1, λ2) ID code, λ1 + λ2 = 1 − λ < 1.
Our goal is to construct a (n,N, λ1 + λ/3, λ2 + λ/3) ID code {(P̄i, Di) : i =
1, . . . , N} with KL–distributions P̄i on Xn, i.e. all the probabilities are rational
with common denominator KL to be specified below.

Fix i for the moment. For a distribution T on X we introduce

T nT = {xn ∈ Xn : ∀x N(x|xn) = nT (x)},

and call T empirical distribution if this is nonempty. There are less than (n+1)|X |

many empirical distributions.
For an empirical distribution T define

PTi (xn) =
Pi(xn)
Pi(T nT )

for xn ∈ T nT ,

which is a probability distribution on T nT (which we extend by 0 to all of Xn).
Note:

Pi =
∑

T emp. distr.

Pi(T nT )PTi .

For xn ∈ T nT and

α =

√
9|X ||Y|

λ

we consider the set of conditional typical sequences

T nW,α(xn) = {yn ∈ Yn : ...}.

It is well known that these sets are contained in the set of TW–typical se-
quences on Yn,

T nTW,..α = {yn ∈ Yn : ...}.
Define now the measures Qxn by

Qxn(yn) = Wn(yn|xn) · 1T n
W,α(xn)(yn).
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By the properties of typical sequences and choice of α we have

‖Qxn −W (·|xn)‖1 ≤ λ

9
.

Now with ε = τ = λ/36 apply Lemma 3 to the hypergraph with vertex
set T nTW,..α and edges T nW,α(xn), xn ∈ T nT , carrying measure W (·|xn), and the
probability distribution PTi on the edge set: we get a L–distribution P̄Ti with

‖PTi Q− P̄Ti Q‖1 ≤ λ

9
,

L ≤ exp(nI(T ;W ) +O(
√
n)) ≤ exp(nC(W ) +O(

√
n)),

where the constants depend explicitly on α, δ, τ . By construction we get

‖PTi Wn − P̄Ti W
n‖1 ≤ λ

3
.

In fact by the proof of the lemma we can choose L = exp(nC(W ) +O(
√
n)),

independent of i and T .
Now chose a K–distribution R on the set of all empirical distributions such

that ∑
T emp.distr.

|Pi(T nT ) −R(T )| ≤ λ

3
,

which is possible for
K = 	3(n+ 1)|X |/λ
.

Defining
P̄i =

∑
T emp.distr.

R(T )P̄Ti

we can summarize
1
2
‖PiWn − P̄iW

n‖1 ≤ λ

3
,

where P̄i is a KL–distribution. Since for all D ⊂ Yn

|PiWn(D) − P̄iW
n(D)| ≤ 1

2
‖PiWn − P̄iW

n‖1

the collection {(P̄i,Di) : i = 1, . . . , N} is indeed a (n,N, λ1 + λ/3, λ2 + λ/3) ID
code.

The proof is concluded by two observations: because of λ1 + λ2 + 2λ/3 < 1
we have P̄i = P̄j for i = j. Since the P̄i however are KL–distributions, we find

N ≤ |Xn|KL = exp(n log |X | ·KL) ≤ exp(exp(n(C(W ) + δ))),

the last if only n is large enough.
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Appendix: Concepts of Performance from Number Theory

We can identify the 0 − 1–sequence (at)∞t=1 with the set of numbers A ⊂ N,
where

A = {t ∈ N : at = 1}. (A.1)

Then the lower asymptotic density equals the pessimistic mean, so

d(A) = A (A.2)

and the upper asymptotic density equals the optimistic mean, so

d(A) = A. (A.3)

If both coincide they agree with the asymptotic density d(A). Another well–
known and frequently used concept is logarithmic density δ again with lower and
upper branches

δ(A) = lim
n→∞

1
logn

∑
a∈A
a≤n

1
a

(A.4)

δ(a) = lim
n→∞

1
logn

∑
a∈A
a≤n

1
a
. (A.5)

If they are equal, then the logarithmic density δ(A) = δ(A) = δ(A) exists.
Equivalently, they can be written in the form of (lower, upper, ...) Dirichlet

densities

δ(A) = lim
s→1+

∑
a∈A

1
as

(A.6)

δ(A) = lim
s→1+

∑
a∈A

1
as

(A.7)

which often can be handled analytically more easily.
It is well–known that for every A ⊂ N

d(A) ≤ δ(A) ≤ δ(A) ≤ d(A). (A.8)

Whereas the measures of the previous Section A
=

and
=

A are outside the interval(
d(A), d(A)

)
these measures are inside.

Operationally their meaning is not so clear except that they put more weight
on the beginning of the sequence – a realistic property where time is limited.

Even though they don’t seem to have an immediate information theoretical
interpretation, they get one as bounds on the limit points of (An)∞n=1 and also
on A, A. For instance in a widely developed calculus on pessimistic capacities δ
helps in evaluations.



On Concepts of Performance Parameters for Channels 663

The other famous concept of density in Number Theory is

σ(A) = inf
n≥1

1
n
|{a ∈ A : a ≤ n}|, (A.9)

the Schnirelmann density. It is in so far peculiar as 1 /∈ A implies already
σ(A) = 0.

As first application we consider a situation where the communicators have
restrictions on transmission lengths n and on phases m, say to be members of N
and M. Following these rules, what are the time points at which there can be
activity? One answer is the

Lemma (Schnirelmann). Let 0 ∈ M ⊂ N ∪ {0} and 0 ∈ N ⊂ N ∪ {0}, if
σ(M) + σ(B) ≥ 1, then n ∈ M + N for every n ∈ N.

But now we come closer to home.

Definition: For channel K we define for every λ ∈ (0, 1) the Schnirelmann
λ–capacity

S(λ) = σ

({
1
n

logM(n, λ) : n ∈ N
})

.

A pleasant property of σ is that σ(A) = γ implies

1
n
|{a ∈ A : a ≤ n}| ≥ γ for all n ∈ N. (A.10)

Therefore 1
n logM(n, λ) ≥ S(λ) for all n. For a DMC we have for the quantity

min
λ>0

S(λ) = logM(1, 0) ≤ Czero(W ).

S(λ) lower bounds the pessimistic λ–capacity (see [15])

C(λ) = lim
n→∞

1
n

logM(n, λ).

Remark 8: This quantity in conjunction with a weak converse has been deter-
mined (except for finitely many discontinuities in [15]) for compound channels
with the average error criterion, after it was noticed in [3] that for this error con-
cept – as opposed to the maximal error concept – there is no strong converse.

The behaviour of C(λ) is the same as for average errors for the case of maximal
errors and randomisation in the encoding. Conjunction of average error criterion
and randomisation lead to no improvement.

Problem: For which DMC’s and for which λ do we have

S(λ) = C(λ)?

For instance consider a BSC
(

1−ε ε
ε 1−ε

)
and λ > ε, then logM(1, λ) = 1. On the

other hand we know that C(λ) = 1 − h(ε). For λ large enough it is conceivable
that 1

n logM(n, λ) ≥ 1− h(ε) for all n ∈ N. For general channels K many things
can happen.

Theoretically and practically it is still meaningful to investigate S(λ) where
it is smaller than C(λ).



Appendix: On Common Information and

Related Characteristics of Correlated
Information Sources

R. Ahlswede and J. Körner

Abstract. This is a literal copy of a manuscript from 1974. References
have been updated. It contains a critical discussion of in those days recent
concepts of “common information” and suggests also alternative defini-
tions. (Compare pages 402–405 in the book by I. Csiszár, J. Körner “In-
formation Theory: Coding Theorems for Discrete Memoryless Systems”,
Akademiai Kiado, Budapest 1981.) One of our definitions gave rise to
the now well–known source coding problem for two helpers (formulated
in 2.) on page 7).

More importantly, an extension of one concept to “common informa-
tion with list knowledge” has recently (R. Ahlswede and V. Balakirsky
“Identification under Random Processes” invited paper in honor of Mark
Pinsker, Sept. 1995) turned out to play a key role in analyzing the contri-
bution of a correlated source to the identification capacity of a channel.

Thus the old ideas have led now to concepts of operational significance
and therefore are made accessible here.

1 Introduction

Let
{
(Xi, Yi)

}∞
i=1

be a sequence of pairs of random variables which are inde-
pendent, identically distributed and take finitely many different values. {Xi}∞i=1

and {Yi}∞i=1 are to be viewed as two correlated discrete memoryless stationary
information sources (DCMSS).

In [1] a notion of “common information” was introduced for those sources.
It was meant as the maximal common part of the total amount of information
contained individually in each of the two sources {Xi} and {Yi} and which can
therefore be encoded separately by any of them without knowing the actual out-
comes of the other source. It was shown in [1] that common codes of a DCMSS
can use only deterministic interdependence of the sources and no further corre-
lation can be exploited in this manner. This result was sharpened later by H.S.
Witsenhausen [2]. 1

At a first glance the results may seem unsatisfactory because the common
information thus defined depends only on the zeroes of the joint pr. d. matrix
and does not involve its actual values. It is therefore natural to look for other
notions of common information. Motivated by the work of Gray and Wyner [3],
Wyner proposed another notion of common information in [4]. He expresses the
believe that he has found the right notion of common information and that the
1 His result was again significantly improved in [12].

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 664–677, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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earlier one of Gács and Körner is not the right notion, because of the properties
mentioned above. The quantity introduced by Wyner seems to be indeed an
interesting characteristic of correlated sources. However, the present authors
take the position that his notion does not reflect at all what we would mean
intuitively by “common information”.

In this paper some arguments are provided which substantiate this position.
It is therefore natural to look again for other notions of common information.
We proceed systematically and investigate several coding schemes. It will become
clear in our discussion that all notions introduced heavily depend on the network
used for connecting encoders and decoders. Therefore it seems to us that a
question as “what is the right notion of common information of {Xi} and {Yi} ?”
is meaningless. However, we shall introduce some concepts which we believe to
be natural, because they relate to some basic source coding problems.

The main aim of the present contribution is to stimulate further discussions
on the subject.

A word about notation. Throughout the paper “code” shall always mean
deterministic block codes and the r.v. X̃n will be said to ε−reproduce Xn if
P (X̃n = Xn) < ε. All the r.v.’s have finite ranges. The unexplained basic
notation is that of Gallager [9]. For the random variables (r.v) X and Y , H(X)
stands for the entropy of X , ‖X‖ denotes the cardinality of the (finite) range
of X , H(X |Y ) is the average conditional entropy of X given Y and I(X ∧ Y )
denotes the mutual information of X and Y . Exp’s and log’s are to the base 2,
h(ε) = −ε log ε− (1 − ε) log(1 − ε), for 0 < ε < 1.

In order to fix ideas let us first take a new look at a one–decoder scheme for{
(Xi, Yi)

}∞
i=1

and derive some consequences of the Slepian–Wolf theorem [6].
We shall say that a triple of positive reals (Rx, Rxy, Ry) is an element of the
rate region R0 iff for every ε > 0, δ > 0 and sufficiently large n there exists an
ε−reproduction (X̃n, Ỹ n) of (Xn, Y n) (Xn = X1 . . . Xn, Y

n = Y1 . . . Yn) such
that for some deterministic functions fn of Xn, gn of Y n, tn of (Xn, Y n) and a
“decoding function” Vn we have

(1) (X̃n, Ỹ n) = Vn
(
fn(Xn), tn(Xn, Y n)gn(Y n)

)
(2) ‖fn(Xn)‖ ≤ exp

{
n(Rx + δ)

}
‖tn(Xn, Y n)‖ ≤ exp

{
n(Rxy + δ)

}
‖gn(Y n)‖ ≤ exp

{
n(Ry + δ)

}
.

Consider the quantities

(1) A1(X,Y ) = supRxy
Rxy +Rx ≤ H(X)
Rxy +Ry ≤ H(Y )
(Rx, Rxy, Ry) ∈ R0

and

(2) B1(X,Y ) = inf Rxy
Rx +Rxy +Ry ≤ H(X,Y )
(Rx, Rxy, Ry) ∈ R0.
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It is an immediate consequence of the Slepian–Wolf theorem that A1(X,Y ) =
I(X ∧ Y ), the mutual information, and that B1(X,Y ) = 0. A1(X,Y ) somehow
measures how much knowledge about (X,Y ) is simultaneously of interest for
decoding X and Y in a lossless manner. Thus we arrived at a coding theoret-
ic interpretation of mutual information, which allows us to view this quantity
as a kind of “common information” for a one–decoder network. The fact that
B1(X,Y ) = 0 allows a simple and convincing interpretation. It means that the
total entropy H(X,Y ) can be fully decomposed into two rates on the “sidelines”,
and it therefore makes sense to call B1(X,Y ) the indecomposable entropy for a
one decoder network. The two notions A1(X,Y ) and B1(X,Y ) are mathemati-
cally not very sophisticated; however, they help us in build up the right heuristic
for two–decoder networks. Passing from the one–decoder to any two–decoder net-
work (discussed below) the rate region decreases and therefore quantities defined
with a “sup” decrease and those defined with an “inf” increase. It is therefore
also clear that any possible reasonable notion of “common information” should
lead to values not exceeding A1(X,Y ) = I(X ∧ Y ). Let us now begin with a
short description of the two–decoder networks we shall deal with. Consider a
DMCSS

{
(Xi, Yi)

}∞
i=1

.

Xi

Ey

Dx

Dy

Ex Xi

Exy

Yi Yi

Fig. 1.

In our first network (Fig. 1) the sources {Xi}∞i=1 and {Yi}∞i=1 are to be repro-
duced by two separate decoders, one for each of the sources. Similarly, there is
one separate encoder for each of the sources, e.g. the encoder Ex can observe on-
ly {Xi}∞i=1 and the block code he produces is available for the decoder Dx alone.
However, there is a third encoder which allows us to exploit the correlation,
since Exy can observe both sources and its code is available for both individual
decoders Dx and Dy. This is a modified version of a coding scheme of Gray and
Wyner [3]. In their model all the three encoders can observe both sources (see
Fig. 2).
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Ey

Exy

Dx

Dy

Xi Ex Xi

YiYi

Fig. 2.

Finally, we introduce a coding scheme with four encoders (Fig. 3). The only
difference between this and the coding scheme mentioned first (Fig. 1) is that
the code exploiting the correlation is now supplied by two separate encoders, one
for each of the sources. These codes are available for both individual decoders.

Ex Dx

Ey Dy

Ex

Ey

Xi Xi

Yi Yi

Fig. 3.

Let us denote by Ri the rate region of the coding problems described in figure
i (i = 1, 2, 3). Replacing in definition (1) and (2) R0 by R1 the situation changes
dramatically. Denoting an arbitrary element of R1 by (Rx, Rxy, Ry) where Rx is
the rate of the code produced by Ex; Rxy that of Exy and Ry the rate of encoder
Ey, we define the quantities
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(3) A2(X,Y ) = supRxy
1. (Rx, Rxy, Ry) ∈ R1

Rx +Rxy ≤ H(X)
Ry +Rxy ≤ H(Y )
and

(4) B2(X,Y ) = inf Rxy
(Rx, Rxy, Ry) ∈ R1

Rx +Ry +Rxy ≤ H(X,Y ).

Again we refer to the first quantity defined as “common information”, because
it measures how much knowledge about (X,Y ) is simultaneously of interest for
decoding X and Y is a lossless manner. Since X and Y are decoded separately
now, this quantity seems to be a natural measure. However, we prove (Corol-
lary 1, Section 2) that A2(X,Y ), which is by definition not smaller than the
common information of [1], is actually equal to that quantity.

The quantity B2(X,Y ) is in some sense a dual to A2(X,Y ). B2(X,Y ) is
that minimal portion of the joint entropy H(X,Y ) of the DMCSS

{
(Xi, Yi)

}∞
i=1

which one has to encode by a joint encoder observing both sources; otherwise
the coding scheme of Fig. 1 would not be optimal. In other words this entropy
can not be encoded by separate encoders without a loss in the total rate, and
therefore it is indecomposable.

Wyner [4] has earlier introduced the quantity

C(X,Y ) = inf Rxy
(Rx, Rxy, Ry) ∈ R2

Rx +Ry +Rxy ≤ H(X,Y ).

He has independently [10] also introduced the quantity B2(X,Y ) and observed
that C(X,Y ) = B2(X,Y ).

He calls C(X,Y ) the common information. However we believe that this would
be a misleading name not only because of the large variety of analogous no-
tions which can be obtained using different coding schemes but also and more
importantly because it suggests a wrong heuristic. We have explained earlier
that a quantity called common information should not exceed the mutual in-
formation I(X ∧ Y ). However, one easily sees that I(X ∧ Y ) ≤ B2(X,Y ) ≤
min

{
H(X), H(Y )

}
.

A single letter characterization of the region R2 is known [3], [4]. We give
such a characterization for R1 (Theorem 2, Section 2) and therefore also for
the quantities A2(X,Y ) and B2(X,Y ). Our method is that of [5], which proves
to be quite general and easily adaptable to various source coding problems.
The identity R1 = R2 follows as a byproduct. During the preparation of this
manuscript we learnt that in an independent paper and by a different method
Wyner [10] also obtained Theorem 2.

In Section 3, Corollary 2, we prove the somewhat surprising fact that

B2(X,Y ) = I(X ∧ Y ) iff I(X ∧ Y ) = A2(X,Y ).
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The determination of the rate region R3 corresponding to the coding scheme
of Fig. 3 is still unsolved. Stating the problem here serves three purposes:

1.) It shows the relativity of any notion of common information.

2.) The two basic coding theorems for correlated sources, that is, the Slepian–
Wolf theorem and the source coding theorem in case of side information [5],
[10] do not provide all the tools to deal successfully with somewhat more
complex networks.
Probably the “most canonical” network of this kind, which is intimately
related to the one above, is obtained by considering a correlated source{
(Xi, Yi, Zi)

}∞
i=1

with three separate encoders for each source and one de-
coder, who wants to reproduce {Xi} and gets side information from {Xi} as
well as from {Zi}.

3.) Similarly to B2(X,Y ) we shall introduce the quantity
B∗2(X,Y ) = inf R∗x +R∗y
R∗x +Rx +R∗y +Ry ≤ H(X,Y )
(Rx, Ry, R∗x, R

∗
y) ∈ R3

and call it the strong indecomposable entropy of the DMCSS
{
(Xi, Yi)

}∞
i=1

.

Whereas B2(X,Y ) equals C(X,Y ), B∗2 (X,Y ) seems to be a new correlation
measure.

2 Auxiliary Results

This section is analogous to Section 1, Part I of [5] as far as we shall prove some
convexity properties of the functions we have to deal with in the sequel. The
ideas are those of Ahlswede–Körner [7], Section 4, where entropy inequalities
for multiple–access channels (see [8]) were derived. Our aim is to generalize
Lemmas 1 and 2 of [5].

We introduce the notation X1→X2→X3→X4 for saying that the r.v.’s X1,
X2, X3 and X4 form a Markov chain in this order. For an arbitrary sequence
{Zi}i∈N of r.v.’s we put

Zn = Z1Z2 . . . Zn.

Let us be given a sequence of independent and identically distributed triples{
(Si, Xi, Yi)

}
i∈N . For any positive real c we put:

Definition 1. τn(c) =
{
(Rx, Ry) : Rx ≥ 1

nH(Xn|U), Ry ≥ 1
nH(Y n|U);

U→Sn→(Xn, Y n);H(Sn|U) ≥ c
}

We shall write τ(c) = τ1(c).

This is a natural generalization of the functions Tn(c) defined in [5]. We shall
write (b1, b2) ≤ (b′1, b

′
2) iff b1 ≤ b′1 and b2 ≤ b′2.
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Lemma 1. a) τ(c′) ⊂ τ(c) for c ≤ c′ (monotonicity)
b) For any 0 ≤ α ≤ 1 and c = αc1 + (1 − α)c2

ατ(c1) ⊕ (1 − α)τ(c2) ⊂ τ(x),
where
ατ(c1)⊕(1−α)τ(c2) =

{
αb1+(1−α)b2 : b1 ∈ τ(c1); b2 ∈ τ(c2)

}
(convexity).

Proof
a) is an immediate consequence of Definition 1. In order to prove b) we assume
that (R1

x, R
1
y) ∈ τ(c1) and (R2

x, R
2
y) ∈ τ(c2), i.e. for suitable U (i) (i = 1, 2) we

have
H(S|U (i)) ≥ ci (1)

and
(
H(X |U (i)), H(Y |U (i))

)
≤ (R(i)

x , R
(i)
y ) where U (i)→S→(X,Y ). We intro-

duce now the new quadruple of r.v.’s Ũ , S̃, X̃, Ỹ such that

Pr(Ũ , S̃, X̃, Ỹ = U (1), S(1), X(1), Y (1)) = α

and
Pr(Ũ , S̃, X̃, Ỹ = U (2), S(2), X(2), Y (2)) = 1 − α

and furthermore, a r.v. I ranging over the set {1, 2} with Pr(I = 1) = α and
such that (I, Ũ)→S̃→(X̃, Ỹ ).

We have H(S̃|Ũ , I) = αc1 + (1 − α)c2 = c. Hence(
H(H̃ |Ũ , I), H(Ỹ |Ũ , I)

)
∈ τ(c).

On the other hand(
H(X̃|Ũ , I), H(Ỹ |Ũ , I)

)
=α

(
H(X|U (1)), H(Y |U (1))

)
+(1−α)·

(
H(X|U (2)), H(Y |U (2))

)
and the statement of b) follows.

Remark 1. It follows by a usual argument (see e.g. Lemma 3 of [5]) that the set
τ(c) remains the same if in Definition 1 we limit ourselves to r.v.’s U satisfying
the bound

‖U‖ ≤ ‖S‖ + 2.

Lemma 2. For all n ∈ N and c ≥ 0

τn(c) = τ(c) (stationarity). (2)

Proof
Let (U, Sn, Xn, Y n) be a quadruple of r.v.’s satisfying U→Sn→(Xn, Y n).

We can write

H(Xn|U) =
n∑
i=1

H(Xi|U,X i−1) ≥
n∑
i=1

H(Xi|U,X i−1, Si−1)

=
n∑
i=1

H(Xi|U, Si−1) (3)
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where the last identity follows by the fact that U→Sn→(Xn, Y n) and the triples
(Si, Xi, Yi) are independent.

Similarly, one deduces that

H(Y n|U) ≥
n∑
i=1

H(Yi|U, Si−1). (4)

By the definition of τ(c) we have
(
H(Xi|U, Si−1 = si−1), H(Yi|U, Si−1 =

si−1)
)
∈ τ(c) for c = H(Si|U, Si−1 = si−1) and hence by the convexity of

τ(c) averaging over all the possible values of Si−1, yields for the corresponding
expected values (

H(Xi|U, Si−1), H(Yi|U, Si−1)
)
∈ τ(ci) (5)

where ci = H(Si|U, Si−1).
This, 2, 4, and the monotonicity of τ(·) yield

(
H(Xn|U), H(Y n|U)

)
∈

n∑
i=1

τ(ci), (6)

where
n∑
i=1

τ(ci) =
{

b : b =
n∑
i=1

bi, bi ∈ τ(ci)
}

.

From 6 and the convexity of τ(·) it follows that(
1
n
H(Xn|U),

1
n
H(Y n|U)

)
∈ τ

(
1
n

n∑
i=1

ci

)
= τ(c∗)

where c∗ = 1
nH(Sn|U).

Hence τn(c) ⊂ τ(c), whereas τn(c) ⊃ τ(c) is trivial. This completes the proof.

3 Common Information

We begin with two definitions.

Definition 2. A triple of positive reals (Rx, Rxy, Ry) is an element of the rate
region R1 iff for every ε > 0; δ > 0 and sufficiently large n

(
n > n0(ε, δ)

)
there

exists an ε−reproduction (X̃n, Ỹ n) of (Xn, Y n) satisfying the following condi-
tions:

There exist some deterministic functions fn of Xn, gn of Y n, tn of (Xn, Y n),
and two decoding functions Vn and Wn with

(i) X̃n = Vn
(
fn(Xn), tn(Xn, Y n)

)
Ỹ n = Wn

(
gn(Y n), tn(Xn, Y n)

)
(ii) ‖fn(Xn)‖ ≤ exp

{
n(Rx + δ)

}
‖tn(Xn, Y n)‖ ≤ exp

{
n(Rxy + δ)

}
‖gn(Y n)‖ ≤ exp

{
n(Ry + δ)

}
.
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Definition 3. A2(X,Y ) = sup Rxy
Rxy +Rx ≤ H(X)
Rxy +Ry ≤ H(Y )
(Rx, Rxy, Ry) ∈ R1

is called the “common information” of the DMCSS
{
(Xi, Yi)

}∞
i=1

.

After deriving from Theorems 1 in [5] and Lemmas 1 and 2 a single–letter de-
scription of R1, we shall prove that A2(X,Y ) equals the common information
in the sense of Gács and Körner [1]. Especially, for an X and Y having an in-
decomposable joint distribution (e.g.: ∀ x ∈ X , y ∈ Y Pr(X = x, Y = y) > 0) it
will follow that A2(X,Y ) = 0.

Theorem 1. Let
{
(Xi, Yi)

}
i∈N be a discrete memoryless correlated source with

finite alphabets. The rate region R1 (as defined by Definition 2.1) satisfies

R1 =
{(

1
n
H
(
Xn|tn(Xn, Y n)

)
,
1
n
H
(
tn(Xn, Y n)

)
,

1
n
H
(
Y n|tn(Xn, Y n)

))
n ∈ N ; tn : Xn × Yn +N

}
.

The proof is based on the simple observation that the coding scheme of Fig. 1
can be considered as a simultaneous “source coding with side information” for
the DMCSS’s

{
(X∗i , Y

∗
i )

}
i∈N and

{
(X∗∗i , Y ∗∗i )

}
i∈N where (using the notation

of Theorem 1 and 2 of [5])

X∗i = X∗∗i = (Xi, Yi); Y ∗i = Xi; Y ∗∗i = Yi

and where the same code has to be used for {X∗i } = {X∗∗i } =
{
(Xi, Yi)

}
, serving

in both cases as side information.
Now the proof of Theorem 1 in [5] literally applies and gives the assertion of

the theorem.
As in [5] we shall give a single–letter description of R1 by rewriting our former

description by means of the convexity arguments of Section 1.

Theorem 2

R1 =
{

(Rx, Rxy, Ry) : Rx ≥ H(X |Z), Rxy ≥ I
(
(X,Y ) ∧ Z

)
, Ry ≥ H(Y |Z);

‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2
}
. (7)

Proof
We denote by R∗1 the set defined by the right–hand side of 7. We show first that

R1 ⊂ R∗1.

Suppose that for K = tn(Xn, Y n) we have

Rx =
1
n
H(Xn|K), Rxy =

1
n
H(K) and Ry =

1
n
H(Y n|K).
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We have to show that there exists a triple (X,Y, Z) such that the joint pr.d.
of (X,Y ) is that of the (Xi, Yi)′s, ‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2 and Rx ≥ H(X |Z),
Rxy ≥ I

(
(X,Y ) ∧ Z

)
and Ry ≥ H(Y |Z).

It is clear that

n · Rxy = H(K) ≥ I
(
K ∧ (Xn, Y n)

)
= H(Xn, Y n) −H(Xn, Y n|K). (8)

The independence of the (Xi, Yi)′s and 8 yield

1
n
H(Xn, Y n|K) ≥ H(X,Y ) −Rxy. (9)

We shall apply the Lemmas of Section 1 in the following set–up: Si = (Xi, Yi).
By the definition of τn(c) we know that

(
1
n
H(Xn|K),

1
n
H(Y n|K)

)
∈ τn

(
1
n
H(Xn, Y n|K)

)
.

By Lemma 2 this gives(
1
n
H(Xn|K),

1
n
H(Y n|K)

)
∈ τ

(
1
n
H(Xn, Y n|K)

)
. (10)

Because of the monotonicity of the regions τ(·) (see Lemma 1) the inequalities
9 and 10 yield (

1
n
H(Xn|K),

1
n
H(Y n|K)

)
∈ τ

(
H(X,Y ) −Rxy

)
. (11)

By the definition of the region τ
(
H(X,Y ) − Rxy

)
the last relation means that

there exists a triple (Z,X, Y ) such that

Rx = 1
nH(Xn|K) ≥ H(X |Z), Ry = 1

nH(Y n|K) ≥ H(Y |Z), and
‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2, (12)

whereas H(X,Y |Z) ≥ H(X,Y ) −Rxy. Rewriting the last inequality we get

Rxy ≥ I
(
(X,Y ) ∧ Z

)
. (13)

Now we show that R∗1 ⊂ R1 by the approximation argument of [5], Section 4.
We have to prove that for every triple (Z,X, Y ) with ‖Z‖ ≤ ‖X‖ · ‖Y ‖+2 there
exists an n and a function tn of (Xn, Y n) such that

1
nH

(
Xn|tn(Xn, Y n)

)
≤ H(X |Z), 1

nH
(
Y n|tn(Xn, Y n)

)
≤ H(Y |Z) and

1
nH

(
tn(Xn, Y n)

)
≤ I

(
(X,Y ) ∧ Z

)
.

It suffices to show that

infn inf( 1
nH

(
Xn|tn(Xn,Y n)

)
, 1nH

(
Y n|tn(Xn,Y n)

))
≤(x1,x2)

1
nH

(
tn(Xn, Y n)

)
≤

inf(
H(X|Z),H(Y |Z)

)
≤(x1,x2)

I
(
(X,Y ) ∧ Z

)
. (14)
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From the independence of the (Xi, Yi)′s and the fact that

I
(
(Xn, Y n) ∧ tn(Xn, Y n)

)
= H

(
tn(Xn, Y n)

)
it follows that it is enough to show for tn = tn(Xn, Y n)

supn sup( 1
nH(Xn|tn), 1nH(Y n|tn))≤(x1,x2)

1
nH

(
Xn, Y n|tn(Xn, Y n)

)
≥

sup(
H(X|Z),H(Y |Z)

)
≤(x1,x2)

H(X,Y |Z). (15)

Now we apply the construction of [5; Section 4] to the DMCSS’s {X∗i , Y ∗i }i∈N
and {X∗∗i , Y ∗∗i }i∈N and the r.v.’s U∗ and U∗∗ where as in the proof of Theorem 1

X∗i = X∗∗i = (Xi, Yi), Y ∗i = Xi;Y ∗∗i = Yi and U∗ = U∗∗ = Z.

Observing that the construction of [5] depends only on the joint pr. d. of
(U∗, X∗, Y ∗), it becomes clear that — using the notation of [5] — the choice
tn(Xn, Y n) � fn(X∗n) = fn(X∗∗n) actually establishes 15.

In what follows we shall use Theorem 1 to prove a generalization of Theorem
1, p. 151 of [1]. Actually, we prove that the common information A2(X,Y ) of
Definition 3, which is clearly not smaller than that of [1], is equal to it. We recall
from [1] the following

Definition 4. We suppose without loss of generality that for every x ∈ X and
y ∈ Y Pr(X1 = x) > 0 and Pr(Y1 = y) > 0. We consider the stochastic matrix of
the conditional probabilities

{
Pr(X = x|Y = y)

}
and its ergodic decomposition.

Clearly, the ergodic decompositions of the matrices
{
Pr(X = x|Y = y)

}
and{

Pr(Y = y|X = x)
}

coincide and form a partition

X × Y =
⋃
j

Xj × Yj

of X × Y where the Xj ′s and Yj ′s having different subscripts are disjoint. We
introduce the r.v. J such that

J = j ⇔ X ∈ Xj ⇔ Y ∈ Yj .

It is clear that J is a function of both X and Y . We shall prove that the common
information A2(X,Y ) equals the entropy of this common function of X and Y .

Corollary 1
A2(X,Y ) = H(J).

Proof
It follows from our Theorem 2 that

A2(X,Y ) = sup I
(
(X,Y ) ∧ Z

)
I
(
(X,Y ) ∧ Z

)
+H(X |Z) ≤ H(X)
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I
(
(X,Y ) ∧ Z

)
+H(Y |Z) ≤ H(Y )

‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2.

Looking at the constraint inequalities we find that from
H(X) ≥ I

(
(X,Y ) ∧ Z

)
+H(X |Z) = H(X,Z) −H(Z|X,Y )

we get the inequality
H(Z|X,Y ) ≥ H(Z|X),

which gives Z→Y→X . Similarly, our other constraint gives Z→X→Y .
Now we shall analyze these conditions

Z→Y→X and Z→X→Y. (16)

It follows from 16 that

Pr(X=x, Y=y) > 0⇒Pr(Z=z|X=x, Y=y) = Pr(Z=z|X=x) = Pr(Z=z|Y=y).

Hence for any fixed value of Z and for every index j Pr(Z = z|X = ·, Y = ·) is

constant over Xj×Yj whenever it is defined. This means that Pr(Z=z|X=x, Y=

y) = Pr(Z= z|J= j) =
∑

Xj×Yj

Pr(Z= z|X= x̂, Y = ŷ) · Pr(X= x̂|Y = ŷ). The last

relation means that given any value of J the r.v. Z is conditionally independent
from (X,Y ), i.e. I

(
(X,Y ) ∧ Z|J

)
= 0. However since J is a function of (X,Y )

we have

I
(
(X,Y ) ∧ Z

)
= I

(
(X,Y, J) ∧ Z

)
= I(J ∧ Z) + I

(
(X,Y ) ∧ Z|J

)
(17)

where the last equality follows by a well–known identity (see e.g. Gallager [9],
formula (2.2.29) pn p. 22). Comparing the two extremities of 17 we get

I
(
(X,Y ) ∧ Z

)
≤ H(J) + I

(
(X,Y ) ∧ Z|J

)
= H(J).

Taking into account that J is a deterministic function of X and a deterministic

function of Y and thus it satisfies the constraints of our second definition of
A2(X,Y ), we conclude that A2(X,Y ) = H(J).

Remark 2. The quantity

A(X,Y ) = supRy
Rx +Ry ≤ H(X)
(Rx, 0, Ry) ∈ R0

is meaningful in a one–decoder situation. It says how much information about
X we can extract from Y in a “lossless manner”. It is easy to see that H(J) ≤
A(X,Y ) ≤ A2(X,Y ) and hence that also A(X,Y ) = H(J).
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4 Indecomposable Entropy

Definition 5. B2(X,Y ) = inf Rxy
(Rx, Rxy, Ry) ∈ R1

Rx +Rxy +Ry) ≤ H(X,Y )

is called the “indecomposable entropy” of the DMCSS
{
(Xi, Yi)

}
i∈N . A justi-

fication for this terminology was given in the introduction. It is clear from the
foregoing that

B2(X,Y ) = inf
H(X|Z)+H(Y |Z)+I

(
(X,Y )∧Z

)
=H(X,Y )‖Z‖≤‖X‖·‖Y ‖+2

I
(
(X,Y ) ∧ Z

)
and

B2(X,Y ) ≥ I(X ∧ Y ) ≥ A2(X,Y ).

Looking into the constraint on the right hand side of 5 and taking into account
that H(X,Y |Z) + I

(
(X,Y ) ∧ Z

)
= (X,Y ) always holds we conclude that the

constraint is equivalent to H(X,Y |Z) = H(X |Z) + H(Y |Z). This allows us to
write

B2(X,Y ) = min
X→Z→Y

I
(
(X,Y ) ∧ Z

)
‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2.

We shall prove that

Corollary 2

B2(X,Y ) = I(X ∧ Y ) ⇔ I(X ∧ Y ) = A2(X,Y ).

Remark 3. Since A2(X,Y ) = H(J), the entropy of the ergodic class index
which is a common function of X and Y , the statement of Corollary 2 means
that B2(X,Y ) equals the mutual information iff all the correlation between X and
Y is of deterministic character. Especially if X and Y have an indecomposable
joint pr.d. the corollary says that B2(X,Y ) = I(X ∧ Y ) implies B2(X,Y ) = 0.

Proof
We suppose that for a r.v. Z satisfying the constraint of minimization we have

I
(
(X,Y ) ∧ Z

)
= I(X ∧ Y ).

Using the identity

H(X,Y ) = I(X ∧ Y ) +H(X |Y ) +H(Y |X) (18)

becomes equivalent to

H(X,Y |Z) = H(X |Y ) +H(Y |X). (19)
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Since by our supposition X→Z→Y we have

H(X,Y |Z) = H(X |Z) +H(Y |Z) = H(X |Z, Y ) +H(Y |Z,X). (20)

Comparing 19 and 20 we obtain that 18 is equivalent to the condition

H(X |Y ) +H(Y |X) = H(X |Z, Y ) +H(Y |Z,X).

Rewriting this we get

I(X ∧ Z|Y ) + I(Y ∧ Z|X) = 0. (21)

Since conditional mutual informations are non–negative, 21 is equivalent to

I(X ∧ Z|X) = 0 and I(Y ∧ Z|X) = 0.

Hence we get that
X→Y→Z and Z→X→Y.

Observing that this is just 16, the deduction consecutive to relation 16 in
Section 2 applies and we get that I

(
(X,Y ) ∧ Z

)
= H(J). This completes the

proof.
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VI
Q-Ary Ulam-Renyi Game with Constrained Lies

F. Cicalese and Christian Deppe

Abstract. The Ulam-Rényi game is a classical model for the problem
of finding an unknown number in a finite set using as few question as
possible when up to a finite number e of the answers may be lies. In
the variant, we consider in this paper, questions with q many possible
answers are allowed, q fixed and known beforehand, and lies are con-
strained as follows: Let Q = {0, 1, . . . , q − 1} be the set of possible an-
swers to a q-ary question. For each k ∈ Q when the sincere answer to the
question is k, the responder can choose a mendacious answer only from
a set L(k) ⊆ Q \ {k}. For each k ∈ Q, the set L(k) is fixed before the
game starts and known to the questioner. The classical q-ary Ulam-Rényi
game, in which the responder is completely free in choosing the lies, in
our setting corresponds to the particular case L(k) = Q \ {k}, for each
k ∈ Q. The problem we consider here, is suggested by the counterpart
of the Ulam-Rényi game in the theory of error-correcting codes, where
(the counterparts of) lies are due to the noise in the channel carrying the
answers. We shall use our assumptions on noise and its effects (as rep-
resented by the constraints L(k) over the possible error patterns) with
the aim of producing the most efficient search strategies. We solve the
problem by assuming some symmetry on the sets L(k): specifically, we
assume that there exists a constant d ≤ q − 1 such that |L(k)| = d for
each k, and the number of indices j such that k ∈ L(j) is equal to d. We
provide a lower bound on the number of questions needed to solve the
problem and prove that in infinitely many cases this bound is attained
by (optimal) search strategies. Moreover we prove that, in the remaining
cases, at most one question more than the lower bound is always sufficient
to successfully find the unknown number. Our results are constructive
and search strategies are actually provided. All our strategies also enjoy
the property that, among all the possible adaptive strategies, they use
the minimum amount of adaptiveness during the search process.

1 Introduction

In the q-ary Ulam-Rényi game [13,10,11] two players, classically called Paul
an Carole, first agree on fixing an integer M ≥ 0 and a search space U =
{0, . . . ,M − 1}. Then Carole thinks of a number x∗ ∈ U and Paul must find
out x∗ by asking the minimum number of q-ary questions. Each q-ary question
is a list T0, . . . , Tq−1 of q disjoint subsets defining a partition of the set U, and
asking Carole to indicate the set Tk which contains the secret number x∗. The
parameter q is fixed beforehand. Thus a q-ary question has the form Which set
among T0, T1, . . . , Tq−1 does the secret number x∗ belong to? and the answer is
an index k ∈ Q = {0, 1, . . . , q − 1}, meaning that x∗ ∈ Tk. It is agreed that

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 678–694, 2006.
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Carole is allowed to lie at most e times, e.g., answering j ∈ Q when actually
x∗ ∈ Tk, and j = k. The integer e ≥ 0 is fixed and known to both players.

We generalize the q-ary game in the following way. We assume that if the
sincere answer to a question T = {T0, T1, . . . , Tq−1} of Paul’s is k, i.e., x∗ ∈ Tk,
and Carole meant to lie, then she can only choose her lie in a set L(k) ⊆ Q\{k},
which has been fixed in advance. For each k ∈ Q, the set L(k) ⊆ Q \ {k} of
possible lies available to Carole when the correct/sincere answer is k, is fixed
beforehand and known to Paul. The classical q-ary Ulam-Rényi game coincides
with the case L(k) = Q \ {k}, for each k ∈ Q.

Let G : k ∈ Q �→ L(k) ⊆ Q \ {k}. We may think of G as the set of possible
noise-transitions on a channel carrying Carole’s answers (see Figure 1). The q-
ary Ulam-Rényi game with such a restriction on the types of Carole’s lies will
be called the game over the channel G.

For each j ∈ Q, let S(j) be the set of integers k such that if the correct answer
is k Carole can mendaciously answer j, i.e., S(j) = {k ∈ Q \ {j} | j ∈ L(k)} . In
other words S(j) represents the set of possible correct answers, other than j,
that Paul has to take into account when Carole answers j. In fact, an answer j
could be a lie and, if so, it could have been chosen among the possible lies in
L(k) for some k ∈ S(j).

We call G a d-regular channel iff there exists an integer d ≤ q − 1, such that
for each k ∈ Q we have |L(k)| = |S(k)| = d.

For any choice of the parameters q, e,M, d and for any d-regular channel G,
we are interested in determining the minimum number of questions, N [q]

G (M, e)
that Paul has to ask in order to infallibly guess a number x∗ ∈ {0, 1, . . . ,M−1},
in the q-ary Ulam-Rényi game with e lies over the channel G.

In this paper we prove that N
[q]
G (M, e) is independent of the particular d-

regular channel and only depends on the parameter d. In fact, we exactly deter-
mine the minimum number, N [q]

d,min(M, e), of questions which are necessary to
infallibly guess a number x∗ ∈ {0, 1, . . . ,M − 1}, in the q-ary Ulam-Rényi game
with e lies over every d-regular channel G. Moreover, we prove that, for all suffi-
ciently large M (the size of the search space), strategies using N

[q]
d,min(M, e) + 1

questions always exist. Moreover for infinitely many values of M, strategies us-
ing exactly N [q]

d,min(M, e) questions exist. All our strategies are implementable by
procedures which use adaptiveness only once.

I. Dumitriu and J. Spencer [5] considered the the Ulam-Rényi game over
an arbitrary channel (i.e., with constrained lies). Notwithstanding the wider
generality of the model studied in [5], our analysis turns out to be more precise
in that here the exact evaluation of the size of a shortest strategy is provided, as
opposed to the asymptotic analysis of [5] where constants in the main formula
evaluating the size of a shortest strategy are not taken into account.

As opposed to the ones in [5], our search strategies use the minimum possi-
ble amount of adaptiveness, among all strategies where adaptive questions are
allowed. This is a very desirable property in many practical applications.

In this paper we generalize the results in [2,4] where optimal and quasi-optimal
strategies (i.e., strategies whose length differs by only one from the information
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theoretic lower bound) are provided for all sufficiently large M and for the par-
ticular case d = q − 1, that is for the case when Carole can freely choose how
to lie.

The problem of q-ary search with e ≥ 1 lies was first considered by Malinowski
[7] and Aigner [1] who independently evaluated the minimum number of ques-
tions Paul needs to win the game when e = 1, and Carole is allowed to use free
lies, i.e., she can choose to answer j when the correct/sincere reply would be i,
for all j = i. Under the hypothesis of free lies, the case e = 2 was investigated in
[3] where q-ary optimal search strategies are given for the case when the search
space’s cardinality is qm, for some integer m ≥ 1, and quasi-perfect strategies are
proved to exist in the remaining cases. Under the same hypothesis on the type
of lies allowed, the case q = 3 was fully characterized in [8] where the author also
state without proof a generalization of his result for the general case q ≥ 2. For
more variants and references on the Ulam-Rényi game we refer the interested
reader to the recent survey paper [9].

2 The q-Ary Ulam-Rényi Game over a d-Regular
Channel

Let Paul and Carole first fix non-negative integers q ≥ 2, d < q,M ≥ 1, e ≥ 0
and a d-regular channel G. The search space is identified with the set U =
{0, 1, . . . ,M − 1}. Carole chooses a number x∗ from U and Paul has to guess it
by asking q-ary questions.

Typically, a q-ary question T has the form

“Which one of the sets T0, T1, . . . , Tq−1 does x∗ belong to ?”,

where T = {T0, T1, . . . , Tq−1} is a q-tuple of (possibly empty) pairwise disjoint
subsets of U whose union is U.

Carole’s answer is an integer k ∈ Q = {0, 1, . . . , q − 1}, telling Paul that x∗
belongs to Tk.

Each answer of Carole’s partitions the set of numbers which are still candidates
to be the secret number x∗ into three classes. If the answer to the question T is
“k”, numbers in Tk are said to satisfy the answer, while numbers in

⋃
j∈S(k) Tj

falsify it. A number x falsifies an answer if, as a consequence of this answer,
it is still to be considered as possible candidates for the unknown x∗, but, if
x = x∗, then the last answer must be considered a lie of Carole’s. The remaining
numbers, i.e., numbers not in

⋃
j �∈S(k) Tj are rejected by the answer and no longer

are to be considered as possible candidates for the secret number x∗. In fact,
because of the rules of the game, if for some j ∈ S(k) the secret number had
been in Tj then Carole could have not answered k. At any stage of the game,
a number y ∈ U is also rejected from consideration if it falsifies more than e
answers. This accounts for the fact that Carole agreed to lie at most e times.

At any time during the game, Paul’s state of knowledge is represented by an
e-tuple σ = (A0, A1, A2, . . . , Ae) of pairwise disjoint subsets of U , where Ai is
the set of numbers falsifying exactly i answers, i = 0, 1, 2, . . . , e. The initial state



Q-Ary Ulam-Renyi Game with Constrained Lies 681

is naturally given by (U,∅,∅, . . . ,∅). A state (A0, A1, A2, . . . , Ae) is final iff
A0 ∪ A1 ∪ A2 ∪ · · · ∪ Ae either has exactly one element, or is empty if Carole
did not follow the rules of the game.

Suppose that Paul asks the question T = {T0, T1, . . . , Tq−1} when the state
is σ = (A0, A1, . . . , Ae) and Carole’s answer is equal to k. Let T ∗k =

⋃
j∈S(k) Tj .

Then Paul’s state becomes

σk = (A0 ∩ Tk, (A0 ∩ T ∗k ) ∪ (A1 ∩ Tk), · · · , (Ae−1 ∩ T ∗k ) ∪ (Ae ∩ Tk)) . (1)

Let σ = (A0, A1, A2, . . . , Ae) be a state. For each i = 0, 1, 2, . . . , e let ai = |Ai|
be the number of elements of Ai. Then the e-tuple (a0, a1, a2, . . . , ae) is called
the type of σ. We shall generally identify a state with its type, tacitly assuming
that what holds for a given state also holds for any other state of the same type,
up to renaming of the numbers.

Given a state σ, suppose questions T1, . . . , Tt have been asked and answers bt =
b1, . . . , bt have been received (with bi ∈ {0, 1, . . . , q− 1}). Iterated application of
(1) yields a sequence of states

σ0 = σ, σ1 = σb10 , σ2 = σb21 , . . . , σt = σbtt−1 = σb
t

. (2)

By a strategy S with n questions we mean a q-ary tree of depth n, where each
node ν is mapped into a question Tν , and the q edges η0, η1, . . . , ηq−1 generated
by ν are, respectively from left to right, labeled with 0, 1, . . . , q − 1, which
represent Carole’s possible answers to Tν . Let η = η1, . . . , ηn be a path in S, from
the root to a leaf, with respective labels b1, . . . , bn, generating nodes ν1, . . . , νn
and associated questions Tν1 , . . . , Tνn . Fix an arbitrary state σ. Then, according
to (2), iterated application of (1) naturally transforms σ into ση (where the
dependence on the bj and Tj is understood). We say that strategy S is winning
for σ iff for every path η the state ση is final. A strategy is said to be non-
adaptive iff all nodes at the same depth of the tree are mapped into the same
question.

We denote with N
[q]
G (M, e) the minimum integer n such that there exists a

winning strategy with n questions for the q-ary Ulam-Rényi game with e errors
over the (d-regular) channel G and a search space of cardinality M.

For every integer q ≥ 2 and state σ of type (a0, a1, . . . , ae), the d-regular nth

Volume of σ is defined by

V [d]
n (σ) =

e∑
i=0

ai

e−i∑
j=0

(
n

j

)
dj . (3)

Define the character of σ as ch[q]
d (σ) = min{n = 0, 1, 2, . . . | V [d]

n (σ) ≤ qn}.

Proposition 1. Fix a state σ = (A0, A1, . . . , Ae) and a question T = (T0, T1,
. . . , Tq−1. Following (1), for each k = 0, 1, . . . , q − 1, let σk = (Ak0 , . . . , Ake)
be the state of knowledge of Paul after Carole has answered k to the question T.
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(i) For every integer n ≥ 1 we have

V [d]
n (σ) =

q−1∑
k=0

V
[d]
n−1(σ

k).

(ii) If σ has a winning q-ary strategy with n questions then n ≥ ch[q]
d (σ).

Proof. For i = 0, 1, . . . , e, let ai = |Ai| be the type of the state σ and aki = |Aki |.
For i = 0, 1, . . . , e and j = 0, 1, . . . , q− 1 let tji = |Ai ∩Tj |. By definition we have
aki = tki +

∑
j∈S(k) t

j
i−1 and ai =

∑q−1
k=0 t

k
i . Thus,

V [d]
n (σ) =

e∑
i=0

ai

e−i∑
j=0

(
n

j

)
dj

=
e∑
i=0

q−1∑
k=0

tki

e−i∑
j=0

(
n

j

)
dj

=
q−1∑
k=0

e∑
i=0

tki

e−i∑
j=0

(
n− 1
j

)
dj +

q−1∑
k=0

e∑
i=1

∑
j∈S(i)

tji−1

e−i∑
j=0

(
n− 1
j

)
dj

=
q−1∑
k=0

e∑
i=0

tki +
∑
j∈S(i)

tji−1

 e−i∑
j=0

(
n− 1
j

)
dj

=
q−1∑
k=0

e∑
i=0

aki

e−i∑
j=0

(
n− 1
j

)
dj =

q−1∑
k=0

V
[d]
n−1(σ

k).

The proof of (ii) follows by induction.

We define N
[q]
d,min(M, e) = min{n | M

∑e
j=0

(
n
j

)
dj ≤ qn}. As an immediate

corollary of the above proposition we have

N
[q]
G (M, e) ≥ N

[q]
d,min(M, e) = ch[q]

d (M, 0, . . . , 0),

for all q ≥ 2,M ≥ 1, e ≥ 0, d ≤ q−1 and for each choice of the d-regular channel
G.

By a perfect q-ary d-regular strategy for σ we shall mean a d-regular winning
strategy for σ only requiring ch[q]

d (σ) questions. Because a perfect strategy S uses
the least possible number of questions which are also necessary in any winning
strategy, S is optimal, in the sense that it cannot be superseded by a shorter
strategy.

Accordingly a d-regular winning strategy for σ with ch[q]
d (σ)+1 questions will

be called quasi perfect.
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The following monotonicity properties easily follow from the above definitions.

Proposition 2. For any two states σ′ = (A′0, A′1, A′2, . . . , A′e) and

σ′′ = (A′′0 , A
′′
1 , A

′′
2 , . . . , A

′′
e )

respectively of type (a′0, a
′
1, a

′
2, . . . , a

′
e) and (a′′0 , a

′′
1 , a

′′
2 , . . . , a

′′
e ), if

∑j
i=0 a

′
i ≤∑j

i=0 a
′′
i for all j = 0, 1, 2, . . . , e then

(i) ch[q]
d (σ′) ≤ ch[q]

d (σ′′) and V
[d]
n (σ′) ≤ V

[d]
n (σ′′) , for each n ≥ 0

(ii) if, for some integer n ≥ 0, there exists a winning strategy for σ′′ with n
questions then there exists also a winning strategy for σ′ with n questions.

Note that ch[q]
d (σ) = 0 iff σ is a final state.

Let σ = (A0, A1, A2, . . . , Ae) be a state. We say that the question

T = {T0, T1, . . . , Tq−1}

is balanced for σ iff for each j = 0, 1, 2, . . . , e, we have |Aj ∩ Ti| = |Aj ∩ Ti+1| =
1
q |Aj |, for i = 0, 1, . . . , q − 2.

Balanced questions play a special role in Paul’s strategy. In fact, if Paul asks
a balanced question, Carole’s answer (whether a yes or a no) has no effect
on the type of the resulting state. In other words, the state resulting from a
balanced question is predetermined. Moreover the information gained by Paul
is maximum, since, as shown in the next lemma, a balanced question strictly
decreases the character of Paul’s state.

By the definition of a balanced question together with (3) and Proposition 1
we have the following.

Lemma 1. Let T be a balanced question for a state σ = (A0, A1, A2, . . . , Ae).
Let σi be as in (1) above. Then for each 0 ≤ i < j ≤ d,

(i) V
[d]
n

(
σi
)

= V
[d]
n

(
σj
)

= 1
qV

[d]
n+1 (σ) , for each integer n ≥ 0,

(ii) ch[q]
d (σi) = ch[q]

d (σj) = ch[q]
d (σ) − 1.

3 Encoding Strategies

We refer to [6] for background in error correcting codes. Here we shall recall few
notions and fix some notations for later use. We shall assume that a d-regular
q-ary channel G is given. We give here an example for the case q = 6 and d = 3.

Fix an integer n > 0 and let xn, yn ∈ Qn = {0, 1, . . . , q− 1}n. Recall that the
Hamming distance between xn and yn is given by dH(xn, yn) =| {i | xi = yi} | .
The Hamming distance in terms of G (the G-Hamming distance) between two
symbols is defined by

dG(x, y) =


0 if x=y
1 if y ∈ L(x)
∞ otherwise.
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L(0) = {1, 3, 4}

L(1) = {3, 4, 5}

L(2) = {0, 1, 4}

L(3) = {1, 2, 5}

L(4) = {0, 2, 5}

L(5) = {0, 2, 3}

S(0) = {2, 4, 5}

S(1) = {0, 2, 3}

S(2) = {3, 4, 5}

S(3) = {0, 1, 5}

S(4) = {0, 1, 2}

S(5) = {1, 3, 4}

Fig. 1. Constrained lies as a Channel

The distance between two sequences is defined by dG(xn, yn) =
∑n
i=1 dG(xi, yi),

where xn, yn ∈ Qn.
Notice that for each pair of sequences xn, yn ∈ Qn, we have that dH(xn, yn) ≤

dG(xn, yn), for any possible choice of the channel G.
The Hamming sphere BHr (xn) with radius r and center xn is the set of elements

of {0, 1, . . . , q − 1}n whose Hamming distance from xn is at most r, in symbols,

BGr (xn) = {yn ∈ {0, 1, . . . , q − 1}n | dH(xn, yn) ≤ r}.
The G-Hamming sphere BGr (xn) with radius r and center xn is the set of

elements of {0, 1, . . . , q − 1}n whose G-Hamming distance from xn is at most r,
in symbols,

BGr (xn) = {yn ∈ {0, 1, . . . , q − 1}n | dG(xn, yn) ≤ r}.

Notice that for any xn ∈ {0, 1, . . . , q − 1}n, and r ≥ 0, we have |BGr (xn)| =∑r
i=0

(
n
i

)
di.

Moreover, for all possible channels G we immediately have the relationship
BGr (xn) ⊆ BHr (xn).

By a code we shall mean a q-ary code for G in the following sense:

Definition 1. Let the channel G be given. A q-ary code C of length n for the
channel G is a non-empty subset of {0, 1, . . . , q − 1}n. Its elements are called
codewords. The minimum distance of C is given by

δ(C) = min
{
d | BG� d

2 �
(xn) ∩ BH� d

2 �
(yn) for all distinct xn, yn ∈ C

}
We say that C is an (n,M, t) code in terms of G iff C has length n, |C| = M and
δ(C) = t. Let C1 and C2 be two codes of length n. The minimum distance (in
terms of G) between C1 and C2 is defined by

∆G(C1, C2) = min
{
d | BG�d

2 �
(xn) ∩ BH� d

2 �
(yn) for all xn ∈ C1, y

n ∈ C2

}
.
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The Hamming distance between two codes C1 and C2 is defined by∆H(C1, C2) =
min{dH(xn, yn) | xn ∈ C1, y

n ∈ C2}.

Lemma 2. Let n = 2, 3, . . . . Then for any two integers 1 ≤ t ≤ n
2 , and

1 ≤ M ≤ qn∑t−1
i=0

(
n
i

)
qi
,

there exists an (n,M, t) q-ary code C in terms of G.

The Proof follows directly by Gilbert’s bound [6] and the relationship between
the Hamming distance and the G-Hamming distance between codewords.

The following lemma formally clarifies the correspondence between non-adap-
tive winning strategies for the Ulam-Rényi game and special families of codes.
An analogous result can be found in [14].

Lemma 3. Fix an integer e ≥ 1 Let σ = (A0, A1, A2, . . . Ae) be a state of
type (a0, a1, a2, . . . , ae) and G be a d-regular channel. Let n ≥ ch[q]

d (σ). Then
a d-regular non-adaptive winning strategy for σ with n questions exists if
for all i = 0, 1, 2, . . . , e − 1 there are integers ti ≥ 2(e − i) + 1, together with
an e-tuple of q-ary codes Γ = (C0, C1, C2, . . . , Ce−1), such that each Ci is an
(n, ai, ti) code in terms of G, and ∆G(Ci, Cj) ≥ 2e − (i + j) + 1, (whenever
0 ≤ i < j ≤ e− 1).

Proof. Let Γ = (C0, C1, C2, . . . , Ce−1) be an e-tuple of codes satisfying the hy-
pothesis. Let

H =
e−1⋃
i=0

⋃
xn∈Ci

BGe−i(xn).

By hypothesis, for any i, j ∈ {0, 1, . . . , e − 1} and xn ∈ Ci, yn ∈ Cj we have
dG(xn, yn) ≥ 2e− (i+ j) + 1. It follows that the G-Hamming spheres BGe−i(xn),
BGe−j(yn) are pairwise disjoint. Thus

|H| =
e−1∑
i=0

ai

e−i∑
j=0

(
n

j

)
dj . (4)

Let D = {0, 1, . . . , q−1}n \H. Since n ≥ ch[q]
d (a0, a1, a2, . . . , ae), by definition

of character we have qn ≥
∑e
i=0 ai

∑e−i
j=0

(
n
j

)
dj . From (4) it follows that

|D| = qn −
e−1∑
i=0

ai

e−i∑
j=0

(
n

j

)
dj ≥ ae. (5)

Let us now fix, once and for all, a one-one function

f : A0 ∪A1 ∪ · · · ∪Ae → C0 ∪ C1 ∪ · · · ∪Ce−1 ∪ D,
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that maps numbers in Ai to codewords in Ci, for i = 0, 1, . . . , e − 1, and maps
numbers in Ae to n-tuples in D. The existence of the map f, is ensured by our
assumptions about Γ and (5).

For each y ∈ A0 ∪ A1 ∪ A2 ∪ · · · ∪ Ae and j = 1, . . . , n let f(y)j be the jth
digit of the n-tuple f(y) ∈ {0, 1, . . . , q − 1}n. We can now exhibit the questions
Tj = (Tj 0, Tj 1, . . . , Tj q−1), j = 1, 2, . . . , n of our search strategies:

For each j = 1, . . . , n let the set Tj i ⊆ U be defined by Tj i = {z ∈⋃e
k=0 Ak | f(z)j = i}. Intuitively, letting x∗ denote the unknown number,

Tj asks “What is the jth digit in the q-ary expansion of f(x∗)?”

The answers to questions T1, . . . , Tn determine an n-tuple of digits bn = b1 · · · bn.
We shall show that the sequence T1, . . . , Tn yields an optimal non-adaptive win-
ning strategy for σ. Let σ1 = σb1 , σ2 = σb21 , . . . , σn = σbnn−1. Arguing by cases
we shall show that σn = (A∗0, A

∗
1, . . . , A

∗
e) is a final state.

By (1), for all i = 0, 1, . . . , e, any z ∈ Ae−i that falsifies > i answers does not
survive in σn—in the sense that z ∈ A∗0 ∪A∗1 ∪ · · · ∪A∗e.

Case 1. bn ∈
⋃e
i=0

⋃
y∈Ai

BGe−i(f(y)).
For all i = 0, 1, . . . , e, and for each y ∈ Ai we must have y ∈ A∗0 ∪A∗1 ∪ · · · ∪A∗e .
Indeed, the assumption bn ∈ BGe−i(f(y)) implies dG(f(y), bn) > e − i, whence
either y falsifies > e − i of the answers to T1, . . . , Tn, or it is rejected by some
answer, thus y does not survive in σn. We have proved that A∗0 ∪ A∗1 ∪ · · · ∪A∗e
is empty, and σn is a final state.

Case 2. bn ∈ BGe−i(f(y)) for some i ∈ {0, 1, . . . , e} and y ∈ Ai.
Then y ∈ A∗0 ∪ A∗1 ∪ · · · ∪ A∗e, because dG(f(y), bn) ≤ e − i, whence y falsifies
≤ e− i answers. Our assumptions about Γ ensure that, for all j = 0, 1, . . . , e and
for all y′ ∈ Aj and y = y′, we have bn ∈ BGe−j(f(y′)). Thus, dG(f(y′), bn) > e− j
and y′ falsifies > e− j of the answers to T1, . . . , Tn, whence y′ does not survive
in σn. This shows that for any y′ = y, we have y′ ∈ A∗0∪A∗1∪· · ·∪A∗e . Therefore,
A∗0 ∪A∗1 ∪ · · · ∪A∗e only contains the element y, and σn is a final state.

4 The Case M = qm: Optimal Strategies with Minimum
Adaptiveness

4.1 The First Batch of Questions

In this section we shall consider the case when the size of the search space is a
power of q, i.e., M = qm, for some integer m ≥ 1.

By Proposition 1(ii), at least N [q]
d,min(qm, e) questions are necessary to guess

the unknown number x∗ ∈ U = {0, 1, . . . , qm − 1}, if up to e answers may be
erroneous.1

1 Recall that, for any two integers e, m ≥ 0, we denote by N
[q]
d,min(q

m, e) =

ch
[q]
d (qm, 0, . . . , 0) the smallest integer n ≥ 0 such that qn ≥ qm(

(
n
e

)
de +

(
n

e−1

)
de−1 +

· · · +
(

n
2

)
d2 + nd + 1).
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As a first result of this paper we shall now prove that, for all suitably large m,
N

[q]
d,min(q

m, e) questions are also sufficient under the following constraint: first we
use a predetermined non-adaptive batch of m questions D1, . . . ,Dm, and then,
only depending on the answers, we ask the remaining N [q]

d,min(q
m, e)−m questions

in a second non-adaptive batch.
The first batch of questions is as follows:

For each j = 1, 2, . . . ,m, let Dj = (Dj 0, Dj 1, . . . , Dj q−1) denote the
question “What is the j-th (q-ary) digit of x∗?” A number y ∈ U belongs
to Dj i iff the jth symbol yj of its q-ary expansion ym = y1 · · · ym is
equal to i.

Upon identifying Let bj ∈ {0, 1, . . . , q − 1} be the answer to question Di. Let
bm = b1 · · · bm. Beginning with the initial state σ = (U,∅, . . . ,∅), and repeatedly
applying (1) we have that the state resulting from the answers b1 · · · bm, is an
(e+ 1)-tuple σb

m

= (A0, A1, . . . , Ae), where

Ai = {y ∈ U | dG(ym, bm) = i} for all i = 0, 1, . . . , e,

and we have that

|A0| = 1, |A1| = md, . . . , |Ae| =
(
m

e

)
de.

Thus σb
m

has type (1,md,
(
m
2

)
d2, . . . ,

(
m
e

)
de). Let σi be the state resulting after

the first i answers, beginning with σ0 = σ. Since each question Di is balanced for
σi−1, an easy induction using Lemma 1 yields ch[q]

d (σb
m

) = N
[q]
d,min(q

m, e) −m.

4.2 The Second Batch of Questions

For each m-tuple bm ∈ {0, 1, . . . , q − 1}m of possible answers, we shall now
construct a non-adaptive strategy Sbm with ch[q]

d (1,md,
(
m
2

)
d2, . . . ,

(
m
e

)
de) ques-

tions, which turns out to be winning for the state σb
m

. Thus, let us consider the
value of

ch[q]
d (1,md,

(
m

2

)
d2, . . . ,

(
m

e

)
de)

for m ≥ 1.

Definition 2. Let e ≥ 0 and n ≥ 2e be arbitrary integers. The critical index
m

[d,q]
n,e is the largest integer m ≥ 0 such that ch[q]

d (1,md,
(
m
2

)
d2, . . . ,

(
m
e

)
de) = n.

Lemma 4. Let q ≥ 2, e ≥ 1 and n ≥ 2e be arbitrary integers. Then⌊
e
√
e!q

n
e

d

⌋
− n− e ≤ m[d,q]

n,e <

⌊
e
√
e! q

n
e

d

⌋
+ e. (6)
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Proof. By definition, m[d,q]
n,e = max

{
m | V [d]

n

(
1,md,

(
m
2

)
d2, . . . ,

(
m
e

)
de
)
≤ qn

}
.

Setting now m∗ =
⌊

e√e! q
n
e

d

⌋
+ e, the desired right inequality is a direct conse-

quence of the inequality V [d]
n (σ) > qn, where σ =

(
1,m∗d,

(
m∗

2

)
d2, . . . ,

(
m∗

e

)
de
)
.

Indeed, we have

V [d]
n (σ) > V [d]

n

(
0, . . . , 0,

(
m∗

e

)
de
)

=
(
m∗

e

)
de = de

m∗(m∗ − 1) · · · (m∗ − e+ 1)
e!

≥ de

(
e√
e! q

n
e

d

)e
e!

= qn.

Let m̃ =
⌊

e√e!q
n
e

d

⌋
− n − e. In order to prove the left inequality, we need to

show that
V

[d]
n+m̃

(
qm̃, 0, . . . , 0

)
≤ qn+m̃,

thus we have to prove
e∑
j=0

(
m̃+ n

j

)
dj ≤ qn.

We have
e∑
j=0

(
m̃+ n

j

)
dj ≤ de

e∑
j=0

(
m̃+ n

j

)

≤ de
(
m̃+ n+ e

e

)
= de

(m̃+ n+ e)(m̃+ n+ e− 1) · · · (m̃+ n + 1)
e!

≤ de
(m̃+ n+ e)e

e!

≤ de

e!

(
e
√
e!q

n
e

d
− n− e+ n + e

)e
= qn,

which completes the proof.

We now prove that for all sufficiently large m there exists a second batch of
n = N

[q]
d,min(q

m, e) −m = ch[q]
d (1,md,

(
m
2

)
d2, . . . ,

(
m
e

)
de) non-adaptive questions

allowing Paul to infallibly guess Carole’s secret number. We first need the fol-
lowing lemma.2

2 The problem of finding families of error-correcting codes with fixed reciprocal dis-
tances was also considered in [14], where the authors proved a result related to our
Lemma 5 showing the existence of asymptotically optimal such families.
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Lemma 5. For any fixed integers k = 0, 1 and e ≥ 1 and for all sufficiently
large integers n, there exists an e-tuple of q-ary codes Γ = (C0, C1, . . . , Ce−1)
together with integers ti ≥ 2(e− i) + 1 (i = 0, 1, . . . , e− 1) such that

(i) Each Ci is an (n + 2k,
(m[d,q]

n,e

i

)
di(q + 1)k, ti) code;

(ii) ∆G(Ci, Cj) ≥ 2e− (i+ j) + 1, (whenever 0 ≤ i < j ≤ e− 1.)

Proof. Let n′ = n−e2+2k. First we prove the existence of an (n′,
(m[d,q]

n,e

e−1

)
de−1(q+

1)k, 2e+ 1) code. By Lemma 4 and the trivial inequality e! ≤ (e+1)e

2e , it follows
that, for all sufficiently large n(

m
[d,q]
n,e

e− 1

)
de−1(q + 1)k < (m[d,q]

n,e )e−1de−1(q + 1)k

< (
e
√
e! q

n
e

d
+ e)e−1de−1(q + 1)k

≤ (
e q

n
e

d
)e−1de−1(q + 1)k

≤ ee−1qn−
n
e +2k

= ee−1 qn−e
2

q
n
e−e2−2k

≤ qn−e
2+2k∑2e

j=0

(
n−e2+2k

j

)
qj
,

since
∑2e
j=0

(
n−e2+2k

j

)
qj is polynomial in n.

The existence of the desired (n′,
(m[d,q]

n,e

e−1

)
de−1(q+ 1)k, 2e+ 1) code now follows

from Lemma 3.2. We have proved that, for all sufficiently large n, there exists
an (n− e2 + 2k,

(m[d,q]
n,e

e−1

)
de−1(q + 1)k, 2e+ 1) code C′. For each i = 0, 1, . . . , e− 1

let the e2-tuple ai be defined by

ai = 00 . . .0︸ ︷︷ ︸
ie

11 . . . 1︸ ︷︷ ︸
e

0 . . . 0︸ ︷︷ ︸
e2−(i+1)e

.

Furthermore, let C′′i be the code obtained by appending the suffix ai to the
codewords of C′, in symbols,

C′′i = C′ ⊗ ai.

Trivially, C′′i is an (n+2k,
(m[d,q]

n,e

e−1

)
de−1(q+1)k, 2e+1) code for all i = 0, 1, . . . , e−1.

Furthermore, we have∆G(C′′i , C′′j ) ≥ ∆H(C′′i , C′′j ) = 2e ≥ 2e−(i+j)+1,whenever
0 ≤ i < j ≤ e − 1. For each i = 0, 1, . . . , e − 1, pick a subcode Ci ⊆ C′′i with

|Ci| =
(m[d,q]

n,e

i

)
di(q + 1)k. Then the new e-tuple of codes Γ = (C0, C1, . . . , Ce−1)

satisfies both conditions (i) and (ii), and the proof is complete.
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The following corollary implies the existence of minimum adaptiveness perfect
search strategies.

Corollary 1. Fix an integer e ≥ 0. Then for all sufficiently large integers m and
for every state σ of type (1,md, . . . ,

(
m
e

)
de) there exists a non-adaptive winning

strategy S such that the number of questions in S coincides with Berlekamp’s
lower bound ch[q]

d (σ) = N
[q]
d,min(q

m, e) −m.

Proof. Skipping the trivial case e = 0, assume e ≥ 1. Let n = ch[q]
d (σ) and

k = 0. By definition, n → ∞ as m → ∞. Lemmas 5 and 3 yield a non-adaptive
winning strategy with n questions for any state of type (1,m[d,q]

n,e d,
(m[d,q]

n,e

2

)
d2,

. . . ,
(
m[d,q]

n,e
e

)
de). By Definition 2, m ≤ m

[d,q]
n,e , and a fortiori, for all sufficiently

large m, a non-adaptive winning strategy with n questions exists for any state
of type (1,md, . . . ,

(
m
e

)
de).

We summarize our results as follows:

Theorem 1. Fix integers q ≥ 2, e ≥ 0, and a d-regular channel G. Then for
all sufficiently large integers m there exists a perfect winning strategy S for the
Ulam-Rényi game with q-ary questions and e lies over the channel G and a search
space of cardinality qm, which uses adaptiveness only once. More precisely S has
exactly size N [q]

d,min(q
m, e). Therefore,

N
[q]
G (qm, e) = N

[q]
d,min(q

m, e).

5 Quasi-perfect Strategies Always Exist

In this section we complete our analysis by considering the case when the car-
dinality of the search space is not necessarily a power of q. We shall prove that
for any choice of the parameter q > 2, e ≥ 0, and for any d-regular channel G
quasi-perfect strategies, always exist up to finitely many exceptional values of
the search space cardinality, M. Recall that a strategy is called quasi-perfect if
it uses exactly N

[q]
d,min(M, e) + 1 questions.

Lemma 6. Fix q ≥ 2, e ≥ 0. Then, for all sufficiently large n, there exists a
(perfect) strategy for the state

σ =
(
(q + 1)qm

[d,q]
n,e −1, 0, . . . , 0

)
using ch[q]

d (σ) = (m[d,q]
n,e + n + 1) questions.

Proof. First we shall prove that ch[q]
d (σ) > m

[d,q]
n,e + n+ 1. By definition of char-

acter it is enough to show that the (n + m
[d,q]
n,e )-th q-ary volume of σ exceeds

qn+m[d,q]
n,e , that is

V
[d]

n+m
[d,q]
n,e

(σ) > qn+m[d,q]
n,e .
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For i = 0, 1, . . . ,m[d,q]
n,e − 1 let σi = (ai 0, ai 1, . . . , ai j , . . . , ai e), where

ai j = (q + 1)qm
[d,q]
n,e −1−i

(
i

j

)
dj ,

For i = 0, 1, . . . ,m[d,q]
n,e − 2 the state σi+1 coincides with the one produced by

asking a balanced question in the state σi. Hence by Lemma 1 we have that for
all i = 0, 1, . . . ,m[d,q]

n,e − 2,

V
[d]

n+m
[d,q]
n,e −i

(σi) = q V
[d]

n+m
[d,q]
n,e −i−1

(σi+1) .

Let us now consider the state

σ
m

[d,q]
n,e −1

=

(
(q + 1), (q + 1)(m[d,q]

n,e − 1)d, . . . , (q + 1)
(
m

[d,q]
n,e − 1
e

)
de

)
.

We have

V
[d]
n+1

(
σ
m

[d,q]
n,e −1

)
=

e∑
j=0

(q + 1)
(
m

[d,q]
n,e − 1
j

)
dj
e−j∑
i=0

(
n+ 1
i

)
di

≥
e∑
j=0

(q + 1)
(
m

[d,q]
n,e − 1
j

)
dj
(
n+ 1
e− j

)
de−j

= (q + 1)de
(
m

[d,q]
n,e + n

e

)
≥ (q + 1)de

e!
(m[d,q]

n,e + n− e)e

>
(q + 1)de

e!

(
e
√
e!q

n
e

d
− 2e− 1

)e

>
q(1 + 1

q )d
e

e!

(
1

(1 + 1
q )

1
e

e
√
e!q

n
e

d

)e
= qn+1.

Thus we have the desired result

V
[d]

n+m
[d,q]
n,e

(σ) = V
[d]

n+m
[d,q]
n,e

(σ0) = qm
[d,q]
n,e −1V

[d]
n+1

(
σ
m

[d,q]
n,e −1

)
> qm

[d,q]
n,e −1+n+1 = qm

[d,q]
n,e +n.

It remains to prove that there exists a q-ary winning strategy of length
n+m

[d,q]
n,e + 1 for the state σ.

We have already proved (albeit implicitly) that there exists a strategy with
m

[d,q]
n,e − 1 questions (the questions described above) for the state σ which leads

Paul into the state σ
m

[d,q]
n,e −1

. Therefore in order to complete the proof it is enough
to show that there exists a winning strategy for the state σ

m
[d,q]
n,e −1

with n+2 ques-
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tions. Indeed such a strategy is given by Lemma 5 (setting k = 1) and Lemma 3.
Remarkably, such a strategy is a non-adaptive one. This concludes the proof.

Proposition 3. Let k ≥ 4e2, then we have

e−1∑
j=0

((
k

j

)
+
(
k + 1
j

))
dj ≤

e∑
j=0

(
k

j

)
dj .

Proof. If k ≥ 4e2 it follows

k2 + 3k + 2 ≥ ke2 + 2ke+ 3e.

This is equivalent to (
k

e

)
≥ e

(
k + 1
e− 1

)
.

It follows (
k

e

)
≥
e−1∑
j=0

(
k + 1
j

)
.

With this we get

e−1∑
j=0

((
k

j

)
+
(
k + 1
j

))
dj ≤

e∑
j=0

(
k

j

)
dj .

Lemma 7. Let N [q]
d,min(qm, e) ≥ 4e2. Then we have the inequalities:

N
[q]
d,min(q

m, e) + 1 ≤ N
[q]
d,min(q

m+1, e) ≤ N
[q]
d,min(q

m, e) + 2.

Proof. Let k = N
[q]
d,min(q

m, e), then qm
∑e
j=0

(
k
j

)
dj ≤ qk and qm

∑e
j=0

(
k−1
j

)
dj >

qk−1. It follows

qm+1
e∑
j=0

(
k

j

)
dj > qm+1

e∑
j=0

(
k − 1
j

)
dj > qk

and thus N [q]
d,min(q

m, e) + 1 ≤ N
[q]
d,min(q

m+1, e). From qm
∑e
j=0

(
k
j

)
dj ≤ qk follows

qm+1
e∑
j=0

(
k

j

)
dj ≤ qk+1. (3.1)

From Pascal’s Identity we get
(
k
j

)
=
(
k+2
j

)
−
(
k
j−1

)
−
(
k+1
j−1

)
. Thus

qm+1
e∑
j=0

((
k + 2
j

)
−
(

k

j − 1

)
−
(
k + 1
j − 1

))
dj ≤ qk+1,

qm+1
e∑
j=0

(
k + 2
j

)
dj ≤ qk+1 + qm+1

e−1∑
j=0

((
k

j

)
+
(
k + 1
j

))
dj .
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Because of Property 3 we have:

qm+1
e∑
j=0

(
k + 2
j

)
dj ≤ qk+1 + qm+1

e∑
j=0

(
k

j

)
dj .

It follows by inequality 3.1

qm+1
e∑
j=0

(
k + 2
j

)
dj ≤ qk+2.

Thus N [q]
d,min(q

m+1, e) ≤ k + 2.

The following theorem summarizes all it is known about shortest search strate-
gies for the Ulam-Rényi game with e lies and q-ary questions over an arbitrary
d-regular channel.

Theorem 2. Fix integers e ≥ 0, q ≥ 2, and a d-regular channel G. Then, for
all sufficiently large M we have:

N
[q]
d,min(M, e) ≤ N

[q]
G (M, e) ≤ N

[q]
d,min(M, e) + 1.

Proof. Let m = �logqM�. Thus

N
[q]
G (qm, e) ≤ N

[q]
G (M, e) ≤ N

[q]
G (qm+1, e).

Fix the smallest integer n such thatm ≤ m
[d,q]
n,e . By Definition 2 and Theorem 1

we have
N

[q]
d,min(q

m, e) = m+ n = N
[q]
G (qm, e).

We shall argue by cases.

Case 1. m < m
[d,q]
n,e . Hence m+ 1 ≤ m

[d,q]
n,e . Definition 2 and Theorem 1 yield

N
[q]
d,min(q

m+1, e) = m+ 1 + n = N
[q]
G (qm+1, e).

Thus, we have the desired result

N
[q]
G (M, e)≤N

[q]
G (qm+1, e)=N

[q]
G (qm, e)+1=N

[q]
d,min(q

m, e)+1 ≤ N
[q]
d,min(M, e)+1.

Case 2. m = m
[d,q]
n,e . By definition we have N [q]

d,min(qm+1, e) ≥ m + 1 + n + 1 =

m+n+2. By Lemma 7 we have N [q]
d,min(qm+1, e) ≤ N

[q]
d,min(qm, e)+2 = m+n+2.

Hence, N [q]
d,min(q

m+1, e) = n+m+2, and by Theorem 1, we have N [q]
G (qm+1, e) =

m+ n + 2.
Recall that m = m

[d,q]
n,e and by Lemma 6 we have N

[q]
G ((q + 1)qm−1, e) =

m+ n + 1 = N
[q]
d,min((q + 1)qm−1, e).
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Therefore, for all integers M such that qm ≤ M ≤ (q + 1)qm−1, we have

N
[q]
G (M, e) ≤ m+ n+ 1 = N

[q]
d,min(qm, e) + 1 ≤ N

[q]
d,min(M, e) + 1.

Finally, for all integers M such that (q + 1)qm−1 < M < qm+1, we have

N
[q]
G (M, e) ≤ N

[q]
G (qm+1, e) = m+n+2 = N

[q]
d,min((q+1)qm−1, e)+1 ≤ N

[q]
d,min(M, e)+1.

The proof is complete.
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Search with Noisy and Delayed Responses

R. Ahlswede and N. Cai

Abstract. It is well–known that search problems with a stochastic re-
sponse matrix acting independently for the questions can be equivalently
formulated as transmission problems for a discrete memoryless channel
(DMC) with feedback.

This is explained in Chapter 3 of the book Search Problems by R.
Ahlswede and I. Wegener (Wiley 1987, translation of Suchprobleme,
Teubner 1979).

There also Ahlswede’s coding scheme for the DMC and also for the
arbitrarily varying channel (AVC) achieving the capacities are described.
The latter can be viewed as a robust model for search.

In this paper we analyse this robust model with a time delay for
the noiseless feedback. In the terminology of search this means that the
answers are given with delay.

We determine the (asymptotically) optimal performances, that is,
find the capacities, for the cases where the delay is constant and
linear in the blocklength. Finally we also give the corresponding re-
sults for the DMC with zero–error probability.

Keywords: Search, noisy responses, liers, delay, feedback, list codes,
0–error capacity.

1 Introduction

Delay is an essential property in human interactions and especially also in engi-
neering systems for instance those with control or communication aspects. There
have been already in the 70ties studies on delay and overflow in data compression
schemes (e.g. Wyner [22], Jelinek [19]). Recently searching with delayed answers
was considered by Cicalese, Gargano, and Vaccaro ([11], [12]) in the combinato-
rial model dealing with lies as considered by Renyi, Berlekamp, and Ulam (see
Deppe [16]).

It is well–known that feedback (even without delay) does not increase the
capacity of a DMC. This was first proved by Shannon [21], who also found a
formula for the zero error capacity of the DMC. This is a special case of the
result by Ahlswede [2] on the AVC for maximal probability of error, which was
completed by Ahlswede and Cai [7] omitting a convexity assumption and pro-
viding a condition for positivity of the capacity (a “trichotomy”). Here feedback
(without delay) increases the capacities. This is also true of the easier case of
average probability of error, which can be found in [4], [8].

Our first result (in Section 4) concerns the situation where the delayed feed-
back has a delay time upperbounded by a constant d. With a simple coding
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scheme for delayed feedback we show that in this case the capacities of all
memoryless channels with non–delayed feedback can be achieved. Actually it
is relevant here that we can do time sharing.

Next when the delay time increases linearly with the length of codes we ob-
tain characterizations of the zero–error capacity of a DMC (Section 5) and the
average–error capacity of an AVC (Section 6).

Finally we draw attention to future study of identification codes for the DMC,
for which Ahlswede and Dueck [9] found the capacity in case of delayed feedback.
It exceeds the capacity in the absence of feedback.

Furthermore we shall investigate the AVC for maximal probability of error,
where feedback increases capacity.

In Section 2 we introduce the necessary notation and definitions. Results, on
which this work is based are stated in Section 3.

2 Notation and Definitions

Let K be an abstract channel. Then we denote by C0(K), C0,f (K), and C0,�(K, L)
its zero–error capacity, zero–error capacity with feedback, and zero–error capac-
ity for list codes with list size L. For a given arbitrarily varying channel W , we
denote by CR(W), Ca(W), Ca,f (W), and Ca,�(W , L) its average–error capacities
for random correlated codes (c.f. [4], [6], or [10], [14] for its definition), ordinary
deterministic codes, codes with feedback and list codes with list size L.

Let X be our input alphabet and let Y be our output alphabet. We define a
code with d time delayed noiseless feedback of length n, or shortly a d–feedback
code of length n as a set of functions {f (n,d)

m : m ∈ M} from Yn−d to Xn such
that for all yn−d = (y1, y2, . . . , yn−d) ∈ Yn−d,

f (n,d)
m (yn−d) =

(
f

(d)
m,1, f

(d)
m,2, . . . , f

(d)
m,d, f

(d)
m,d+1(y1), f

(d)
m,d+2(y

2), . . . , f (d)
m,n(y

n−d)
)
,

(1)

where yi = (y1, y2, . . . , yi) and M is a finite set corresponding to the set of
messages. That is, for all m ∈ M f

(d)
m is a vector valued function and its first d

components are constant in X , independent of yn−d and for t = d+1, d+2, . . . , n,
its t–th component f

(d)
m,t is a function mapping yt−d to X . The information

theoretical meaning is the following. At time t, the encoder sends a letter from the
input alphabet X according to the value of the t–th component of the function
f

(n,d)
m , if he wants to send the message m to the receiver (decoder), and at the

same time the channel outputs a letter yt ∈ Y according to the probabilistic
rule given the channel K and the inputs. This output yt arrives via a noiseless
channel at the encoder at time t + d. Thus at time t = 1, 2, . . . , d, there is no
feedback available, and so the encoder only can choose an input letter according
to the message, which he wants to send. At time d + 1, the feedback starts to
arrive at the encoder. At time t = d + 1, d + 2, . . . , n, the encoder has received
the first t− d outputs yt−d = (y1, y2, . . . , yt−d) and he may associate them with
the message to choose the input letter.
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We shall consider two cases. In one case the delay time d is a constant and
in the other it increases linearly with the code length. It seems to us that the
first is more meaningful from a practical point of view and that the second
is more interesting from a mathematical point of view. The capacities are de-
fined in the standard way and we denote them in the two cases by C

(d)
f (K) and

C̃
(δ)
f (K), respectively, where δ = d

n for the second case. Analogously the zero–

error capacities in these two cases are denoted by C(d)
0,f and C̃(δ)

0,f (K), respectively.
These 4 capacities are non–increasing in d or δ. In particular, when d = 0, a d–
delay feedback code is an ordinary feedback code. Similarly we define C̃

(δ)
a,f for

AVC W .

3 Known Results

In this section we report a few known results, which we will use in our proofs
in Sections 5 and 6. The average–error capacity for AVC was determined by R.
Ahlswede and the key tool in his proof is the following elimination technique.

Lemma 1. (Ahlswede [4]) For an AVC W, an integer γ ∈ [n2,∞), any ε, λ̄ > 0
for sufficiently large n, there exists a random correlated code of length n assigned
to a set of codes of cardinality γ with average probability of error smaller than
λ and rate larger than CR(W) − ε.
Next there are results for list decoding.

Lemma 2. (Elias [17]) Given a discrete memoryless channel W and denote
by Cf,0(W ) its zero–error capacity with (non–delayed) feedback. Then for all
ε > 0 and sufficiently large n, there exists a code with list decoding of list size
L = L(ε,W ) (depending on ε,W but independent of n) such that the rate of code
is larger than Cf,0(W ) − ε.

Lemma 3. (Ahlswede–Cai [6]) For AVC W, and ε, λ̄ > 0, there exists an L =
L(ε, λ,W) such that for all sufficiently large n (independent of L), there exists
a code with average probability of error smaller than λ̄ and rate larger than
CR(W) − ε.
The previous lemma was remarkably improved.

Lemma 4. (Blinovsky–Narayan–Pinsker [10]) For the AVC W, there exists a
constant L = L(W) such that the average–error capacity for list codes with size
of list L Ca,�(W , L) = CR(W).

4 Codes with Delayed Constant Time Feedback

In this section we present a simple coding scheme to show that the constant time
delay for feedback does not effect capacities or rate regions for all memoryless
channels for regardless of the error concepts (zero–error, maximal–error, average
error). This includes for instance arbitrarily varying channels, two way channels,
multiple access channels, broadcast channels, interference channels and all other
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channels in the books [13] and [14], regardless whether their capacities or rate–
regions are known or unknown! The coding scheme is based on the following two
observations.

1. For memoryless channels the optimal rates of codes converge to capacity.
That is, the rates of optimal codes are arbitrarily close to the capacity if the
lengths of codes are sufficiently long. (For multi–user channels, all points in
the capacity regions can be approached by codes of sufficiently long lengths.)

2. For memoryless channels output statistics at time t only depends on the
inputs at time t (and the state at time t for arbitrarily varying channels).

For simplicity of notation we present the coding scheme for two terminal channels
and leave its obvious extension to any multi–user channel to the reader.

Let {fnm : m ∈ M} be a code with non–delayed feedback of length n whose rate
is close to the capacity. Now we construct a code

{
f

(nd,d)

md : md = (m1,m2, . . . ,md)
∈ Md

}
by concatenating the code {fnm : m ∈ M} as follows. For t = τn + i, 0 ≤

τ ≤ d1, 1 ≤ i ≤ n and f
(nd,d)

md,t
in (1) (i.e. the tth component of f (nd,d)

md ) we set

f
(nd,d)

md,t
= fmτ+1,i for fnm = (fm,1, fm,2, . . . , fm,n).

Then the new code has the same rate as the original code with no time delayed
feedback and by the observation 2 its probability of error is not larger than d
times the probability of error of the original code.

Obviously the memorylessness assumption, which implies observation 2, is
essential and in general the coding scheme cannot be applied to a channel with
memory.

5 Zero–Error Capacity for a DMC with Linear Increasing
Delay Time for Feedback

In this section we consider the case where for a δ ∈ [0, 1) the output of a given
DMC at time t (t ≤ n−�nδ�) arrives at the encoder at time t+�nδ� via noiseless
feedback.

Theorem 1. For all DMC’s W , and δ ∈ [0, 1),

C̃
(δ)
f,0(W ) = (1 − δ)Cf,0(W ) + δC0(W ). (2)

Proof

a) Converse Part
Let us consider zero–error codes for the following communication system and
denote the capacity by C

∗(δ)
f,0 (W ). An encoder sends messages to a decoder

with a zero–error code with feedback of length n via W and for the time
t < n − �nδ�, the output of the channel at time t immediately arrives at
the encoder via noiseless feedback and the feedback is shut down at time
n − �nδ�. Obviously the output of the channel at time t ≥ n − �nδ� can
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never arrive at the encoder if the feedback delays �nδ� units of time. There-
fore �nδ�–feedback code may always be simulated by a code for the above
communication system. Consequently

C̃
(δ)
f,0(W ) ≤ C

∗(δ)
f,0 (W ). (3)

On the other hand we may apply Shannon’s well known approach in the con-
verse proof of his zero–error coding theorem with feedback [21] and conclude
that in the worst case the encoder may not reduce the messages to a list of
size smaller than M2−n(1−δ)C0,f (W ) by sending the first n−�nδ� components
of the input, if the initial message set size is M . Since the feedback is shut
down at time n−�nδ� and the decoder has to determine the message in the
last �nδ� units of time without error, M2−n(1−δ)Cf,0(W ) must not be larger
than 2nδC0(W ). That is

C
∗(δ)
f,0 (W ) ≤ (1 − δ)Cf,0(W ) + δC0(W ), (4)

which together with (3) yields the converse.
b) Direct Part

We prove the direct part by the following coding scheme which consists of
three blocks. Let ε be an arbitrarily small but positive constant.

1) Our first block of the coding scheme has length n
(
1 − δ − ε

3

)
. By Lem-

ma 2, there exists a constant L depending only on the channel and ε
such that for sufficiently large n, there exists a zero–error code of length
n
(
1 − δ − ε

3

)
and rate Cf,0(W )− ε

3 with list decoding of list size L. The
encoder uses such a code in the first block. Then the decoder knows that
the message falls in a list of size L after the transformation. But at this
moment the encoder does not know the list and to learn the list he has
to wait for the feedback.

2) The second block has length �nδ�. During the time he is waiting for the
feedback, the encoder may use a zero–error code of length �nδ� to sent
nδ

(
C0(W ) − ε

3

)
bits to the decoder.

3) After �nδ� units of time, the outputs of the whole first block arrive at
the encoder and so he learns the list. Now the time for the last block
only leaves n ε3 units. But it is sufficient, if n is sufficiently large, because
the size of the list is a constant L. So the encoder may use a zero–error
code of length ε

3n to inform the decoder about the message in the list
he sends to the decoder.

In the first two blocks the encoder sends n
(
1 − δ − ε

3

) (
Cf,0(W ) − ε

3

)
bits

and nδ
(
C0(W ) − ε

3

)
bits, respectively. So totally the rate of the code is(

1 − δ − ε

3

)(
Cf,0(W ) − ε

3

)
+ δ

(
C0(W ) − ε

3

)
= (1 − δ)Cf,0(W ) + δC0(W ) − ε

3

[
Cf,0(W ) + 1 − ε

3

]
.

This completes the proof of the direct part.
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6 Average–Error Capacity for an AVC with Linear
Increasing Delayed Time Feedback

We have learnt from [8] that the average–error capacity of codes for an AVC
with non–delayed feedback is equal to the capacity of random correlated codes
and one cannot expect that a code with delayed feedback is better than a code
with non–delayed feedback.
So for all AVC W

C̃
(δ)
a,f (W) ≤ Ca,f (W) = CR(W). (5)

We shall show that C̃(δ)
a,f actually is equal to CR(W) and consequently the linear

time delay makes no difference for feedback. That is

Theorem 2. For all AVC, δ ∈ [0, 1)

C̃
(δ)
a,f (W) = CR(W). (6)

In order to prove Theorem 2, it is sufficient for us to present a coding scheme as-
ymptotically achieving CR(W). Before presenting it, let us briefly review the idea
in the proof of the direct part of the coding theorem for AVC [4]. R. Ahlswede
first reduced the size of a domain of a random correlated code for an AVC to
O(n2) by the elimination technique. Then the encoder may randomly choose a
code from this domain and inform the decoder about this choice by a code of
size n2 � 2no(1) in the case that the channel has positive capacity. This gives a
deterministic code, since we may regard the choice as a message sent to the de-
coder. In the case that the capacity of a channel is zero it still works if the sender
and decoder have other resources to obtain common randomness e.g., the (non–
delayed) feedback [8]. Along this line in our coding scheme the encoder should
use an arbitrarily short block to generate randomness at the output. However
the randomness does not arrive at the encoder before �nδ� units of time later.
During the waiting time, the encoder may send more messages by a list code.
To wait for the list via the feedback, the encoder needs another �nδ� units of
time. So totally the waiting time is 2nδ. Consequently this naive coding scheme
requires the assumption that δ < 1

2 .
However, we observe that the common randomness is not necessarily to be

generated by feedback, even if the capacity is zero. In fact the randomness can
be sent by a (short) list code in the second block such that the encoder may
use a correlated code in the next block until the outputs of the first two blocks
come via feedback. Then he may use the common randomness generated by the
first block and inform the decoder where the message sent in the second block
locates in the list. So, totally the waiting time is around nδ units.

Proof of Theorem 2: Now we formally prove the theorem by the following
coding scheme. For fixed ε > 0, we choose ε′, ηi > 0, i = 0, 1, 2 such that

1 −
2∑
j=0

ηj > δ, (7)
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where ε′, η0, η2 are chosen arbitrarily small (depending on ε and will be specified
later). Then we choose as set of messages a cartesian product

M = Mr ×M1, (8)

with
|Mr| = 2nη1(CR(W)−ε′) (9)

and

|M1| = 2
n
(
1−

2∑
j=0

ηj

)
(CR(W)−ε′)

. (10)

Then our code consists of four blocks.

1) The first block has length nη0. We use it to build common randomness as in
[8]. The difference is that in our case the common randomness is built �nδ�
units of time later whereas it is built immediately in the model [8].

2) The second block has length nη1. In this block the encoder sends message
mr ∈ Mr by a list code of constant list size, if the message, which he wants
to send is (mr,m1) ∈ Mr ×M1 = M. By (9) and Lemmas 3 or 4, the code
with arbitrarily small average probability of error exists.

3) The third block has length n

(
1 −

2∑
j=0

η1

)
. In this block the encoder uses a

random correlated code with the domain (of the random code) Mr and rate
CR(W)− ε′. The existence of the code follows from Lemma 1. The encoder
sends m1 ∈ M1 to the decoder by the mrth code in the domain Mr, if he
wants to send (mr,m1) to the decoder. He can do it by (10).

4) There are nη2 units of time left for the last block. By (7) the outputs of the
first two blocks have arrived at the encoder before the last block is started.
So the common randomness generated by the first block has been built and
the list of the code in the second block has come to encoding. The encoder
can use a code obtained by the elimination technique of Lemma 1 to inform
the decoder which message in the list he sends in the second block. Since the
size of the list is a constant, η3 can be chosen arbitrarily small.

5) The encoder knows the message mr is in a list, but does not know which one
it is at the end of the second block. Then he does nothing but waits for the
end of the transmission. At end of the last block the decoder learns mr from
the last block. Then he knows which code is used in the third block and so
he is able to decode m from the code in the third block. Finally he obtains
(mr,m1).

The probability of error, clearly may be arbitrarily small and by (8) – (10)
the rate is

η1

(
CR(W)−ε′

)
+

(
1 −

2∑
j=0

ηj

)
(CR−ε′)=

[
1−(η0+η1)

](
CR(W)−ε′

)
< CR(W)−ε,

if we choose ε′ and η0, η2 sufficiently small. So our proof is complete, since
the converse trivially follows from (5).
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Finally we note that although an algorithm of coding for feedback without
delay based on [1] was studied in [20], it is a long way to find efficient algorithms
of our coding schemes for AVC and zero–error codes with delayed feedback. This
is so because our coding schemes contain correlated random codes and zero–error
codes whose structures are unknown.
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A Kraft–Type Inequality for d–Delay Binary

Search Codes

R. Ahlswede and N. Cai

1 Introduction

Among the models of delayed search discussed in [1], [2], the simplest one can be
formulated as the following two–player game. One player, say A, holds a secret
number m ∈ M � {1, 2, . . . ,M} and another player, say Q, tries to learn the
secret number by asking A at time i questions, like “Is m ≥ xi?”, where xi is a
number chosen by Q. The rule is that at time i+ d A must answer Q’s question
at time i correctly and at time j Q can choose xj according to all answers he has
received. How many questions has Q at least to ask to get the secret number.
Let

Bd(t) =

{
1 if t ≤ 0
Bd(t− 1) +Bd(t− d− 1) if t > 0.

(1)

Then the main result of [1] is

Theorem AMS. (Ambainis–Bloch–Schweizer) There exists a scheme for Q to
win the game by asking t questions iff M ≤ Bd(t).

We notice that the answers are determined by Q’s scheme and the secret number,
since A does not lie. So for a fixed scheme, for Q wining by asking t questions,
each number m ∈ {1, 2, . . . ,M} = M gives a binary sequence of length at most
t in such a way that the ith component of the sequence is zero iff the answer
is “yes” if the secret number is m. Thus all successful schemes for Q define a

subset in {0, 1}∗ �
∞⋃
i=1

{0, 1} and we shall call them d–delay binary search (d–

DBS) codes. Then Theorem ABS can be restated: there exists a d–DBS code C
whose codewords have at most length t iff

|C| ≤ Bd(t). (2)

For a given d–DBS code we denote by (c) the length of codeword c. Then
{(c) : c ∈ C} must satisfy the Kraft inequality, because a d–DBS code has
to be prefix free. However a prefix code is not necessarily a d–DBS code. The
main result of the paper is a sharper Kraft–type inequality for d–DBS codes
based on the work [1]. The inequality is stated and proved in the next
section.
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2 The Inequality

Main Inequality:
For all d-DBS codes C, ∑

c∈C
B−1
d ((c)) ≤ 1. (3)

Lemma 1. Let C be a d–DBS code and let L be an integer such that (c) ≤ L
for all c ∈ C, then ∑

c∈C
Bd

(
L− (c)

)
≤ Bd(L). (4)

Proof: Originally we got the idea to prove the lemma from [1], and the result
follows from Theorem ABS, and the following extension of code C. Let |C| = M ,
let S be the scheme corresponding to C on {0, 1, . . . ,M − 1}, and let

M∗ =
∑
c∈C

Bd
(
L− (c)

)
.

It is sufficient for us to present a successful scheme for Q to win the game by L
queries if the secret number is in {1, 2, . . . ,M∗}. Let cj be the codewords given
by secret number j in scheme S and (cj) be its length.

Then the scheme with L queries on {0, 1, . . . ,M∗ − 1} can be defined as
follows.

1. Let bm =
∑m
j=0 Bd

(
L− (cj)) for m = 0, 1, . . . ,M − 1.

2. Q first simulates the scheme S. That is, Q asks “≥ bm?” whenever in S
“≥ m?” is asked, until a j ∈ {0, 1, . . . ,M − 1} is found by S. In this case Q
knows the “secret number” m ∈ {bj, bj + 1, . . . , bj+1 − 1}. This takes (cj)
queries.

3. Next Q uses a scheme with
(
L − (cj)

)
questions achieving B

(
L − (cj)

)
=

|{bj, bj + 1, . . . , bj+1 − 1}| to find the “secret number” m. �

Lemma 2

Bd(1)Bd(2) ≥ Bd(1 + 2). (5)

Proof: We proceed by induction on min(1, 2) and w.l.o.g. assume 1 ≤ 2.

Case �1 ≤ 0
LHS of (5) = Bd(2) ≥ Bd(2 − |1|) = Bd(1 + 2), where “≥” holds because by
(1) Bd is non–decreasing.

Case �1, �2 > 0
Assume (4) holds for all min(′1, 

′
2) < 1 < 2.
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LHS of (5) = Bd(1)Bd(2)
(i)
=

(
Bd(1 − 1) +Bd(1 − d− 1)

)(
Bd(2 − 1) +Bd(2 − d− 1)

)
= Bd(1 − 1)Bd(2 − 1) +Bd(1 − 1)Bd(2 − d− 1)

+Bd(1 − d− 1)Bd(2 − 1) +Bd(1 − d− 1)Bd(2 − d− 1)
(ii)

≥ Bd(1 + 2 − 2) + 2Bd(1 + 2 − d− 2) +Bd(1 + 2 − 2d− 2)

=
[(
Bd(1 + 2 − 1) − 1

)
+Bd

(
(1 + 2 − 1) − d− 1

)][
Bd

(
(1 + 2 − d− 1) − 1

)
+Bd

(
(1 + 2 − d− 1) − d− 1

)]
(iii)

≥ Bd(1 + 2 − 1) +Bd(1 + 2 − d− 1)
(iv)

≥ Bd(1 + 2),

where (i) holds by (1), (ii) holds by the induction hypothesis, and (iii) holds,
because by (1) we have for all t Bd(t) ≤ Bd(t− 1) +Bd(t− d− 1). �

Apply Lemma 2 to 1 = (c) and 2 = L− (c) for all c ∈ C, then we obtain

Bd
(
L− (c)

)
≥ B−1

d

(
(c)

)
Bd(L). (6)

Substituting (6) by (4) we get∑
c∈C

B−1
d

(
(c)

)
Bd(L) ≤

∑
c∈C

Bd
(
L− (c)

)
≤ Bd(L)

i.e., (3).
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Threshold Group Testing

P. Damaschke

Abstract. We introduce a natural generalization of the well-studied
group testing problem: A test gives a positive (negative) answer if the
pool contains at least u (at most l) positive elements, and an arbitrary
answer if the number of positive elements is between these fixed thresh-
olds l and u. We show that the p positive elements can be determined up
to a constant number of misclassifications, bounded by the gap between
the thresholds. This is in a sense the best possible result. Then we study
the number of tests needed to achieve this goal if n elements are given.
If the gap is zero, the complexity is, similarly to classical group testing,
O(p log n) for any fixed u. For the general case we propose a two-phase
strategy consisting of a Distill and a Compress phase. We obtain some
tradeoffs between classification accuracy and the number of tests.

1 Introduction

The classical version of the group testing problem is described as follows. In a
set of n elements, p elements are positive and the other n−p are negative. (These
terms can stand for any specific property of elements. The “positive” elements
are sometimes called “defective” in the group testing literature.) We denote by
P the set of positive elements, hence p = |P |. Typically p is much smaller than
n. A group test takes as input any set S of elements, called a pool. The test says
Yes if S contains at least one positive element (that is, S ∩ P = ∅) and No
otherwise. The goal is to identify the set P by as few as possible tests.

Group testing is of interest in chemical and biological testing, DNA mapping,
and also in several computer science applications. Many aspects of group testing
have been studied in depth. One cannot even give an overview of the vast litera-
ture. Here we refer only to the book [10] and a few recent papers [7,11,12]. Many
further pointers can be found there. Group testing also fits in the framework
of learning Boolean functions by membership queries, as it is equivalent to the
problem of learning a disjunction of p unknown Boolean variables. In [5,6] we
proved a number of complexity results for learning arbitrary Boolean functions
with a limited number of relevant variables.

In the present paper we study a generalization of group testing which is quite
natural but has not been addressed before, to our best knowledge. Let l and
u be nonnegative integers with l < u, called the lower and upper threshold,
respectively. Suppose that a group test for pool S says Yes if S contains at
least u positives, and No if at most l positives are present. If the number of
positives in S is between l and u, the test can give an arbitrary answer. We
suppose that l and u are constant and previously known. (If one is not sure
about the thresholds, one can conservatively estimate l too low and u too high.)

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 707–718, 2006.
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The obvious questions are: What can we figure out about P? How many tests
and computations are needed? Can we do better in special cases? We refer to
our problem as threshold group testing. We call g := u− l− 1 the (additive) gap
between the thresholds. The gap is 0 iff a sharp threshold separates Yes and
No, so that all answers are determined. Obviously, the classical case of group
testing is l = 0, u = 1.

It should be observed that the lower sensitivity of threshold group tests com-
pared to the classical case has some consequences that one may find puzzling
first. In particular, one cannot simply test single items and thus identify the
positives with n trivial tests. Instead one has to examine subsets (details follow
in the technical part). However, the fact that an obvious strategy from a special
case is no longer applicable is not an objection against the model itself. Anyway,
our results will provide sublinear strategies.

In another generalization of group testing, the sensitivity of tests is reduced
if too many negatives in S are present, i.e. if the positives are “diluted”. This
scenario has been studied in [4]. Algorithmically it turned out to be less inter-
esting, in that a straightforward strategy has an asymptotically optimal number
of tests. One could think of the following model that combines both aspects.
Elements are samples with different concentrations of a substance to detect, and
there is an upper threshold for sure detection and a lower threshold under which
detection is impossible. Between the thresholds, the outcome of a test is arbi-
trary. These assumptions seem to be natural in some chemical test scenarios,
and the problems are worth studying. This model allows verification of single
“positive” elements where concentration is above the upper threshold. It is more
difficult to say which other positive elements can be found efficiently (e.g. by
“piggybacking” with high-concentration samples), and to what extent unknown
concentrations can be estimated by thresholding. Note also that one can create
tests with different amounts from different samples, i.e. presence of a sample in
a pool is no longer a binary property. Perhaps combinations of techniques from
[4] and the present paper are required. These questions are beyond the scope of
the present article and are left for future research.

Threshold group testing as introduced here is perhaps not a suitable model
for chemical testing, however one can imagine applications of a different nature
that justify our model. The n elements may represent distinct “factors” that can
be either present or absent: If a number of relevant factors (the positives) are
present, some event (Yes answer) will be observed. For example, some disorders
appear only if various bad factors come together, and they will appear for sure
if the bad factors exceed some limit. The relevant factors can have complex
interactions and different importance, so that the outcome does not solely depend
on their number, but on some monotone property of subsets. (To mention an
example, there could be several types of positives, and the result is positive if
positive elements of each type are present.) Now, one may wish to learn what
all these risk factors are, among the n candidates. If one can create experiments
where the factors can be arbitrarily and independently turned on and off (as in
some knock-out experiments in cell biology), one can also use these experiments
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as pools in a search strategy. Thus, threshold group testing strategies may find
interest in such settings, although we studied the problem mainly as a nice
extension of group testing, without a concrete application in mind.

Threshold group testing is also related to another search problem, called
“guessing secrets”, that recently received attention due to a surprising appli-
cation in Internet routing [1,9]. Here the adversary knows a set X of secrets and
answers Yes if all secrets are in the query set S, No if S and X are disjoint,
and arbitrarily in all other cases. Hence, this is threshold group testing in the
special case l = 0 and u = p.

Overview of the paper: In Section 2 we show that the p positives can be found
efficiently, subject to at most g wrongly classified items, which is inevitable in
the worst case. Still, for p % g this means a small relative error. The rest
of the paper revolves round the question how many tests and computational
steps are needed to achieve this best possible classification. As a first result,
the computation time is bounded by O(pung+1), with the thresholds in the
hidden constant. In Section 3 we discuss the case g = 0 and show that the
asymptotic test complexity does not exceed that of classical group testing, even
if no auxiliary pool with a known number of positives is available. The idea of
the strategy is then enriched in Section 4 to treat the general and more realistic
case g > 0. The main result is that the asymptotic number of tests can be made
linear in p times a power of n with an arbitrarily small positive exponent (at
cost of the constant factor), and computations need polynomial time. It is hard
to say how far this is from optimal, but it means significant progress compared
to the trivial bound of

(
n
u

)
tests. Sections 5 and 6 are merely supplements and

directed towards further research. We point out some possibilities to modify the
algorithms and accelerate them further. Open questions are also mentioned in
earlier sections when they arise.

It will become apparent that the algorithms do not need a bound on p, that
is, the results hold even if the number of positives is not known in advance.

In this paper we consider only sequential test strategies. In applications with
time-consuming tests it can be desirable to work in a limited number of stages
where a set of tests is performed nonadaptively, i.e. without waiting for the
results of each other. The outcomes of all previous stages can be used to set up
the tests for the next stage. For some problems, nonadaptiveness is achievable
only at cost of a higher test complexity. These tradeoffs have been investigated
for various combinatorial search problems, among them classical group testing
[7,10] and learning relevant variables [5,6]. Nontrivial results in this direction for
threshold group testing would be interesting, too.

Notational remarks: Throughout the paper, a k-set means a set of k elements.
A k-subset is a k-set being subset of some other set which is explicitly mentioned
or clear from context.

We chose to present complicated bounds containing binomial coefficients in
the form of powers and factorials. One might argue that resolving the binomial
coefficients is not elegant, however one can easier see the dependency on the
actual input parameters n and p in this way.
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2 Fuzzy Identification of the Positives

First we show that we can always get close to the true set P of positives in a
certain sense, using much fewer than 2n tests (that would be needed for testing
all possible pools).

Theorem 1. If p ≥ u+ g, the seeker can identify a set P ′ with |P ′ \P | ≤ g and
|P \ P ′| ≤ g. For p < u+ g, we still have the error bound u− 1 rather than g.

Proof. Simply test all u-sets. Let P ′ be any set of alleged positives that is con-
sistent with the answers. That means: For every pool that contained at most l
members of P ′, the test said No, and for every pool that contained at least u
(and thus exactly u) members of P ′, the test said Yes.

Suppose for the moment that P ′ has cardinality p′ ≥ u. Assume that P ′ has
g + 1 = u− l (or more) elements outside P . Add l other elements from P ′. This
u-set has at most l elements in P , thus it must return No. But since it consists
of u elements from P ′, it should also say Yes, contradiction.

Similarly, suppose for the moment p ≥ u, and assume that g + 1 (or more)
elements of P are not in P ′. Take them and add l other elements from P . This
u-set is entirely in P and therefore says Yes. But since it contains at most l
elements from P ′, it should also say No, contradiction.

For p ≥ u we have seen that p′ ≥ p−g. In particular, p ≥ u+g implies p′ ≥ u,
and both directions apply. The last assertion is also obvious now. �

Some lower bound on p is necessary to guarantee that the sizes of set differences
are bounded by g, even if we test all 2n subsets. For example, if p = u − 1 and
the adversary always says No, every (u− 1)-set P ′ is a consistent solution, even
if P ′ and P are disjoint. But we have u − 1 > g for l > 0. In the following we
always suppose p ≥ u+ g. Our bound g on the number of misclassified elements
on both sides is tight in the following sense:

Proposition 1. For any fixed set P ′ with |P ′ \ P | ≤ g and |P \ P ′| ≤ g, the
adversary can answer as if P ′ were the set of all positives.

Proof. For pools S with l < |S ∩ P | < u, the adversary answers arbitrarily, in
particular, consistently with P ′. It remains to show that the mandatory answers
for all other pools S do not rule out P ′. If S has at most l positives then the
answer must be No. Since S contains at most l + g = u − 1 elements from P ′,
this answer is possible for P ′ as well. If S has at least u positives then at least
u− g = l + 1 of them are in P ′. Thus, answer Yes is also allowed for P ′. �

We stress that this result refers only to any single solution P ′. It is much more
difficult to characterize the families of hypotheses P ′ that are consistent with
some vector of answers. We leave this as an open question. However, we can say
at least something about these families:

Proposition 2. Any two solutions Q and Q′ being consistent with the answers
of an adversary satisfy |Q \Q′| ≤ g and |Q′ \Q| ≤ g.
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Proof. Suppose that some inequality is violated. Then, if Q = P , Q′ cannot
be a candidate. But Q = P is impossible means that Q is not a candidate
either. �

Clearly, this statement is not specific to our problem. It holds similarly for any
search problem where the consistent hypotheses are close to the target, with
respect to some distance measure.

As an illustration we discuss what Proposition 2 means in the case l = 0,
u = 2. Every candidate solution P ′ can be characterized by the “deviation”
{x, x′}, with unique elements x ∈ P \ P ′ and x′ ∈ P ′ \ P . (One of the set differ-
ences may be empty. Then x or x′ does not exist, and the deviation is a singleton
set.) For deviations {x, x′} and {y, y′} of any two solutions, not all of x, x′, y, y′

can exist and be different. Hence the solution space can be represented as a star
graph. Either one positive is undetected and several (maybe all) negatives are
suspicious to be the only positive that is missing, or one negative is not absolved,
but several alleged positives are candidates for the missing negative.

The solution spaces for u > 2 could be more complicated. A particularly
interesting question is under what conditions a positive or negative element can
be recognized as such.

Our next concern is to compute a set P ′ with the properties mentioned in
Theorem 1 from the

(
n
u

)
answers efficiently, that is, to “invert the answers”. Let

us call a set Q an affirmative set if all u-subsets of Q answered Yes. Certainly,
P is affirmative, as well as every subset of P . On the other hand, an affirmative
set Q cannot exceed P very much: |Q \ P | ≤ g, otherwise we get an obvious
contradiction. This suggests the strategy to establish increasing affirmative sets,
until the second condition |P \ Q| ≤ g is also satisfied. The somewhat tricky
question is how to reach this situation quickly and to recognize it although P is
unknown.

Theorem 2. For p ≥ u + g one can find some set P ′ as in Theorem 1 in time
O( ug+1

(u−1)!(g+1)!p
ung+1).

Proof. As our initial Q we may choose any u-set that answered Yes.
Assume that we have an affirmative Q with |P \ Q| > g. There exists some

(g+1)-set G with Q∩G = ∅, and a set H of size at most g, such that (Q∪G)\H
is affirmative (and by at least one element larger than Q). To see the existence,
just notice that any G ⊆ P \ Q with G = |g + 1| and H = (Q ∪ G) \ P would
do. Here we use the fact that at most g members of Q are outside P .

In order to find a pair G,H with the desired property, we may try all
(
n
g+1

)
candidates for G. For any fixed G we can find a suitable H , if it exists, by the
following observation: H must be a hitting set for the family of u-subsets of
Q ∪G that said No.

We bound the number of such sets. Since Q is affirmative, at least one element
must be in G, these are g + 1 possibilities. Each of the other u− 1 elements can
be in Q or be one of g elements of G. An upper bound on |Q| is provided by
|Q \P | ≤ g which implies |Q| ≤ p+ g. As long as |P \Q| > g (true in every step
except the last), this improves to p. Hence the size of our set family is less than
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g+1
(u−1)! (p+g)u−1. By a trivial branching algorithm, some hitting set of cardinality

at most g can be found in O( u
g+1

(u−1)! (p+ g)u−1) time.
In the worst case, Q has to be augmented about p times. If, for some Q,

every G fails, then at most g positives are not yet in Q, and we can output
P ′ := Q. �

There may be room for improving the time bound, mainly because the method
above considers all G separately. On the other hand it seems that the number p
of augmentation steps cannot be reduced substantially, since we might include
up to g new negatives in Q in every step. A more ambitious question is how much
computation is needed to output (some concise representation of) the complete
solution space for the given answers.

We resume that, for any fixed thresholds, we can approximate P with a poly-
nomial number of tests and in polynomial computation time, subject to a con-
stant number of misclassified elements. But in general we will not be able to
identify P exactly. The practical interpretation is: For any element in P ′ we have
evidence that it might be a positive and should be investigated more closely, al-
though there might be a few false positives in P ′. Symmetrically, any randomly
picked element not in P ′ is innocent with high probability, although all these
elements remain suspicious, in the worst case. This might be already acceptable
for applications. Also recall that a less malicious adversary (e.g. with random
answers between the thresholds) which is more appropriate to model “nature”
in experiments can only give more safety.

3 The Case Without Gap

In this section we study the case g = 0, that is, l+1 = u. Theorem 1 implies that
we can identify P exactly. Our preliminary bound nu

u! on the number of queries
and the complexity bound in Theorem 2 are however not very satisfactory, be-
cause the fact g = 0 should help. (However, we will use this preliminary result
later, inside a more efficient strategy for general g.)

Suppose that we can create a pool with u − 1 positives. Then a simple trick
(from e.g. [8]) reduces the problem to classical group testing: Take u−1 positives
with you and add them to every pool. Then a pool says Yes iff at least one further
positive is present.

Still, it is interesting to ask what we can do if such an auxiliary pool is
not available. For potential applications it is not clear whether one can always
prepare a pool with u − 1 known positives right away. Instead, we first have to
identify u − 1 positives by group tests. Another reason to address the problem
is that our procedure for detecting u− 1 positives will also provide the idea for
attacking the more complicated and more realistic case g > 0 in the next section.

Our approach is as follows: First test the whole set. If it says Yes, split it
in two halves and test them. If at least one half say Yes, split it, and continue
recursively. (We ignore the other half for the moment.) This way we get smaller
and smaller sets that contain at least u positives. This trivial process stops if,
at some point, both halves say No.
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In order to continue we need set families with a special covering property: For
the moment let t, r, v be any integers with 1 ≤ t ≤ r ≤ v. On a set of v elements
we want a family of r-sets such that every t-set is subset of some member of this
family. A lower bound on the size (number of sets of) such families is

(
v
t

)
/
(
r
t

)
,

and for any constant t, r and large v it is known that families within a 1 + o(1)
factor of this bound exist (the Rödl nibble, see e.g. [2]). However we cannot
exploit this result here, as we need large r. Therefore we use other, rather simple
covering families. More material on this kind of structure can be found e.g. in [3].

Back to a set of, say, m elements that contains at least u positives. We split
our set into u + 1 parts of roughly equal size. Then we test the u + 1 pools
consisting of u of these parts. Clearly, this is a covering family, i.e. we find a
pool which contains at least u positives and therefore says Yes. Clearly, by
iterated application we can reduce m to some constant size depending on u only,
using (u + 1) log(1+1/u) m = u+1

ln(1+1/u) lnm = O(u2 logm) tests. Finally we find
u positives by exhaustively testing the u-subsets. It follows:

Lemma 1. In a set of m elements, at least u of them positives, we can identify
u positives by O(u2 logm) tests. �

It would be interesting to close the gap to the information-theoretic lower bound
O(u logm). We remark that covering families may be used right from the be-
ginning in our procedure. Starting with binary search does not improve the
worst-case bound, but it is easier as long as we get Yes answers. Moreover, we
may split the set in halves at random, so that u positives are in one half with
high probability, as long as the actual number of positives is considerably bigger
than u.

Now, take u − 1 of the u known positives and use them as auxiliary pool in
an ordinary group testing strategy. Since O(p logn) is a query bound for group
testing (see e.g. [10]), we can now formulate the final result of this section.

Theorem 3. Threshold group testing with g = 0 has asymptotic query complex-
ity no worse than O((p + u2) logn). �

4 Gaps Are Gulfs

Things become more complicated if there is a gap between the thresholds. We
attempt to extend the idea above to the case g > 0. For convenience we say
that we (u, a)-cover an m-set when we test all pools from a family of m/a-sets
such that every u-set is contained in some pool. Here a can be any real number
greater than 1. Besides the additive gap g = u − l − 1 between the thresholds,
we also use the multiplicative gap h defined by h := 	u/(l + 1)
.

In the previous section we have used a = 1+1/u, but in the following we need
an a that is large compared to u. By splitting an m-set in au subsets of roughly
equal size and testing any combination of u of these subsets, we obviously get
an (u, a)-covering of size

(
au
u

)
= O(euau), where e = 2.718 . . . is Euler’s number.

Thus we can formulate:



714 P. Damaschke

Lemma 2. Any m-set has an (u, a)-covering of size O((ea)u), independently of
m. Provided that at least u positives are present, the covering can be used to find
an m/a-subset with still at least u positives, by O((ea)u) tests. �

At least one pool in the covering gives a Yes answer, however the catch is that,
conversely, a Yes implies only that l + 1 or more positives are in that pool. We
cannot immediately recognize a pool with at least u positives and then continue
recursively to narrow down the candidate set. This situation suggests a relaxation
of the previous method.

We call a set with at least l + 1 positives a heavy set. Suppose that we have
k ≤ h disjoint heavy m-sets that together contain at least u positives. (Note that
in case k = h, the union has guaranteed u positives, but a smaller k ≤ h can be
sufficient in a concrete case.) In the union of our k heavy m-sets, we find a heavy
m/a-set due to Lemma 2, by O((eka)u) tests. (Just replace m with km, and a
with ka.) We put this heavy subset aside and repeat the procedure with the
remaining elements, as long as it generates new disjoint heavy m/a-sets. This
procedure is limited to sets with m ≥ au, since the sets in the covering family
must have size at least u. We summarize the procedure in

Lemma 3. From k ≤ h heavy m-sets containing a total of at least u positives, we
can obtain disjoint heavy m/a-sets and a remainder with fewer than u positives.
The number of tests is O((eha)u) for each of these heavy m/a-sets. �

This is the building block of an algorithm parameterized by a, that “distills” pos-
itive elements in heavy sets of decreasing size. We give a high-level description.

Distill:
At any moment, we maintain a collection of disjoint heavy sets of cardinality at

most n/ai, where i can be any non-negative integer, plus the set R of remaining
elements, which is not necessarily heavy. A set with at most n/ai but more than
n/ai+1 elements is said to be on level i ≥ 1. Set R is said to be on level 0. For
i with n/ai+1 < u ≤ n/ai we define the last level (i + 1) where only sets of
cardinality exactly u are allowed.

The initial collection consists of only one set R on level 0, containing all
elements. We apply two kinds of operation:

(i) (u, a)-cover the set on level 0 and move disjoint heavy subsets of it to level
1, as long as possible.

(ii) Take the union U of h heavy sets on level i, apply the procedure from Lemma
3 to U , and move the generated disjoint heavy subsets of U to level i+1. Finally
move the rest of U back to R. If there are only k < h sets left on level i, apply
Lemma 3 to their union.

Clearly, these operations preserve disjointness of the collection, and all sets
except perhaps R are heavy. The order of applying these operations is arbitrary.
The process stops only when the collection has fewer than u positives on each
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level, since otherwise (ii) is still applicable. As the number of levels is bounded
by loga n, all but (u−1) loga n positives are eventually on the last level, where at
least l+ 1 positives are in each u-set. (For the last level of u-sets, the procedure
of Lemma 3 can be easily adjusted.)

For the following analysis we rewrite parameter a as a = nb, where b > 0.

Theorem 4. Distill needs O( e
uhu

l+1 h
1/bpnub) tests and packs all positives except

u−1
b in disjoint u-sets, such that at least l+1 positives are in each of these u-sets.

Proof. It remains to analyze the number of tests. Consider any one of the, at
most p

l+1 , bunches of positives in the final u-sets. It has been extracted from
at most h heavy sets on the previous level, by at most O((eha)u) tests due to
Lemma 3. They in turn have been extracted from h2 heavy sets, etc. Since only
loga n levels exist, all this has been done by O(hloga n) applications of (i) and (ii).
Hence, after O( e

uhu

l+1 pa
uhlogn/ log a) tests, all positives except (u− 1) logn/ log a

are in disjoint u-sets. Finally set a = nb. �

Despite the simplicity of this analysis, the bound has a quite pleasant form:
The first factor consists of constants, the dependency on p is linear, and we can
arbitrarily reduce the exponent of n by choosing a small b, of course at cost of
an increasing factor h1/b and the loss of more positives.

More seriously, Distill stops with a fraction of positives which is only guar-
anteed to be at least 1/h in the final u-sets. (Recall that we only know of the
presence of l+1 positives in each u-set.) In order to increase the guaranteed den-
sity of positives beyond this limit, we invoke, in a second phase called Compress,
the naive algorithm from Theorem 1, but now applied to the heavy u-sets only.
Since their total size is at most hp rather than n, the bounds from Theorems 1
and 2 imply immediately:

Corollary 1. After O( e
uhu

l+1 ph
1/bnub + hu

u! p
u) tests, all positives except u−1

b + g
are in a set that contains at most g negatives. The amount of computation is
polynomial. �

It seems possible to reduce the number of tests to O(p logn) for fixed thresholds
l, u, using O(log n) levels and a potential function argument in the analysis,
but we suspect that any O(p log n) algorithm would also misclassify O(log n)
positives, which is of no value e.g. if p = O(log n).

5 Some Refinements

This more informal section will briefly discuss some refinements of the main
result (Section 4). The aim is just to illustrate that our techniques have more
potential. However, since optimality of the underlying algorithm is not known,
we do not give a full treatment of these more sophisticated strategies here, and
stress the ideas only.

In the case of large p, the pu term in Corollary 1 may be prohibitive. An obvious
modification of Compress resolves the problem: Apply Theorem 1 to groups of t
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heavy u-sets, with some parameter t. This yields a tradeoff between final density
of positives and test complexity. We can create from any t heavy u-sets a new set
that contains all but g of the positives contained in the t heavy sets, and at most
g negatives, by O(u

u

u! t
u) tests. The density of positives is now at least 1 − g

t(l+1) .

Application to all our heavy u-sets costs uu

(l+1)u!pt
u−1 tests. However we lose up to

gp
t(l+1) further positives. We might also iterate the two-phase algorithm above, in
order to catch more positives: The gp

t(l+1) positives that escaped from Compress

can be collected in a set of size (h−1)p. Then the whole algorithm may be executed
(with suitable parameters) on this smaller set, etc.

Next we sketch a method for reducing the exponents in the test complexity
bounds from u to g + 1. The idea is to “shift the thresholds”. As already men-
tioned in Section 3, if we knew already q ≤ l positives, we could inject them
as an auxiliary set in every pool and reduce the threshold group testing prob-
lem for l and u to the same problem for thresholds l − q and u − q. (Utilizing
q > l positives in an auxiliary set is useless, since the adversary may always say
Yes, so that the searcher gets no information at all.) Specifically, we propose a
modification of Distill with improved test complexity for l > 0. To explain the
improvement we have to refer to details of Distill.

First we run Distill in a depth-first manner, that is, we move some positives
to the last level as quickly as possible. Similarly as in the proof of Theorem 4,
it costs at most hu+1/bnub tests to produce a heavy u-set. Then we try all

(
u
l

)
l-subsets as an auxiliary set. At least one of them contains exactly l positives, so
that we can use it to shift the thresholds to 0 and u− l = g+1, while running the
original version of Distill on the remaining elements. The new upper threshold
g+1 reduces the exponent of n, on the other hand we only incur another constant
factor O(u

l

l! ). Note that we have at least one positive in each of the final (g+1)-
sets. Since we cannot see in advance which of the

(
u
l

)
auxiliary sets has really

l positives, we must find a good output among the
(
u
l

)
offered results. For this

purpose, we may test unions of u of the final (g + 1)-sets. If there is in fact one
positive in every (g+ 1)-set, then all answers must be Yes. Conversely, the Yes
answers guarantee that at least l + 1 positives are among the u(g + 1) elements
in every such pool, which means a density of positives of at least l+1

u(g+1) . Since
this is a constant, the resulting set has size O(p).

Finally we apply a Compress phase on this set. By shifting the thresholds,
the exponent of p can be reduced to g + 1 as well. This could work as follows.
Apply the algorithm from Theorem 1 to the O(p) size candidate set, but with
upper threshold g + 1, and with help of each of the

(
u
l

)
auxiliary sets. Again we

have to find a good P ′ among the offered solutions. It suffices to rule out sets P ′

with large d := |P ′ \ P |. Then, among the surviving candidates P ′, a set with
largest cardinality is close to P , up to constant differences (since we know that
such a P ′ is among our candidates). Let us call a set Q dismissive if all (g + 1)-
subsets of Q answer No, together with a fixed auxiliary set. Note that P ′ \P is a
dismissive set of size d, with respect to any auxiliary set, as they contain at most l
positives. On the other hand, there is an auxiliary set (namely one with exactly l
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positives), such that every dismissive subset of P ′ can have at most d+g elements.
Hence, by computing maximum dismissive subsets of P ′ from the test results, we
can identify one which is close to P , with differences of constant size.

As a consequence, the positive elements can be identified subject to constantly
many misclassifications by O(pn(g+1)b + pg+1) tests, with an arbitrarily small
constant b > 0.

6 Logarithmic Distill Phase for Threshold Two

A difficulty in the Distill phase in Section 4 is that an uncontrollable number
of positives, but fewer than u, remain in U after every application of step (ii). We
simply sent them back to level 0. However if we knew more about the number
of positives in a heavy set, we might proceed more carefully and avoid returns,
using more clever pool sets than just covering families. This section presents a
partial result in this direction: a Distill method for l = 0, u = 2 that needs
only O(p logn) tests. Together with threshold shifting this may even lead to
improvements for g = 1 and general u. We also conjecture that similar test sets
can be created for any fixed g.

Proposition 3. For l = 0 and u = 2, all positives but one can be collected in a
set of size at most 2p by O(log n) tests.

With some constant a > 1, we start with (2, a)-covering the whole set. As long
as we get at least one Yes, we continue recursively on heavy sets of decreasing
size. If this process goes through, we eventually obtain a heavy 2-set with one or
two positives by O(log n) tests. Otherwise we know that the heavy set considered
last has exactly one positive. We repeat the procedure, always starting with all
elements that are not yet in the heavy sets.

This is nothing else than depth-first Distill with constant parameter a. The
new idea comes now: Whenever we have two heavy sets A and B, each contain-
ing exactly one positive, we can even identify one of the positives by O(log n)
further tests as follows. Split A and B into sets of roughly half size, denoted
A1, A2, B1, B2. Test the pools Ai ∪ Bj for all i, j ∈ {1, 2}. If the positives are
w.l.o.g. in A1 and B1 then A1 ∪ B1 answers Yes, and A2 ∪ B2 answers No. If
the other two pools give the same answer, i.e. both Yes or both No, the seeker
concludes that the positives must be in A1 and B1. If they give different an-
swers, w.l.o.g. A1 ∪B2 say Yes and A2 ∪ B1 says No, then A1 ∪B2 is another
candidate. In either case, A1 surely contains a positive, and we can discard A2.
The recursive process stops when one of A and B is a singleton.

We miss at most one positive, in case that a single heavy set is left over. �
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A Fast Suffix-Sorting Algorithm

R. Ahlswede, B. Balkenhol, C. Deppe, and M. Fröhlich

1 Introduction

We present an algorithm to sort all suffixes of xn = (x1, . . . , xn) ∈ Xn lexico-
graphically, where X = {0, . . . , q−1}. Fast and efficient sorting of a large amount
of data according to its suffix structure (suffix-sorting) is a useful technology in
many fields of application, front-most in the field of Data Compression where
it is used e.g. for the Burrows and Wheeler Transformation (BWT for short), a
block-sorting transformation ([3],[9]).

Larsson [4] describes the relationship between the BWT on one hand and
suffix trees and context trees on the other hand. Then Sadakane [8] suggests a
well referenced method to compute the BWT more time efficiently. Then the
algorithms based on suffix trees have been improved ([6],[5],[1]).

In [3] it was observed that for an input string of size n, this transformation can
be computed in O(n) time and space1 using suffix trees. While suffix trees are
considered to be greedy in space – even small factors hidden in the O-notation
may decide on the feasibility of an algorithm – sorting was accomplished by
alternative non-linear methods: Manber and Myers [7] introduced an algorithm
of O(n log n) in worst case time and 8n bytes of space and in [2] an algorithm
based on Quicksort is suggested, which is fast on the average but its worst case
complexity is O(n2 logn). Most prominent in this case is the Bendson-Sedgewick
Algorithm which requires 4n bytes and Sadakane’s example of a combination of
the Manber-Myers Algorithm with the Bendson-Sedgewick Algorithm with a
complexity of O(nlogn) worst case time using 9n bytes [8].

The reduction of the space requirement due to an upper bound on n seems
trivial. However, it turns out that it involves a considerable amount of engineer-
ing work to achieve an improvement, while retaining an acceptable worst case
time complexity. This paper proposes an algorithm, efficient in the terms de-
scribed above, ideal for handling large blocks of input data. We assume that the
cardinality of the alphabet (q) is smaller than the text-string (n). Our algorithm
computes the suffix sorting in O(n) space and O(n2 logn) time in the worst case.
It has also the property that it sorts the suffixes lexicographically according to
the prefixes of length t2 = logq	n2 
 in the worst case in linear time. After the ini-
tial sorting of length t2, we use a Quick-sort-variant to sort the remaining part.
Therefore we get the worst time O(n2 logn). It is also possible to modify our
algorithm by using Heap-sort. Then we will get a worst case time O(n(log n)2).

1 This only holds, if the space complexity of a counter or pointer is considered to be
constant (e.g. 4 Bytes) and the basic operations on them (increment, comparison)
are constant in time. This assumption is common in the literature and helpful for
practical purposes.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 719–734, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We use Quick-sort, because it is better in practice and has an average time of
O(n log n) like Heap-sort, but with a smaller factor.

The elements of X are called symbols. We denote the symbols by their rank
w.r.t. the order on X . We assume that $ = q − 1 ∈ X is a symbol not occurring
in the first n− 1 symbols in xn, the sentinel symbol.
xi is the ith element in the sequence xn. If i ≤ j, then (xi, . . . , xj) is the factor

of xn beginning with the ith element and ending with the jth element. If i > j,
then (xi, . . . , xj) is the empty sequence. A factor v of x begins at position i and
ends at position j in x if (xi, . . . , xj) = v. To conveniently refer to the factors of
a sequence, we use the abbreviation xji for (xi, . . . , xj).

2 The Initial Sorting Step

Before we tackle the problem of sorting all suffixes of a given sequence in lexi-
cographical order we start to consider the case where we only sort the suffixes
looking at the prefixes of a fixed length correctly. The simplest case is to look at
all prefixes of length one, which is the case to sort all symbols occurring in the
input sequence lexicographically.

2.1 Sorting of the Symbols

The sorting of the symbols of a given input sequence xn with symbols out of a
finite alphabet X can be done linearly in time and space complexity as follows:

We define q counters (counter0[0], . . . , counter0[q−1]) and count for each sym-
bol in {0, . . . , q − 1} how often it occurs in xn. In each step i we have to increase
exactly one counter (counter0[xi]) by one. Therefore to get the frequencies of the
symbols requires O(n) operations. Now our alphabet is given in lexicographic or-
der and we generate the output in the following way: First output counter0[0]
many zeros, followed by counter0[1] many ones,. . . Obviously the generated out-
put sequence is produced in O(n) operations and the sorting is done.

2.2 Sorting a Given Prefix Length

We would like to continue the sorting of all suffixes in an iterative way by using
the counting idea of the previous section. In a later step of the algorithm we
need n counters. We have to take the memory already at the beginning, which
allows us to use it already in the initial sorting phase. We choose t1 such that
2t1−1 < q ≤ 2t1 and t2 such that 2t1t2 ≤

⌊
n
2

⌋
< 2t1(t2+1). For simplicity we

assume from now on that q = 2t1 and n = 2t1t2+1.
We like to sort all suffixes such that the first t2 symbols of each suffix are

sorted lexicographically correctly.
Now we will count the number of occurrences of factors of length t2 in our

sequence xn. We assume that xn+1, . . . , xn+t2−1 = q − 1 and count the factors
as follows. The counter[a1k

t2−1 + a1k
t2−2 + · · · + at2k

0] counts the number of
occurrences of the factor (a1, . . . , at2). Let us define a temporary value tmp =
2t1t2 − 1 and i = n. This is the position n of the sequence, with the factor
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(q − 1, . . . , q − 1). Now starting at the end down to the beginning of the input
sequence xn+t2−1 in each step we increase counter[tmp] by one, decrease i by
one and we calculate:

tmp→
⌊
tmp

2t1

⌋
+ xi2t1(t2−1).

Notice that multiplications and divisions by powers of two can be represented
by shifts. Let us denote

a >> b =
⌊ a
2b
⌋

and a << b = a2b.

Furthermore notice that the + operation can be replaced by a binary logical
or-operation which we denote as |. Hence in total we need O(n) operations.

By construction tmp will only take values less than
⌊
n
2

⌋
= (n >> 1), such

that we can calculate the partial sums of the entries counter[j] and store them
in the second half of the memory for the array counter

counter[
n

2
+ j] →

n
2−1∑
i=0

counter[i].

Obviously this calculation can also be done linearly in time:

i->1
counter[(n>>1)]->0
while i< (n>>1) do

counter[(n>>1)+i] -> counter[(n>>1)+i-1] + counter[i-1]
i-> i+1

done

Finally we have to write back the result of the sorting. In order to continue we
introduce two further arrays of size n, one, which we denote as pointer, in order
to describe the starting points of the suffixes, and the second one, denoted as
index, to store the partial results of the sorting.

Again we start with tmp = 2t1t2 − 1 and at position i = n.

while i>n-t_2 do
i->i-1
tmp->(tmp>>t_1)|x_i<<t_1(t_2-1)
counter[tmp]->counter[tmp]-1
index[i]->counter[tmp+(n>>1)]+counter[tmp];
pointer[index[i]]->i;

done
while i>0 do

i->i-1
tmp->(tmp>>t_1)|x_i<<t_1(t_2-1)
counter[tmp]->counter[tmp]-1
index[i]->counter[tmp+(n>>1)]
pointer[index[i]+counter[tmp]]->i

done
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In the first loop we consider the cases where we have to take the sentinel into
account (we assume that xn+i = $). With the starting definition of tmp the
sentinel will be taken as a number greater or equal to |X | − 1. Using the fact
that it occurs only at the end of the sequence, that is with the largest entry of
count, we can fix the position of the last t2 entries to the starting-point of the
prefix of suffixes, represented as integer tmp at that moment, plus the number
of occurrences of that value tmp. In all other cases (second loop) we set index[i]
to the starting position of the interval of suffixes with prefix tmp.

In other words after these loops pointer[1], . . . , pointer[n] represent the start-
ing positions of the suffixes in lexicographical order according to the prefix-
es of length t2. If index[pointer[i]] < index[pointer[j]] (index[pointer[i]] >
index[pointer[j]]) then the suffix starting in pointer[i] is lexicographically small-
er (larger) than the suffix starting in position pointer[j]. If the two values are
equal, then the two suffixes have a common prefix of length greater or equal
to t2.

Notice that to finish the lexicographic order in total we can continue using the
two arrays pointer and index only, that is there is no need to look at the original
input sequence to calculate the defined total order, such that the continuation
is independent of the alphabet size.

3 Only Three Elements

In order to continue the sorting we first analyze how to sort and how to calculate
the median of three given numbers.

3.1 Median-Position-Search of Three Elements

The median m of a triple (n1, n2, n3) ∈ N3
0 is a value equal to at least one of

them which is in between the two others, i.e.

m = n1 ⇒ n2 ≤ n1 ≤ n3 or n3 ≤ n1 ≤ n2,

m = n2 ⇒ n1 ≤ n2 ≤ n3 or n3 ≤ n2 ≤ n1,

m = n3 ⇒ n2 ≤ n3 ≤ n1 or n1 ≤ n3 ≤ n2.

Notice that we are not interested in the value itself, only in the position relative
to the two others, i.e. for us there is no difference between the case (1, 1, 1) and
(2, 2, 2). Therefore we partition the set of triples in the following way. We define
13 subsets A1, . . . ,A13 ⊂ N3

0 in the following way: For k ∈ N0 and l,m ∈ N we
define

A1 = {(k, k, k)} A8 = {(k, k + l, k + l +m)}

A2 = {(k, k, k + l)} A9 = {(k, k + l +m, k + l)}

A3 = {(k, k + l, k)} A10 = {(k + l, k, k + l +m)}

A4 = {(k + l, k, k)} A11 = {(k + l, k + l +m, k)}
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A5 = {(k, k + l, k + l)} A12 = {(k + l +m, k, k + l)}

A6 = {(k + l, k, k + l)} A13 = {(k + l +m, k + l, k)}

A7 = {(k + l, k + l, k)}.

For a given triple (n1, n2, n3) the median is known to us, if we know the
index i with (n1, n2, n3) ∈ Ai. Therefore we define the following questionnaire of
yes–no–questions where a question is of the following form: a ≤ b, a < b, a = b.

if n_1 <= n_2 then
if n_2 <= n_3 then m=n_2
else if n_1 <= n_3 then m=n_3

else m=n_1
endif

endif
else

if n_3 <= n_2 then m=n_2
else if n_1 <= n_3 then m=n_1

else m=n_3
endif

endif
endif

Notice that we need at most three yes-no-questions and we need only two in
case where the median is already in the middle.

3.2 Sorting of Three Elements

Using questions of the form mentioned in the previous section we can sort three
elements using at most four questions:

if n_1 <= n_2 then
if n_2 <= n_3 then

if n_1 = n_2 then
if n_2 = n_3 then (n_1,n_2,n_3) in A_1
else (n_1,n_2,n_3) in A_2
endif

else
if n_2 = n_3 then (n_1,n_2,n_3) in A_5
else (n_1,n_2,n_3) in A_8
endif

endif
else

if n_1 <= n_3 then
if n_1 = n_3 then (n_1,n_2,n_3) in A_3
else (n_1,n_2,n_3) in A_9
endif
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else
if n_1 = n_2 then (n_1,n_2,n_3) in A_7
else (n_1,n_2,n_3) in A_11
endif

endif
endif

else
if n_1 > n_3 then

if n_2 = n_3 then (n_1,n_2,n_3) in A_4
else if n_2 < n_3 then (n_1,n_2,n_3) in A_12

else (n_1,n_2,n_3) in A_13
endif

endif
else

if n_1 = n_3 then (n_1,n_2,n_3) in A_6
else (n_1,n_2,n_3) in A_10
endif

endif
endif

4 The Main Loop of the Sorting Algorithm

After the initial sorting phase we have the array pointer, which points to the
starting positions of the suffixes lexicographically correctly sorted according to
the prefixes of length t2. index contains the partial ordering, that is if the values
are different, then the larger one is lexicographically larger than the smaller one,
if they are equal then the two suffixes have a common prefix of length greater or
equal to t2. Finally we can calculate with the second half of the array counter
the positions of the intervals with common prefixes of length t2. We use now
counter[0] to count the number of intervals where we have to continue with the
sorting, more precisely counter[0] points to the first free place in memory where
we can store a further interval, which is in the beginning 1 (counter[1] is free).

counter[0]->1

Starting the loop to get the not necessarily correctly sorted intervals counter[0]
is initialized with 1 because we need it in this way later and we are working on
“unsigned int”.

i->0
while i< 2^(t_1*t_2) do
if counter[(n>>1)+i+1]-counter[(n>>1)+i]>1 then

counter[counter[0]+1]->counter[(n>>1)+i];
counter[counter[0]+2]->counter[(n>>1)+i+1]-1
while index[pointer[counter[counter[0]+2]]]>

index[pointer[counter[counter[0]+1]]] do
counter[counter[0]+2]->counter[counter[0]+2]-1
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done
if counter[counter[0]+2]!=counter[counter[0]+1] then

counter[0]->counter[0]+2
endif

endif
done

Notice that during the loop we reuse the memory in counter from (n >> 1)
to n.

4.1 Split an Interval

We have to sort an interval from position begin to end that is pointer[begin] to
pointer[end] has to be sorted but they are already of equal length length. We
like to do the sorting by a 3 part quick-sort. The array ‘smaller’ contains all
pointers which are smaller than the first entry (smaller defined by index !), the
array ‘equal’ the pointers which are equal in the first 2length positions with the
first one and the array ‘bigger’ the remaining ones. After we have split this part
we have to continue with ’smaller’ and ’bigger’ of length length and with ’equal’
of length 2 · length. These intervals (starting point, end point) we return to the
calling function using two arrays x and y.

Given a value val, the index for the interval stored in counter at positions
counter[val − 1] and counter[val], the value length which is the length of the
common prefix already known from the previous steps (after the initial sorting
it is t2) and a flag flag which describes whether the intervals are stored at the
beginning of counter or at the end (after the initial part at the beginning).

Now the beginning of the interval is given by begin = counter[val − 1] and
the end position by end = counter[val]. Notice that the last length pointers of
the original sequence can not occur inside this interval because they are correct-
ly inserted in one of the previous steps due to the (virtual) sentinel symbol at
the end of the input sequence. Therefore if we look at the suffixes starting at
pointer[begin] and pointer[end], then we know they have by construction a com-
mon prefix of length at least length. But if we look at the two suffixes without
the prefix of length length, then theses two suffixes have been sorted correctly
also according to the prefix of length length. In other words the result of the
comparison of the two pointers pointer[begin] and pointer[end] is equal to the
result of the comparison of pointer[begin]+length and pointer[end]+length. We
can get the result by using the values stored in the array index. Let us denote
that a is lexicographic smaller than b with a ≺ b for two pointers a, b where a
pointer is smaller than another one if the corresponding suffix starting at that
pointer is lexicographic smaller than the other suffix. Then

pointer[begin] ≺ pointer[end] ⇔

pointer[begin] + length ≺ pointer[end] + length.

Therefore if now index[pointer[begin] + length] = index[pointer[end] + length]
then the suffixes starting at pointer[begin] and pointer[end] have a common



726 R. Ahlswede et al.

prefix of length at least 2 · length. Otherwise we can use the result to get the
right comparison result. Notice that in this way we double the length of the
comparison in each step.

Now for a given interval we like to split the interval into several parts similar to
quick-sort. Therefore we take three values and calculate the median as mentioned
in Section 3.1

n_1->index[pointer[begin]+length];
n_2->index[pointer[(begin+end)>>1]+length];
n_3->index[pointer[end]+length];

median-> (n_1 <= n_2 ?
(n_2 <= n_3 ? n_2 : (n_1 <= n_3 ? n_3 : n_1 ) )
: (n_3 <= n_2 ? n_2 : (n_1 <= n_3 ? n_1 : n_3 )))

With currentindex = index[pointer[begin]] we have the value of index[pointer[i]]
for all begin ≤ i ≤ end. Now we like to split the interval into three parts, one for
the pointers which are smaller than the median one for those which are equal and
one for those which are larger. We divide the parts by changing the values of the
pointers as follows:

First we need two further variables which we set to begin and end respectively.

s->begin
b->end

And we need yet another variable k for the actual position inside the interval.
As long as the values of index[pointer[k] + length] < median and k ≤ b the
current end of the interval we increase k by one:

k->begin; /* the starting point */
while index[pointer[k]+length]<median && k<=b do

k->k+1
done
s->k;

We set s to the actual value of k such that s points to the first position which
is greater or equal to the median. In a similar way we reduce b at the end, give
the first pointer which is less or equal than the median.

while index[pointer[b]+length]>median && k<=b do
b->b-1

done

Remember that we have stopped the first loop in a case where

index[pointer[k] + length] ≥ median

and the second one where

index[pointer[b] + length] ≤ median.
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Now let us continue in the following way:

if index[pointer[k]+length]>median then
SWAPPOINTER(k,b)
b->b-1

where we denote with SWAPPOINTER(k, b) the following operations:

tmp− > pointer[k] pointer[k]− > pointer[b] pointer[b]− > tmp

such that the two values are simply exchanged. Now we have that
index[pointer[k] + length] ≤ median and we continue:

if index[pointer[k]+length]=median then
k->k+1
while index[pointer[k]+length]=median do

k->k+1
done

else
k->k+1 s->s+1

endif
else
k->k+1
while index[pointer[k]+length]=median && k<=b do

k->k+1
done

endif

Now if s > begin then the part from begin to s− 1 stores the pointers which are
smaller than the median and if b < end then the part from b+ 1 to end are the
pointers which are larger than the median. Furthermore if s < k then the part
from s to k− 1 are pointers which are equal to the median. Let us first continue
with the case where s = k:

if s=k then
s->end+1 /* we make the value impossible, in other */

/* words larger then end */
while k<=b && s>end do
if index[pointer[k]+length]<median then

k->k+1 /* one further pointer which is smaller */
else

if index[pointer[k]+length]>median then
SWAPPOINTER(k,b);
b->b-1 /* add to bigger interval */

else
s->k /* s is getting a value <= end and */

/* the loop stops. */
k->k+1 /* they are equal */
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endif
endif

done
endif

Now we have found at least one pointer which is equal to the median. We have
to continue similarly as before but if index[pointer[k] + length] < median then
we have to exchange in addition the pointers in positions k and s and we have to
increase also s. Furthermore the only stop situation for the loop occurs if k > b.

while k<=b do
if index[pointer[k]+length]<median then
SWAPPOINTER(k,s);
k->k+1
s->s+1

else
if index[pointer[k]+length]>median then

SWAPPOINTER(k,b);
b->b-1 /* add to bigger */

else
k->k+1 /* they are equal */

endif
endif

done

Now we have the three parts

begin, . . . , s− 1, the pointers which are smaller

s, . . . , b, the pointers which are equal

b + 1, . . . , end, the pointers which are larger.

If s − 1 < begin or b + 1 > end then the corresponding intervals are empty. In
order to use these parts in the future, we have to update the values of index for
the current pointers. Notice that equal to the median means that they have a
common prefix of a length at least 2 · length.

For the first interval (if it exists) nothing has to be done, because the values
of index are already at the starting point of the interval. The new starting point
of the second part is

currentindex->currentindex+s-begin

Of course the second part contains at least one pointer by construction (the
pointer which is used to calculate the median has a common prefix to itself !).

if s>begin && s<=b then
k->s
while k<=b do
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index[pointer[k]]->currentindex;
k->k+1

done
endif

Finally we have to calculate the starting point of the last interval (if it exists)

currentindex->currentindex+b+1-s;

if b+1<=end then
k->b+1
while k<=end do
index[pointer[k]]->currentindex
k->k+1

done
endif

Now we have to continue with our sorting algorithm on the constructed inter-
vals. But before we start to consider the interval from s to b of length 2 · lengthwe
like to finish all intervals of length length in order to double the compared lengths
of the prefixes again. For that reason we store that interval at the opposite end
of the array counter on which we are working at the moment. After the initial
part we are working at the beginning to store our intervals, such that we store
the interval from s to b at the end. After we have finished all intervals which we
have to compare of length length we start to work at the end with the intervals
sorted correctly of length 2 · length and store all intervals we produce of length
4 · length at the beginning. Notice that the total number of intervals we have to
store is always less than n such that if we need more space at the end it is free at
the beginning of the array counter and vice versa. To add these intervals we define
a function INSTOCOUNTER(FROM,TO, FLAG) where FROM ,TO are the
boundaries of the interval which we have to add and FLAG describes where. If we
are working at the end of counter we use counter[n] similarly to counter[0] for the
beginning part. To delete one interval at the end we have to increase counter[n]
such that we need two different rules to add an interval at the end:

INSTOCOUNTER(FROM,TO,FLAG) {
switch(FLAG) {
case 0: {
counter[counter[0]]->(FROM);
counter[0]->counter[0]+1
counter[counter[0]]->(TO);
counter[0]->counter[0]+1
break;

}
case 1: {
counter[n]->counter[n]-1
counter[counter[n]]_>(TO);
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counter[n]->counter[n]-1
counter[counter[n]]->(FROM);
break;

}
default: { /* case 2 */

counter[counter[n]]->(FROM);
counter[counter[n]+1]->(TO);
counter[n]->counter[n]-2;
break;

}
}

}

Now the insertion of the intervals using the function INSTOCOUNTER can
be done as follows:

if s-begin>1 then
INSTOCOUNTER(begin,s-1,2-(flag<<1))

endif
if b-s>0 then
INSTOCOUNTER(s,b,flag)

endif
if end-b>1 then
INSTOCOUNTER(b+1,end,2-(flag<<1))

endif

4.2 Calling the Sorting Procedure

To conclude the description of the whole algorithm it remains to describe the
step between the initial sorting phase and the calling of the procedure to split a
given interval.

We are starting in a situation where we have given the three arrays counter,
pointer and index and we know, that if we use the values stored in index as
rule for the comparison of two pointers then the result is correct according to
the first t2 symbols (from the initial sorting part).

As mentioned earlier we like to use the array counter from both sides. At the
beginning we use a variable length which describes the length of the common
prefix correctly sorted. This variable is initialized with t2 from the initial sorting
phase. In order to double the length in each loop we have to use the information
stored in index to sort all suffixes according to the first 2 · length symbols
correctly. After that we use the information to double the length again and so
on. counter[0] is already used to describe the first free position in memory at
the beginning of counter. Analogously we use counter[n] in order to do the same
procedure at the end. Therefore we have to store at the same time intervals sorted
with prefixes of length length and of length 2 · length. If there is no further one
of length length we start to sort them of length 2 · length and produce new ones
of length 4 · length. Notice that the total number of intervals can not be more
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then n >> 1 such that to store them with starting and ending point we need at
most n values in the memory. Furthermore out of the initial sorting part some
pointers at the end of the input sequence (exactly t2 many) are already correctly
sorted such that the memory requirement is strictly less than n − 2 (we make
an initial sorting at least of length 2). For typical files we need only something
like n >> 2 entries in memory, but in worst case n− t2 is needed as we can see
by the following example:
Take a deBruijn sequence of length 2n−1 copy the sequence and concatenate the
two. The property of a deBruijn sequence is, that if we are looking at a linear
shift-register of length n− 1 then these sequences have maximal period, or more
precisely every binary sequence of length n − 1 occurs exactly once. Now if we
have a length of t2 = n− 1 then each prefix occurs in the constructed sequence
exactly twice and hence we have n intervals from which only n − 1 are getting
correctly sorted at the initial phase.

Now at the beginning we have no interval to sort of length 2 · length:

counter[n]->n;

We are starting the main loop.

/* as long as there is something to compare */
while(counter[0]>1) do
/* starting with the beginning part (at the end) */

We call this loop twice because first we like to sort every interval of length
length correctly, after that we continue at the end of counter and sort the
intervals of length 2 · length. If there are further intervals of length 4 · length
then we can find them at the beginning of counter.

/* as long as we have something to compare of length "length" */
while counter[0]>1 do
counter[0]->counter[0]-2

switch(counter[counter[0]+1]-counter[counter[0]]) {
/* +1 is the number of elements ! */

Notice that using the procedure of Section 4.1 the calculation of the median is
only efficient if we have enough elements to sort. Therefore in case where we
have intervals of a small length we sort directly:

With only two entries we need in the worst case two questions in order to sort
them

case 1: { /* only two entries */
m1->index[pointer[counter[counter[0]]]+k]

/* a shortcut to store them in order not */
m2->index[pointer[counter[counter[0]+1]]+k]

/* to calculate them twice */
if m1=m2 then
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The two values are equal, that means the two suffixes are equal of length
”2*lengthänd therefore we add it at the end of counter.

INSTOCOUNTER(counter[counter[0]],
counter[counter[0]+1],1)

else

They are different so that we can compare them

if m1<m2 then

The beginning value of the interval is smaller than the end, therefore we do not
have to exchange the order and we can update the index.

index[pointer[counter[counter[0]+1]]]->
index[pointer[counter[counter[0]+1]]]+1;

else

We have to swap them and to update the index of the beginning pointer.

SWAPPOINTER(counter[counter[0]],
counter[counter[0]+1])

index[counter[counter[0]]]->
index[counter[counter[0]]]+1

endif
endif
break;

} /* end of case interval of length 2 */

An interval with three elements we can sort as described in Section 3.2. We
call a function sort3 which needs as parameters the array counter, the position
(counter[counter[0]]) in counter to get the boundaries for the interval to sort, the
arrays pointer and index, a flag which describes how to insert a new interval to
continue with, the length of the already compared prefixes and finally the length
n (necessary to insert a new interval using the function INSTOCOUNTER).

case 2: { /* interval of length 3 */
sort3(counter,counter[counter[0]],pointer,

index,1,length,n)

Either everything is sorted or we are getting an interval back which starts with
the same first 2 · length symbols and that is we have to add them to the end of
counter.

break;
} /* end of interval of length 3 */

In all other cases we call the function described in Section 4.1 which we denote
as splitcount.
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default: { /* the general case */
splitcount(counter,counter[0]+1,pointer,index,

1,length,n);
break;

} /* end of the general case */
} /* end of the switch */

Now we can stop the loop for sorting intervals with length length and look at
the intervals of length 2 · length.

done /* inner loop: counter[0]>1 */
length->(length<<1)

The length llengtḧıs finished, that is we can continue with ”2*lengtḧın order not
to copy the end to the beginning and continue the main loop we repeat the whole
procedure with exchanging the role of the beginning of the array counter and
the end of it. Of course counter[0] = 1, in other words at the beginning there
is no interval of 4 · length which we have to compare. Now we have to start the
loop at the end:

while counter[n]<n do
switch(counter[counter[n]+1]-counter[counter[n]]) {
/* +1 is the number of elements ! */

case 1: { /* only two elements */
/* two shortcuts */
m1=index[pointer[counter[counter[n]]]+length];
m2=index[pointer[counter[counter[n]+1]]+length];
if m1=m2 then

The two values are equal and we have to add a new interval at the beginning of
the array counter using the function INSTOCOUNTER.

INSTOCOUNTER(counter[counter[n]],
counter[counter[n]+1],0);

else /* we can compare them */
if m1<m2 then
index[pointer[counter[counter[n]+1]]]++;

else
SWAPPOINTER(counter[counter[n]],

counter[counter[n]+1]);
index[counter[counter[n]]]++;

endif
endif
break;

} /* end of the case with only two elements. */

As before we also consider a separate case with only three elements using the
function sort3 as before but with flag = 0.
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case 2: {
sort3(counter,counter[counter[n]],pointer,

index,0,length,n);
break;
} /* and of case 2. */

Again in all others cases we use the function splitcount.

default: {
splitcount(counter,counter[n]+1,pointer,

index,0,length,n);
break;

}
} /* and of the switch */
/* continue with the next interval. */

counter[n]->counter[n]+2
done /* end of the loop counter[n]<n */
length->(length<<1) /* double again and return to the */
/* first loop: counter[0]>1. */

done
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Monotonicity Checking

M. Kyureghyan

Abstract. In our thesis we cosidered the complexity of the monotonic-
ity checking problem: given a finite poset and an unknown real-valued
function on it find out whether this function is monotone. Two decision
models were considered: the comparison model, where the queries are
usual comparisons, and the linear model, where the queries are compar-
isons of linear combinations of the input. This is a report on our results.

1 Introduction

The monotonicity checking problem is: Given a finite poset P and an unknown
real-valued function f on it, find out whether this function is order preserving on
P , that is, whether f(x) ≤ f(y) for any x < y in P . We consider the worst-case
complexity of the monotonicity checking problem. That is the number of tests
an optimal monotonicity checking algorithm performs in the worst case.

The first model of monotonicity checking considered here is the comparison
model where we can compare the values of f at any two elements of the poset P .
The naive way of monotonicity checking in this model is comparing the values of
the function at any two cover pairs of the poset ((x, y) is a cover pair in P if x < y
ant there is no z in P with x < z < y). But it turns out that for some posets
one can do better comparing the values also at some incomparable elements.
The linear model is a generalization of the comparison model, here the queries
are comparisons of real linear combinations of the values of the input function.
In this model monotonicity checking problem is equivalent to the polyhedral
membership problem on a certain class of polyhedra.

A class of probabilistic algorithms monotonicity testing algorithms was con-
sidered in [3]. In [7] the computational complexity of monotonicity checking
algorithms was studied.

In Section 2 we briefly describe the main results that we have for the com-
parison model. In Section 3 we derive a general lower bound on complexity of
monotonicity checking in the linear model. We apply this bound to get a low-
er bound on the complexity of finding simultaneously the minimum and the
maximum in a sequence of real numbers.

2 The Comparison Model

Let P be an n-element poset. Let C(P ) be the complexity of monotonicity check-
ing on poset P in the comparison model.

If P is not connected, that means its cover graph is not connected, then it
is not difficult to show that C(P ) is equal to the sum of monotonicity checking
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complexities on the subposets that we get by inducing the order relation in P
on the connected components of the cover graph. Hence, we can restrict our
attention to connected posets. One can show that

Proposition 1. Let P be an n-element connected poset. Then C(P ) ≥ n− 1.

As an example of an element poset with C(P ) = n − 1 one can take the linear
order.

To get an upper bound on C(P ) note that one can perform monotonicity
checking by sorting the values of the function. As sorting of a string of n numbers
requires O(n log n) comparisons we have C(P ) = O(n log n).

An interesting toping of research is the investigation of properties of
monotonicity checking. It turns out, for example, that: There are posets with
strictly less complexity of monotonicity checking than some of its subposets.

Another topic of particular interest is the complexity of monotonicity checking
of the Boolean lattice Bn. J. Kahn conjectured that the order of C(Bn) is greater
than 2n. We have shown the following bounds.

Theorem 1. For the complexity C(Bn) of monotonicity checking on the Boolean
lattice of order n, for n ≥ 6,

9
7
2n − 1

7
2r1+1 − 1 ≤ C(Bn) ≤ 11 q 2n−3 + 2n−r2 Cr2 (1)

holds, where where n = 3k + r1 with 0 ≤ r1 ≤ 2 and n = 4q + r2 with r2 ∈
{0, 2, 3, 5}, and C0 = 0, C2 = 3, C3 = 9, C5 = 59.

3 The Linear Model

The Polyhedral Membership Problem (PMP) is: Given a polyhedron P ⊂ Rn and
an unknown point x ∈ Rn decide whether x ∈ P using linear comparisons.

Let P be a poset defined on a ground set {x1, . . . , xn}. The monotonici-
ty checking problem on P can be reformulated as a PMP: Given an n-tuple
(f(x1) . . . f(xn)) ∈ Rn, find out whether f(xi) − f(xj) � 0 for all xi > xj in P .
The polyhedron{

(f(x1), . . . , f(xn)) ∈ Rn : f : P → R, f is monotone on P
}

is called the monotone polyhedron of the poset P . Thus the linear complexity
of monotonicity checking on a poset P coincides with the complexity of PMP
on the monotone polyhedron of P .

In [8] the authors have found a lower bound on the complexity of PMP on
polyhedron P in terms of the facial structure of P . Later this lower bound was
improved in [5], the following theorem was proven.

Theorem 2. ([5]) For the complexity D(P) of PMP on a polyhedron P

2D(P)

(
D(P)
n− s

)
� |Fs(P)|2n−s (2)

holds, for each 0 	 s 	 n.
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To apply the bound from the theorem above to monotonicity checking complexity
we need to estimate the number of faces of a monotone polyhedron. One can
describe precisely the entire facial structure of M(P ) the monotone polyhedron
of a poset P , using the order structure of P . We call a partition {P1, . . . , Ps} of
P connected partition if each Pi, 1 	 i 	 s, is connected in the cover graph of
the poset P . Define a binary relation ≺ on a partition {P1, . . . , Ps} = P of P by
setting

Pi ≺ Pj if x < y for some x ∈ Pi, y ∈ Pj .

We call a partition compatible if the transitive closure of the relation “≺ı̈s a
partial order (is antisymmetric).

Theorem 3. ( [2], [6]) 1 There is a one–to–one correspondence between the set
of faces of monotone polyhedron M(P ) of a poset P and the set of connected and
compatible partitions of P . Moreover, every connected and compatible partition
of P into s parts corresponds to an s–dimensional face.

Let Cl(P ) denote the complexity of monotonicity checking on a poset P in the
linear model. From Theorem 2 and Theorem 3 we get the following theorem.

Theorem 4. Let P be an n-element poset. Then we have

2Cl(P ))

(
Cl(P )
n− s

)
� |Js(P )|2n−s (3)

for each 0 	 s 	 n, where Js(P ) is the number of connected and compatible
partition of P into s parts.

Let a sequence of n real numbers be given. And the minimum and the maximum
of this sequence are to be determined simultaneously. The complexity of this
problem when the queries are usual comparisons is 	 3n

2 
 − 2, (see [1], ch. 4).
In [9] it was asked about the linear complexity of this problem. We apply the
Theorem 4 to get a lower bound on the complexity of this problem.

Theorem 5. To find simultaneously the minimum and the maximum in a se-
quence of n real numbers one needs at least 1.23n linear comparisons, for n large
enough.

Proof. Let a1, . . . , an be real numbers. We establish the lower bound considering
a seemingly easier problem: let us show that at least 1.23n linear queries are
needed to check the hypothesis that a1 is a minimum and an is a maximum
of this sequence. This is equivalent to showing that the monotonicity checking
1 In these papers not monotone polyhedra of posets but order polytopes were consid-

ered. The order polytope of a poset P is defined as{
(f(x1), . . . , f(xn)) : f : P → [0, 1], f is monotone on P

}
.

However their proof can be easily modified to get the statement for monotone
polyhedra.
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complexity of the n-element poset P with Hasse diagram is not less than 1.23n,
for n large enough.

The number of connected and compatible partitions of poset P into i+2 parts
is
(
n−2
i

)
2n−2−i. Indeed, to get a partition of P into i+2 parts, choose i elements

of rank one from P each as a one-element part of the partition, and the rest of
these elements take in the same part of the partition with the minimum or the
maximum element. This is a connected and compatible partition into i parts.
It is easy to see that in this way we construct all connected and compatible
partitions of poset P .

According to the Theorem 4 we get

2Cl(P )

(
Cl(P )
k

)
�
(
n− 2
k

)
22k (4)

for any 0 	 k 	 n− 2.
Since the linear model is not slower than the comparison model we have

n− 1 	 Cl(P ) 	 1.5n. Let Cl(P ) = c(n)n. We want to show that c(n) is greater
than 1.23, for n large enough. Assume, to the opposite that for some n we have
c(n) 	 1.23. Then

21.23n

(
	1.23n


k

)
� 2Cl(P )

(
Cl(P )
k

)
. (5)

Taking i = 	 n10
 in (4) we get from (5)

21.23n

(
	1.23n

	 9n

10 


)
�
(
n− 2
	 9n

10 


)
2

9n
5 . (6)

Using the estimate
(
n
i

)
= exp(nh(i/n) +O(log n)), for 0 	 i 	 n, where

h(p) = −p ln p− (1 − p) ln(1 − p) is the entropy function, we get from (6)

21.23ne1.23nh(
9

12.3 )θ1(1)+o(n) � 2
9n
5 enh(

9
10 )θ2(1)+o(n), (7)

where θ1(1) → 1, θ2(1) → 1 as n → ∞. For n large enough this would mean

1.23 + (1.23h(
9

12.3
) − h(

9
10

)) log2 e � 9
5

(8)

however this is not true as can be checked by tables for the entropy or direct
computer calculation. �
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Algorithmic Motion Planning: The Randomized

Approach

S. Carpin

Abstract. Algorithms based on randomized sampling proved to be the
only viable algorithmic tool for quickly solving motion planning prob-
lems involving many degrees of freedom. Information on the configura-
tion space is acquired by generating samples and finding simple paths
among them. Paths and samples are stored in a suitable data structure.
According to this paradigm, in the recent years a wide number of al-
gorithmic techniques have been proposed and some approaches are now
widely used. This survey reviews the main algorithms, outlining their
advantages and drawbacks, as well as the knowledge recently acquired
in the field.

1 Introduction

Robot motion planning algorithms are currently being used in many fields be-
yond robotics, like structural studies in biology, computer graphics, computer
assisted surgery, and many others (see [52] for an excellent review). In particular,
their application to bioinformatics, for problems like protein folding or ligand
binding, appears to be one of the most important, promising and challenging di-
rections. The successful application of these algorithms relies on the availability
of an abstract formulation that can be used to model many different scenarios,
as well as on an algorithmic machinery capable to solve difficult instances in a
reasonable time. The planning of the robot motion is performed as a search in
a suitable space, called the configuration space. Since the early days of research
in algorithmic motion planning it was recognized that even the basic version of
this problem is PSPACE-complete [16], [66], and the best deterministic algorithm
known so far is exponential in the dimension of the configuration space [15]. At
the same time, real world problems ask for algorithms able to solve problems with
tenths of degrees of freedom, and the demand is continuously growing. Around
the mid nineties a new approach was introduced, and this boosted the research
in the field, as well as the practical use of these algorithms. This approach is
based on the use of randomization. Randomized sampling is used to acquire
information over the problem instance being solved without the necessity of a
systematic deterministic processing of the data. This information is stored in a
data structure which captures the connectivity of the configuration space. Such
a data structure is usually composed by nodes, i.e. points in the configuration
space, and links, i.e. simple valid paths connecting nodes. Complicated paths are
then obtained by moving from sample to sample through the simple paths. For
sake of completeness it has to be mentioned that another randomized motion
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planner previously introduced (RPP, randomized path planner, illustrated in [8])
will not be considered here, as the underlying idea is different. In fact the RPP
performs a gradient descent over a potential field and performs random motions
when it gets stuck in a local minima different from the goal. Then, no sampling
is involved, differently from all the algorithms later described in this survey.

The sampling based approach has some appealing properties. Differently from
many previously developed planners, it works for virtually all robots, without
imposing any constraint on the dimension of their configuration space. It is
then immediately applicable whenever a configuration state space can be used
to model a real world problem. It is this aspect that allows their application in
many different fields. For example, randomized robot motion planners have been
used for multi-robot systems [81], closed chain systems [23], [33], [84], deformable
objects [9], [49], and protein folding or ligand docking [4], [10], [75], [76], [77], [78].
Randomized motion planning algorithms are also well suited for practical parallel
implementations, as illustrated in [3], [17], [19] and [35], thus allowing further
performance gains. Finally, the implementation of these algorithms is usually
quite simple.

The price to pay is completeness. The algorithms described in this survey
obtain probabilistic completeness rather than deterministic completeness. This
means that if a solution exists, the probability to find it converges to 1 when the
processing time approaches infinity. So, when a randomized algorithm fails to
find a solution, it could be the case that a solution does not exist at all, or that
in the alloted execution time the sampling process has not been able to get the
information needed to solve the search. A compromise somehow considered in
this context is the so called resolution completeness, as illustrated for example
in [20] and [74]. An algorithm is resolution complete if when it fails to find
a solution we know that either this does not exist, or it requires a sampling
resolution below a certain fixed and known threshold.

The randomized framework has many degrees of freedom. For example, dif-
ferent sampling techniques can be used, or different data structures, or different
resampling strategies, and so on. This motivates the great number of randomized
algorithms proposed up to now. Some algorithms and techniques proved to be
very efficient and are now part of the standard literature. In addition to com-
putational aspects, also the theoretical foundations of this approach have been
addressed, so that a certain understanding about the power and the limitations
of the probabilistic framework has been obtained. On the other hand it has to be
acknowledged that many aspects are still not completely clear, and deeper inves-
tigation is needed. This survey focuses on some of the most common algorithms
and gives an overall perspective on the most widely used ideas in the field. For
every algorithm pseudo code is provided, as well as practical indications. It also
provides a significant amount of references to the most significant papers, so that
the reader can quickly get to the original sources if needed. Basic convergence
ideas and results are illustrated but proofs are not provided, and the interested
reader is referred to the cited papers.
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The survey is organized as follows. Section 2 provides the formal statement of
the robot motion planning problem in the context of randomized algorithms. All
the algorithms will be formulated in the framework of this abstract formulation,
thus being not tied to the robotics scenario. By following this approach, readers
interested in applying them in other fields will find their task easier. Algorithms
based on the so called probabilistic roadmaps are discussed in section 3. The basic
formulation, as well as improvements, are illustrated and discussed. The section
also provides some of the fundamental theoretical results concerning probabilistic
convergence. Following the same approach, section 4 reviews algorithms whose
underlying data structure is a tree rather than a graph. Finally, conclusions are
offered in section 5.

2 Problem Statement

This section provides a brief formulation of the problem under consideration.
Extensive treatment of the basic computational aspects can be found in [32],
[39], [51], [70], [71] and [73]. The robot motion planning (RMP) problem is dealt
with by using the configuration state space approach introduced by Lozàno-Perez
in [61]. Every robot is associated with a set of degrees of freedom which spec-
ify its placement in the workspace. The combination of the degrees of freedom
assumes values in a space called the configuration space, usually indicated as C.
The configuration space is partitioned into two subsets, the space of free config-
urations, Cfree, and the space of obstacle configurations, Cobs. The space of free
configurations is the subset of licit configurations. The space of obstacle config-
urations is its complement, i.e. Cobs = C \ Cfree. In the case of a robotic system,
a configuration belongs to Cobs if it corresponds to a robot placement where the
robot collides with obstacles, or with itself, or if it places the robot in a position
not satisfying its physical or operative constraints. In a different scenario, like
for example in bioinformatics, the physical systems will be a protein or a ligand
rather than a robot. In this case the configuration still specifies the placement
of the chemical compound in the space, but its validity is determined by the
associated energetic level. Given two points xstart ∈ Cfree and xgoal ∈ Cfree,
the RMP problem requires to compute a continuous function f : [0, 1] → Cfree
such that f(0) = xstart and f(1) = xgoal. This function could even not exist,
for example if Cfree is disconnected and xstart and xgoal belong to different con-
nected components. An ideal RMP algorithm should be able to determine this
situation, and to stop the computation as soon as it is possible to establish that
a solution cannot be found. As we will see, randomized algorithms fail to ac-
complish this goal, so it is usually necessary to bound the computation time to
avoid infinite loops while trying to solve unsolvable problem instances. In the
randomized motion planning framework, the availability of a collision checker
function is assumed. Given a configuration, the collision checker determines if it
belongs to Cfree or to Cobs. Formally, it can be specified as follows:

∀c ∈ C Check(c) =
{

0 if c ∈ Cobs
1 if c ∈ Cfree

(1)



Algorithmic Motion Planning: The Randomized Approach 743

The availability of the collision checker is fundamental for randomized motion
planners, as they exploit it to validate samples and acquire information about
C. From a practical point of view it has to be outlined that there is a reasonable
choice of algorithms to be used as collision checkers like [14], [29], [31], [50],
[60], [63], and some efficient implementations are freely available to the scientific
community.

A strictly related problem is the kinodynamic motion planning problem. In
the kinodynamic framework not only kinematic constraints are considered, i.e.
constraints on the position, but also dynamic constraints have to be satisfied.
Dynamic constraints involve the time derivatives of the configuration space.
For example, there can be speed or acceleration bounds. Kinodynamic con-
straints are constraints involving both kinematic and dynamic. For instance,
a bound on the maximal speed (dynamic constraint) could be not absolute
but rather related to the position (kinematic constraint) of the robot in its
environment. This could allow higher speeds in wide areas and force slow mo-
tions when the robot is near to an obstacle. In the kinodynamic literature, the
term configuration space is usually replaced by the term state space, and is of-
ten indicated as X rather than C. As a consequence, the space of free states
is indicated as Xfree and its complement is indicated as Xobs. In what fol-
lows we will adopt this terminology and notation. A point in the state space
is defined as (x, ẋ), i.e. it stores not only the configuration, but also its time
derivative. An instance of the kinodynamic motion planning problem requires
to find a trajectory p, i.e. a time parameterized path in the time interval [0, T ],
from a start point (xs, ẋs) ∈ Xfree to a goal point (xg , ẋg) ∈ Xfree or a goal
region Xgoal ⊂ Xfree. The goal region is often introduced as the kinematic
constraints could limit the set of reachable configurations and then a single
point could be not reachable. The trajectory should not violate the kinodynamic
constraints, i.e.

∀t ∈ [0, T ] p(t) ∈ Xfree.

The exact solution of the kinodynamic problem is known to be NP-hard, while
approximated dynamic programming based solutions have been illustrated in
[25], [26] and [27].

3 Graphs Based Motion Planners

While it has to be acknowledged that some of the basic ideas can be first found
in the early paper [30], the first widely used randomized algorithm for RMP
was introduced in [43], which extends the early versions found in [40], [65]
and [5]. The algorithm operates in two stages, the first called learning stage
and the second called query stage. Given an instance of the RMP problem, in
the learning stage the algorithm samples the configuration space and builds an
undirected graph G = (V,E) which captures the information gathered. The
graph is called probabilistic roadmap (PRM). In the query stage, the PRM is
used to solve specific RMP problem instances which are then reduced to a
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graph search over the roadmap. The availability of the following elements is
assumed:

– a subroutine Check which computes the function described in equation 1
– a subroutine Distance which computes a distance between two configura-

tions, i.e. it computes a function

D : C × C → R+ ∪ {0}. (2)

– a fast and possibly incomplete deterministic planner P . Different implemen-
tations can opt for different planners.

3.1 The Learning Stage

The learning stage aims to build a graph which captures the connectivity of
the subset Cfree. Two different approaches are commonly used. The first one is
illustrated in Algorithm 1.

Algorithm 1. Learning stage
1: V ← ∅ E ← ∅
2: loop
3: Generate a random configuration c ∈ Cfree

4: V ← V ∪ {c}
5: Vn ← {v ∈ V | Distance(c, v) < M}
6: for all vertices v ∈ Vn in order of increasing Distance(c, v) do
7: if c and v can be connected by P and they do not lie in the same connected

component then
8: E ← E ∪ {(c, v)}

Samples randomly generated over C are accepted if they belong to Cfree, and
discarded otherwise. The collision checker is used to take this decision. When a
sample is accepted, it becomes a vertex of the PRM graph (lines 2 and 3). After
a vertex is added, the algorithm checks if it is possible to add edges between
the inserted vertex and vertices already in the graph. A subset of neighboring
vertices is selected and the planner P is run to determine if the new vertex can
be connected to them. Two vertices are neighbors if their distance D is less than
a fixed threshold M . This choice is made for sake of efficiency, as it is unlikely
that a couple of far apart vertices will be connected by the planner P , and on
the other hand we wish to minimize the number of calls to the simple planner.
Another often used efficiency driven choice is to limit the size of the neighbors
set to a maximum size, say K. This heuristic is also chosen to limit the number
of calls to the deterministic planner. If the planner succeeds in finding a free path
between them, and if the nodes do not belong to the same connected component
of the graph, an edge connecting the two vertices is added to the graph. The
second approach consists in generating all the samples first, and then verifying
their connectivity later on, instead of interleaving samples generation connection
attempts.
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For what concerns the planner P , different techniques have been evaluated
[2] and [28]. In the vast majority of implementations the deterministic planner
simply connects the two points with a straight segment and verifies whether it
lies in Cfree or not. The validation is performed by selecting a set of intermediate
points along the segment and by calling the collision checker on each of them.
The segment is declared to be valid if all the intermediate points lie in Cfree. It
is evident that this approach is inherently error prone, as just a discretization
is used to determine the validity of the entire segment. Recently however a new
algorithm which computes exact collision checking has been introduced [72], and
its use appears appealing in the context of randomized RMP, as it can be used
to perform exact validation of the edges. In other cases the local planner P is a
potential field based planner like [44]. If the resulting graph contains more than
one connected component (see Figure 1), the learning stage is often followed by
a roadmap improving substep.

Fig. 1. An example of a Probabilistic Roadmap built over C = [0, 1]2. Black regions in-
dicate Cobs. In this case the PRM consists of two connected components and a roadmap
improving stage could succeed in merging them.

The improving is performed by selecting some vertices assumed to lie in dif-
ficult regions and then trying to add more samples in their neighborhood. Dif-
ferent criteria are used to decide whether a vertex lies in difficult region or not.
A quite common technique consists in associating a weight to each vertex, the
weight being determined by the number of edges originating at that vertex.
Then, vertices are selected randomly, and the probability that they are select-
ed is proportional to the inverse of their weight. This technique aims to add
edges to nodes poorly connected to the roadmap, thus improving its quality.
It is however worth noting that if the configuration space is indeed disconnect-
ed, this step could even be not necessary, meaning that it could not improve
the overall roadmap quality at all. On the other hand, due to the probabilis-
tic nature, it is impossible to determine if the improving step is indeed needed
or not.
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3.2 The Query Stage

In the query stage two configurations xstart and xgoal are given, and the al-
gorithm is required to produce a path between them (see Algorithm 2). The
algorithm tries to connect xstart and xgoal to vertices in the graph G. This trial
is done by using the same technique used to insert edges in the roadmap, i.e.
vertices are probed by increasing distance order. Vertices farther than a fixed
threshold are again not considered. If it is not possible to connect both xstart
and xgoal to the roadmap G, the algorithm reports failure. Otherwise, let us
assume that xstart has been connected to a vertex vs and that xgoal has been
connected to a vertex vg. Then, a graph search is performed to verify whether
vs and vg belong to the same connected component of G. If the search succeeds,
then a path is returned, by taking the sequence of segments associated with the
edges connecting vs and vg, plus the segments connecting xstart with vs and
xgoal with vg.

Algorithm 2. Query stage
Vs ← {v ∈ V | Distance(xstart, v) < M}
if the planner P can find a path between xgoal and a vertex in Vs then

Let vs ∈ Vs be that vertex
else

return Failure
Vg ← {v ∈ V | Distance(xgoal, v) < M}
if the planner P can find a path between xgoal and a vertex in Vg then

Let vg ∈ Vg be that vertex
else

return Failure
if a path e1, e2, . . . , en between vs and vg is found then

return the overall solution path (xstart, vs), e1, e2, . . . , en, (vg, xgoal)
else

return Failure

3.3 Considerations on the PRM Algorithm

The PRM algorithm has been implemented an tested under many different con-
ditions and a significant amount of knowledge has been outlined. This motivated
the development of further research. First, it is evident that the learning stage
will take much more time than then query stage. This mainly because some of
the operations used during construction time, like collision checking are com-
putationally challenging and are to be performed many times. For this reason
the learning stage is worth only if many queries will benefit from the created
roadmap. This is not the case when the user is interested in the single shot in-
stance, i.e. just one instance of the problem has to be solved. Similarly, if the
robot is required to move in a dynamic environment, the PRM will be no more
valid as obstacles move, thus vanishing the time spent to build it. Second, the
original PRM method used uniform sampling over C while generating samples.
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This choice is reasonable because the PRM being built should be later used to
solve multiple queries, thus allowing problem instances where xstart and xgoal
are placed in arbitrary regions of Cfree. But this sampling strategy has its own
disadvantages. The main one is its low probability to place samples in narrow re-
gions. The difficulty of discovering narrow passages in C is one of the motivations
which led to the development of many refinements we will illustrate later.

3.4 Theoretical Analysis of the PRM Algorithm

In this section we briefly sketch the theoretical properties of the motion plan-
ners based on the probabilistic roadmaps approach. As the subject is pretty
broad and a detailed treatment would require a significant amount of space, we
provide just the main concepts and we refer the interested reader to the cit-
ed bibliography. The PRM algorithm is probabilistic complete, meaning that if
enough time is alloted to the learning stage, this will eventually end up creat-
ing a roadmap that will determine the solution of every solvable RMP problem
instance. While this can somehow be intuitive, as the uniform sampling process
over Cfree will eventually cover it completely, from a practical point of view it
would be precious to know how many nodes should be in the roadmap in or-
der to get a desired probability of success. This is of course related to shape
of Cfree, and to the placement of xstart and xgoal therein. We here give some
basic results found in the literature. In [41] basic speculations concerning the
original version of the PRM algorithm are formulated. The work does not ad-
dress the vast range of possible heuristics that can be employed to improve its
performance but rather deals with the algorithm formerly illustrated. Even un-
der this simplified assumption, significant indications can be drawn. There are
three parameters playing an important role in the overall planning performance.
Let us suppose that there exists a path p connecting xstart and xgoal. The first
relevant parameter is L, the length of p. The second parameter is ε which is the
Euclidean distance of p from Cobs, and the third parameter is N , the number of
vertices in the graph (i.e. N = |V |). The first result proved by the authors is the
following.

Theorem 1. Let p : [0, L] → Cfree be a path connecting xstart and xgoal and
let ε be its distance from Cobs. Let d be the dimension of the configuration space.
Then the probability that the PRM will fail to connect xstart and xgoal is at most

2L
ε

(1 − αωd)N (3)

where α = εd/(2d|Cfree|) and ωd is the volume of the unit ball in the d−dimensional
space.

Theorem 1 illustrates some common aspects arising while dealing with the prob-
abilistic convergence of randomized algorithms for motion planning. The result
is quite intuitive. First, the bound claims that the probability of failure decreas-
es while increasing the number of samples in the roadmap. The second point is
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that the failure probability increases with the increase of length. This is some-
how expected. Long paths require more information, i.e. more samples, to be
caught. Also the dependence on ε, is intuitive. This takes into account the prob-
lems arising when narrow passages are present in Cfree, as more samples will be
needed to discover them. Theorem 1 considers just the minimum distance be-
tween the path p and Cfree, thus the bound is somehow too defensive and tends
to overestimate failure probability. The authors then provide a second bound
which considers a mean distance between the path and the obstacle space.

Theorem 2. Let p be a path of length L connecting xstart and xgoal, i.e. p :
[0, L] → Cfree. Let ε(t) be the distance between the path and Cobs at instant t.
Then, the failure probability is bounded by

6
∫ L

0

(1 − αd

2d ωdε
d(t))N

ε(t)
dt (4)

where αd = 2−d|Cfree| and ωd is the volume of the unit ball in the d−dimensional
space.

Both bounds depend either on ε or ε(t), and also on α. This outlines that this
bound is far from being trivial to compute as the exact computation of these
parameters is not easy. They depend on the path p and on the shape of Cfree.
Thus it is not immediate to get an answer to the following question: given this
instance of the RMP problem, how many vertices should the algorithm generate
in order to achieve a given bound on the failure probability? They nevertheless
indicate that the algorithm indeed converges, and which parameters play an
important role in this convergence schema.

A different set of analysis is presented in [7], [35], [42] and [48]. In particular
[48] provides an alternative formulation of the problem in terms of measure
theory over probability spaces and this appears to be a promising direction for
further developments in the theoretical analysis.

3.5 Lazy PRMs

By profiling the execution of the basic PRM algorithm previously illustrated, one
would notice that most of the time is spent to compute the Check function, i.e.
to execute the collisions detection algorithm. It has however to be observed that
in the single shot framework the majority of the edges of the roadmap will not be
used, as they will not lie on the final path connecting xstart and xgoal. Starting
from this point, the lazy PRM algorithm introduced in [11] gains a considerable
speedup by postponing edge validation (and then collision detection) until it is
really needed. The algorithm works as follows. It first builds an initial roadmap
by placing Ninit random samples uniformly distributed over the configuration
space. As in the basic PRM algorithm, these will be the vertices of the roadmap.
An edge is added between two vertices if they are closer than a certain distance,
measured according to a generic metric function, like 2. No collision detection
is performed while generating these edges. To answer a query, the shortest path
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Algorithm 3. Lazy PRM
1: Routine ValidPath(Path,G(V, E))
2: INPUT Path: path to validate
3: INPUT/OUTPUT G = (V, E): roadmap
4: RETURN: true if the path is valid, false otherwise
5: for all vertices vi ∈ Path do
6: if vi /∈ Cfree then
7: Remove vertex vi from V
8: Remove all edges originating at vi from E
9: return false

10: for all edges (vi, vj) ∈ Path do
11: if (vi, vj) /∈ Cfree then
12: Remove (vi, vj) from E
13: return false
14: return true

between xstart and xgoal is sought, by using the A∗ algorithm [67]. Only if a
path is found, then the path validation stage is activated (see Algorithm 3).
This substep first checks all the vertices along the path to verify if they are
valid or not. If not, they are removed from the roadmap, as well as all the edges
originating at these vertices, and the path validation stage is stopped. If all
vertices lie in Cfree, then edges lying along that path are checked for validity.
As in the PRM algorithm the validation is done by discretizing the segment
and by calling the collision checker to validate each intermediate point. If all
the edges lie in Cfree the problem is solved. If an edge is determined to be not
valid, it is removed from the roadmap and the path validation stage terminates.
If the path found by A∗ is not valid, then A∗ is run again, and if a new path is
produced it is again tested for validity. Every time A∗ is executed again, it will
start from an updated roadmap G(V,E) missing vertices or edges which caused
previously determined paths to be not valid. When A∗ fails to find a path, a
node enhancement stage is run, to improve the quality of the roadmap, and then
the A∗ search and path validation cycle is repeated.

The authors illustrate a quantitative comparison between the classic PRM
algorithm and the lazy PRM implementation over a real world industrial ro-
botic scenario, and a significant speedup is outlined. Lazy edge validation tech-
niques are now widely used while implementing randomized planners ( [68], [69]).
A similar technique, called fuzzy roadmap, has also been used while apply-
ing PRM like algorithms to manipulation problems ( [64]). In this case the
authors postpone edges’ validation, but they perform samples validation im-
mediately. The technique appears to be competitive in certain configuration
spaces.

A further extension of the ideas introduced with Lazy and Fuzzy PRMs was
introduced in [79] and [80]. The authors move along the same lines, i.e. they
postpone the validation of nodes or edges, but this is not done following a fixed
pattern. Instead the methods they developed incorporate those techniques and
then allow their planning system to be biased towards one or the other.
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3.6 The Problem of Narrow Passages

The original PRM approach relies on uniform sampling over C. This has the
advantage of being easy to implement and to guarantee that eventually the en-
tire Cfree will be covered. But this has also its own drawbacks. Most notably,
uniform sampling poorly deals with narrow passages. In fact, if we indicate with
µ(S) the measure of the set S, by using random sampling over C the probability
of placing a sample inside S is µ(S)/µ(C). This clearly indicates the inabil-
ity of the algorithm to quickly place samples in these small volume regions.
Along the years a number of techniques have been developed and are being
developed for overcoming this difficulty. In the following, we describe some of
them.

Gaussian sampling. One way to address the narrow passages problem, is
to change the underlying probability distribution. In [12] a Gaussian sampling
is used. The authors start from the consideration that in the PRM algorithm
most of the time is spent while adding nodes to the roadmap. This fraction is
far greater than the time spent to generate samples. Thus they speculate on the
possibility of spending more time to generate “good” samples, so that less points
need to be added to the roadmap. The idea is to have many samples in cluttered
regions and just a few in large open areas. This is achieved by the algorithm
illustrated in Algorithm 4.

Algorithm 4. The Gaussian sampling strategy
1: loop
2: c1 ← random configuration
3: dist ← distance chosen according to a Gaussian distribution
4: c2 ← random configuration at distance dist from c1

5: if c1 ∈ Cfree and c2 /∈ Cfree then
6: add c1 to the graph
7: else if c2 ∈ Cfree and c1 /∈ Cfree then
8: add c2 to the graph
9: else

10: discard c1 and c2

It can be observed that two samples are generated but just one is added to
the graph. Experimental results illustrated by the authors give evidence that
this technique increases the overall roadmap quality , by having more samples in
narrow areas and less in wide areas. This sampling technique is inspired by image
processing based techniques (like blurring), and the mathematical details are the
following. A Gaussian probability distribution in a d-dimensional configuration
space is defined as

φ(c, σ) =
1

(2πσ2)d/2
e−

cT c
2σ2 (5)
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Fig. 2. Left figure shows a configuration space subset of R2 where black regions indi-
cate Cobs. Right figure shows the desired sampling density obtained by the Gaussian
sampling strategy (the darker the region, the more the sampling probability).

The function Obs(c) is defined to assume the value 0 if c ∈ Cfree and 1 otherwise.
According to the image perception literature ([67]), the following function blurs
obstacles

f(c, σ) =
∫
Obs(y)φ(c − y, σ)dy (6)

Finally, the function g is defined as

g(c, σ) = max(0, f(c, σ) −Obs(c)). (7)

Then, by using this technique it is possible to draw samples having g(c, σ) as
probability distribution. Note that g is null inside obstacles, so that this guar-
antees that samples are generated just in Cfree (see Figure 2). While appealing
in itself, this sampling distribution relies on a good choice of the σ parameter,
which indicates how close should samples be to the obstacles. It is easy to see
that different values of σ could be more suitable in different areas of C. This
problem, although while using a different RMP algorithm, is addressed in [18].

Obstacle based PRM. The problem of narrow passages is tackled also in [1].
The authors address the problem in the context of Obstacle Based Probabilistic
Roadmaps (OBPRM from now on). OBPRM [5] are a variant of the PRM al-
gorithm where nodes generation is performed with the goal of placing samples
near to, or in contact with the obstacles. The underlying idea is that in this way
it is possible to correctly operate even in the presence of cluttered environments,
as narrow passages are the result of facing obstacles. It is then appropriate to
say that OBPRM address this problem since its roots. In addition to this, it is
outlined that not only the sampling process plays an important role to discover
narrow regions, but also roadmap connection can be carried out using different
approaches that influence the overall performance. The authors illustrate then a
set of different approaches both for nodes generation and roadmap connection.
Nodes generation is performed by using three different methods. The first one
generates configurations in contact with obstacles (see Algorithm 5).
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Algorithm 5. Algorithm for creating samples on the boundary of the obstacle
Oj
1: GENERATE CONTACT CONFIGURATION
2: determine a point p inside the obstacle Oj

3: let M be a set of directions emanating from p
4: for all m ∈ M do
5: use binary search to determine a point lying on the boundary of Oj along the

direction m

The second generates samples in free space, but near to the boundary of Cfree.
These points can be obtained by a slight modification of Algorithm 5 so that
free space points rather than contact points are generated. The third one aims
to create shells of configurations around obstacles, so that paths in those diffi-
cult regions can be quickly found. Shells are obtained by retaining some of the
valid samples generated while looking for contact and free configurations in the
previous steps. During the connection stage three different local planners are
used. The first one is the usual straight line planner used in the simplest PRM
implementation. The second one is the so called rotate–at–s, where s is a number
between 0 and 1 [2]. While seeking a path between the configurations c1 and c2,
this planner tries to translate the robot from c1 to an intermediate configuration
along the line connecting c1 and c2. Then it rotates the robot and it tries to
translate it to the final c2 configuration. The value s is the fraction along the
straight line where the rotation is performed. The last planner is an A∗-like plan-
ner. During roadmap connection, three different stages are carried out. The first
one, called Simple Connection utilizes the simplest planner (straight line), which
is called many times to try many cheap connections among samples belonging
to the same obstacle. The second stage, called Connecting Components, tries
to create connections between disjointed roadmap components. The third stage,
called Growing Components, has the same goal, but while trying to create con-
nections, it can also generate new samples if needed. This is done by enhancing
the map adding nodes near to small components and by keeping valid samples
lying in segments not entirely accepted. In the second and third stages, while
trying to connect two nodes the local planners are used in this order: straight
line, rotate–at–1/2, rotate–at–0, rotate–at–1, A∗. Thus, by following an increas-
ing planning cost strategy, expensive local planners are used just when cheaper
and simpler planners fail to succeed.

The authors report extensive simulation results illustrating that significant
speedups can be obtained by using the combination of techniques they propose
and also provide experimentally driven recommendations about the techniques
to utilize. The use of many different sampling and connecting techniques however
has its own drawback, as many parameters should be fixed and it can then be non
trivial to determine a suitable combined tuning. An additional drawback is that
the analysis of the probability distribution of the samples is hard to determine.

Medial axis probabilistic roadmaps. Always in the attempt to overcome
the problem of detecting narrow passages, a slightly different approach that uses
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sampling on the medial axis of Cfree was proposed in [59], [82] and [83]. In this
framework, called MAPRM, medial axis PRM, samples are not generated on the
surface of the obstacles, but rather over C and are then retracted into the medial
axis of Cfree. The medial axis of the configuration space are the points in Cfree
with maximal distance from Cobs. Formally, for x ∈ Cfree, we define BCfree

(x)
to be the largest closed ball centered in x and completely lying in Cfree. The
medial axis of the space of free configurations is defined as the set of points
whose associated BCfree

are maximal with respect to inclusion, i.e.:

MA(Cfree) = {x ∈ Cfree|�y ∈ Cfree with BCfree
(x) � BCfree

(y)}.

Classical properties of medial axis ensures that the network or medial axis asso-
ciated with the configuration space captures the connectivity of the space itself.
Using this reduced representation one is ensured that no significant information
is lost. The strength of the algorithm relies on the ability to efficiently push or
pull a sample to a medial axis. The authors report algorithms for dealing both
with two and three dimensional workspaces, while here (see Algorithm 6) we
sketch the simple algorithm for retracting a sample into the medial axis of a two
dimensional environment. Once a sample c over C is generated, the nearest point
lying on the boundary of Cfree is determined (here it is indicated as n). Then,
if c lies in Cfree, it is retracted to the medial axis, otherwise the point to move
is n. The line to move along in order to reach the medial axis is determined by
c and n, while the direction depends whether c is in Cfree or not. The reader

Algorithm 6. Medial axis retraction algorithm
1: Let c ∈ C
2: Among the points in ∂Cfree determine the nearest to c, and call it n
3: if c ∈ Cfree then
4: d ← nc
5: s ← c
6: else
7: d ← cn
8: s ← n
9: Move s along the direction d. Stop moving s when n is not the unique nearest point

of ∂Cfree to s

should note that the sample added is not c itself, but s after it has been moved
along the direction nc or cn. The point stops to move when at least two points in
the boundary are at the same distance. Thus, s is indeed in the medial axis. In or-
der to efficiently perform the computation, the retraction step (line 9) is performed
by using a bisection technique. The overall PRM algorithm generates samples uni-
formly over C and then retracts them over the medial axis. Then a graph is built
by connecting those samples, and this constitutes the probabilistic roadmap. The
rational of this approach is the following: to discover narrow passages, it is no more
necessary to generate samples into the narrow passages themselves, but rather to
generate samples that once retracted end up into the medial axis associated with
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the narrow passages, thus increasing the probability of discovering them. This is
achieved by sampling over the entire C rather than over just Cfree.

Planning in dilated spaces. Along the same lines of OBPRM, some authors
[36] pushed the idea of sampling on obstacle surfaces even further, by allowing the
generation of samples lying outside Cfree. The planning is divided into two stages.
First a roadmap is created in a dilated configuration space. This means that if a
sample lies inside Cobs, but its distance from Cfree is smaller than a certain thresh-
old δ, it is retained rather than discarded. This step is performed using the classical
PRM algorithm where the space Cfree is substituted by its dilatation Cdilfree

Cdilfree = Cfree ∪ {c ∈ Cobs | Distance(c, Cfree) < δ}.

In the second stage, samples inside Cobs are pulled into Cfree. This is done by
resampling in their neighborhood. Next, edges have to be created, and also
in this case resampling could be needed to push edges into Cfree. Algorithm
7 illustrates the complete algorithm. In the Figure, Uv(v) is the resampling
region associated with vertex v, while Ue(v1, v2) is the resampling region asso-

Algorithm 7. Algorithms for creating a valid roadmap starting from a roadmap
created in then dilated configuration space
1: Generate a Roadmap R′ = (V ′, E′) in the dilated space Cdil

free.
2: V ← ∅ E ← ∅
3: for all v′ ∈ V ′ do
4: if v′ ∈ Cfree then
5: V ← V ∪ {v′}
6: p(v′) = v′

7: else
8: pick up to k samples in Uv(v′) and add to V the first one lying in Cfree (if

any)
9: let p(v′) be the vertex added to V (if any)

10: for all (v1, v2) ∈ E′ do
11: if (p(v1), p(v2)) ∈ Cfree then
12: E ← E ∪ {(p(v1), p(v2))}
13: else
14: Resample in Ue(p(v1), p(v2)). Let R be this sample set
15: if by using samples in R a path connecting p(v1) and p(v2) is found then
16: add the samples and the edges to V and E respectively

ciated with the edge (v1, v2). By using the dilated configuration space, narrow
passages are easier to detect, as they are widened. The choice of the value of δ is
very important. Taking it too small would not give too many advantages over the
basic PRM algorithm, but taking a too big value of δ has its disadvantages too,
as entire obstacles could then disappear. The authors illustrate the encouraging
results of their simulation and offer some hints about practical implementation.
The resampling region Uv(v) is a sphere centered in v while Ue(v1, v2) is a square.
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Moreover the authors found that by using a series of decreasingly dilated spaces
better results can be obtained.

4 Tree Based Motion Planners

Samples and edges can also be organized in a tree data structure rather than
in a graph. With this approach efficient planners have been implemented. The
first aspect is that they are well suited for addressing the single-shot motion
planning problem. Moreover, while growing a tree it is possible to utilize the
motion equations of the robot, thus obtaining paths complying with kinodynamic
constraints. This section will illustrate mainly two classes of algorithms, the so
called RRT based planners and the planners based on the concept of expansive
spaces. For sake of completeness it has to be pointed out that a similar approach
was presented in [62].

4.1 Rapidly Exploring Random Trees

Rapidly Exploring Random Trees (RRT) are a recently introduced class of RMP
algorithm that can be used both for systems involving kinodynamic constraints
or not [22], [47], [53], [55], [56], [57], [58]. RRT proved to be suitable for being
used in very different real world applications, as illustrated in [13] and [46]. In
addition to the Check and Distance routines used in the PRM framework, the
RRT algorithm assumes the availability of the following elements:

– a set U of inputs to be applied to the system
– an incremental simulator, i.e. a procedure that given a state x(t) ∈ X and

an input u ∈ U , produces the state x(t+∆t), provided that the input u has
been applied over the given time interval.

Then, by including system’s equations into the incremental simulator, the plan-
ner is able to directly produce paths satisfying the kinodynamic constraints. If
no such constraints are given, i.e. the planner is required to produce a path for a
holonomic robot, no incremental simulation takes place and simple interpolation
is performed, as every motion is allowed.

The basic version of the algorithm is composed by the algorithms given in
Algorithm 8. In the provided pseudocode the methods T.init, T.add vertex and
T.add edge update the tree being built. In particular T.init creates a tree consist-
ing of a single node which is its root (xinit in our case). The method T.add vertex
adds a node to the tree and the method T.add edge establish a parent–child re-
lationship between nodes in the tree. To be precise, it defines that the second
parameter is a child node of the first one. In addition, this method also associates
which input is needed in order to move the robot from the parent state to the
child state. This information is passed as last parameter.

The algorithm starts by building a tree rooted at the starting point xstart.
Samples are then randomly generated over Cfree. If the incremental simulator is
included, the NEW STATE subroutine (called in line 3 of the EXTEND substep)
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Algorithm 8. Algorithms for the construction of a RRT
1: BUILD RRT(xinit)
2: T.init(xinit)
3: for k = 1 to K do
4: xrand ← RANDOM STATE()
5: EXTEND(T,xrand)
6: return T

1: EXTEND(T, x)
2: xnear ← NEAREST NEIGHBOR(x,T )
3: if NEW STATE(x, xnear, xnew, unew) then
4: T.add vertex(xnew)
5: T.add edge(xnear, xnew, unew)
6: if xnew = x then
7: return Reached
8: else
9: return Advanced

10: return Trapped

chooses an input u, either randomly or by determining the one which will give a
new state as closed as possible to the new random state, and determines a new
state to be added to the tree.

Nearest node

Random sample

Fig. 3. Extension of a RRT. Starting from a random sample xrand generated over the
state space X, the nearest RRT node is found (xnear), and a new node is created as its
child. The new node is placed along the segment connecting xnear and xrand if the system
is holonomic, otherwise it is generated by applying the incremental simulator to xnear.

The routine returns Reached if the new sample can be reached, Advanced if it
cannot be reached but a new state has been added, or Trapped if no new state
has been produced. If the simulator is not needed, NEW STATE simply tries to
place the new state at a fixed distance from xnear along the segment connecting
it with x (see Figure 3).

The rationale behind the RRT algorithm is the following (see Figure 4). Let x
be a node in the tree T and let V (x) be its associated Voronoi region, i.e. the set
of states nearer to x than to any other state in T . Then, by uniformly sampling
over the state space, it is more likely to place samples into a big Voronoi region
rather than into a small one. If a sample is placed into V (x), then x will be chosen
to be extended. Thus the tree is biased to grow towards unexplored regions.
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Fig. 4. A RRT built over an obstacle free [0, 1]2 state space and the associated Voronoi
regions

The schema depicted in Algorithm 8 simply builds a RRT which explores the
state space starting from the given xstart point. If a couple of points is given in a
single shot framework, a significant speedup is obtained by growing two trees, one
from xstart and the other from xgoal. The RRT-Connect algorithm [47], designed
for problems not involving kinodynamic constraints, exploits this technique, as
well as a greedy tree extension to cut down planning time even more. Algorithm
9 illustrates this improved version. An even more aggressive behavior can be
obtained by using always the CONNECT routine instead of alternating it with
EXTEND. This version of the planner is often indicated as RRTConCon. In
this way, as soon as a promising direction is discovered, the tree is expanded in
that direction as much as it is possible thus decreasing exploration time. In the
provided pseudocode the function PATH is used to extract a path connecting
xstart and xgoal once the trees Ta and Tb have been connected.

Algorithm 9. The RRT-Connect algorithm
1: CONNECT(T, q)
2: repeat
3: S ← EXTEND(T,xrand)
4: until NOT S =Advanced
5: return S

1: RRT CONNECT(xstart, xgoal)
2: Ta.init(xstart)
3: Tb.init(xgoal)
4: for k = 1 to K do
5: x ←RANDOM STATE()
6: if not (EXTEND(Ta,x) = Trapped ) then
7: if CONNECT(Tb,xnew) = Reached then
8: return PATH(Ta,Tb)
9: swap trees Ta and Tb

10: return Failure
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Probabilistic completeness of the RRT algorithm. The RRT algorithm
has been proved to be probabilistic complete under rather mild hypothesis.
As for the PRM algorithm, detailed proofs can be found in the aforementioned
references, while here we provide just the results. Two different theorems are
valid, one for holonomic systems and one for nonholonomic systems.

Theorem 3. Let xinit and xgoal lie in the same connected component of a non-
convex, bounded, open, n-dimensional connected component of an n-dimensional
state space. The probability that a RRT constructed from xinit will find a path
to xgoal approaches one as the number of RRT vertices approaches infinity.

A similar theorem holds for nonholonomic systems. In what follows it is assumed
that in the NEW STATE routine the input u is uniformly randomly chosen over
the set of available inputs U .

Theorem 4. In the same hypothesis of Theorem 3, let further assume that |U |
is finite, ∆t is constant, and no two RRT vertices lie in a specified ε > 0,
according to the used metric distance. Let also assume that there exists a sequence
u1, . . . , un of inputs that when applied to xinit will lead the system to the state
xgoal. Then the probability that a RRT initialized at xstart will contain a vertex
in the Xgoal region approaches 1 as the number of vertices approaches infinity.

While valuable in itself, probabilistic convergence only ensures convergence to the
solution when the number of vertices, and then the computation time, approaches
infinity. As with PRM, it would be highly useful to have a rate of convergence of
the planner, in order to be able to predict the expected time. Again, while some
results have been obtained, they are expressed in terms of environment specific
quantities not easy to determine. The following theorems apply to single RRT and
assume that an instance of the RMP problem is given in terms of a starting point
xgoal and of a goal region Xgoal, i.e. the robot is required to reach a region rather
than a point. Both theorems rely on the following definition.

Definition 1. A sequence of subsets A = {A1, A2, . . . , Ak} of the state space
X is an attraction sequence if A0 = {xinit}, Ak = Xgoal, and for each Ai there
exists a basin Bi ⊆ X such that:

1. for all x ∈ Ai−1, y ∈ Ai, and z ∈ X \ Bi, the metric distance yields
Distance(x, y) < Distance(x, z)

2. for all x ∈ Bi, there exists a number m such that the sequence of inputs
{u1, u2, . . . , um} selected by the EXTEND algorithm will bring the state into
Ai ⊆ Bi

Given a set S, we indicate with µ(S) its measure.

Theorem 5. Let assume that an attraction sequence A = {A1, A2, . . . , Ak} of
length k exists, and let

p = mini{µ(Ai)/µ(Xfree)}.

Then, the expected number of iterations required to connect xstart and Xgoal is
not greater than k/p.
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Theorem 6. If an attraction sequence of length k exists and δ ∈ (0, 1], then
the probability that the RRT finds a path after n iterations is at least 1 −
exp(−npδ2/2), where δ = 1 − k/(np), and p is defined as in Theorem 5.

Both theorems 5 and 6 suffer from the dependence on k, the length of the
attraction sequence. While given a solvable instance of the RMP problem one
can assume the existence of such sequence, the number of elements in it depends
heavily on the shape of the environment and is far from being easy to compute.

Considerations on the RRT algorithm. The EXTEND substep of the RRT
algorithm starts by determining the nearest node to the last generated sample.
This has at least two implications from a practical point of view. First, the search
has to be performed over the whole set of nodes generated so far. If one does not
adopt a suitable data structure, but rather scans the whole sequence, this will
yield a quadratic dependence. This problem has been addressed in [6], where
the problem of efficient neighbor search is tackled and a solution is proposed,
yielding an overall n logn complexity. It has however to be pointed out that
the techniques utilized are quite involved, and could take some effort to be
implemented. The second important issue related to neighbor search is the metric
used. The choice of a good metric is a fundamental problem, as the use of
an inappropriate one could lead the tree to grow towards the wrong direction.
Ideally, the value returned by the Distance function should reflect the cost to
go, while moving from one state to another. It is evident that this cost depends
on the underlying system model and that the metric should then be strictly
related to it. This problem is well discussed in [21]. Recently, the possibility of
obtaining resolution completeness rather then probabilistic completeness in the
RRT framework has been developed in [20]. Although important from a practical
point of view, it is not addressed here as it does not fall into the probabilistic
scenario. Finally it has to be mentioned that an implementation of most RRT
based algorithms (and also some PRM based) is available in the freely available
Motion Strategy Library software [54], so that one can test different versions in
order to find out which one better fits its needs.

4.2 Planning in Expansive Spaces

An approach similar to RRT has been proposed in [34], [37], [38], and [45]. As
the RRT planner, this planner efficiently builds a tree data structure. We first
illustrate the basic version which does not deal with kinodynamic constraints.
Given an instance of the motion planning problem, the algorithm starts building
two trees, one rooted at the start point xstart, and the other rooted at the goal
point xgoal. As for the PRM algorithm, we assume that a tree T consists of a
couple of sets T = (V,E), where V is the set of tree nodes and E is the set
of edges between nodes. The two trees are iteratively expanded by using the
same algorithm, and the process terminates if it is possible to find a free path
connecting the two trees. Algorithm 10 illustrates this iterative approach. The
algorithm terminates when either a solution is found or the maximum number
of iterations is reached.
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Algorithm 10. Expansive planner
1: Let T1 be a tree rooted at xstart and with no other nodes
2: Let T2 be a tree rooted at xgoal and with no other nodes
3: for MAX ITERATIONS times do
4: EXPANSION(T1)
5: EXPANSION(T2)
6: if CONNECT(T1, T2) then
7: return the PATH connecting xstart and xgoal

8: return FAILURE

Algorithm 11 illustrates how a tree T = (V,E) can be expanded. In what follows,
let Bd(s) be the ball of radius d centered in s. At each step the algorithm
associates a weight with every node in V . The weight of the node s ∈ V is the
number of sampled nodes of V lying in Bd(s), i.e.

w(x) = |V ∩Bd(s)|.

The goal of the weight function is to avoid oversampling in regions already
explored and to rather bias the expansion towards unexplored areas of the con-
figuration space. In this respect both RRT and the expansive planner aim to the
same goal, the only difference being in the technique used to identified poorly
explored zones.

Algorithm 11. Expansion algorithm
1: EXPANSION(T )
2: Pick a sample s from V with probability proportional to 1/w(s)
3: Let K be a set of N samples lying in Bd(s)
4: for all k ∈ K do
5: compute w(k) and retain k with probability proportional to 1/w(k)
6: if k is retained and k ∈ Cfree and the segment (s, k) ∈ Cfree then
7: V ← V ∪ {s}
8: E ← E ∪ {(s, k)}

Finally, Algorithm 12 illustrates how connection between trees is verified. To
limit the number of useless trials, the algorithm ignores node couples too far
apart. Again, this because it is assumed that it unlikely to find a free segment
connecting far–away samples. The algorithm assumes that a path can be found
if a couple of nodes is close enough. In that case the segment is stored so that it
can be later used to produce the path connecting xstart with xgoal.

The above algorithm can be adapted in order to deal with kinodynamic con-
straints. In this case, a single tree is built, but the samples space is not X but
rather

CT = Cfree × [0,+∞]

which is called space×time. The subset of free valid configurations of CT is indi-
cated as CT free. Along the same lines of the RRT algorithm, the availability of
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Algorithm 12. Connection
1: CONNECT(T1, T2)
2: for all x ∈ V1 do
3: for all y ∈ V2 do
4: if Distance(x, y) < Threshold then
5: if (x, y) ∈ Cfree then
6: store (x, y)
7: return TRUE
8: return FALSE

an incremental simulator and of a set of inputs Ul is assumed. In this context it is
assumed that inputs in Ul are piecewise constant functions with at most l pieces.
Algorithm 13 illustrates how it is possible to generate a trajectory complying
with the kinodynamic constraints. Again, a problem instance is formulated in
terms of a start point and of a goal region, which the authors call ENDGAME
and will be here indicated as EG. In Algorithm 13 the function INTEGRATE
computes how the system evolves when the input u is applied while the system
is in state s. In other words, it implements the incremental simulator previously
introduced.

Algorithm 13. Randomized kinodynamic motion planner
1: let T be a tree whose root is (xstart, 0)
2: for at most MAX ITERATIONS times do
3: Pick a sample s from V with probability 1/w(s)
4: Pick an input u from Ul uniformly at random
5: s′ =INTEGRATE(s, u)
6: if s′ ∈ CT then
7: V ← V ∪ {s′}
8: E ← E ∪ {(s, s′)}
9: if s′ ∈ EG then

10: Terminate with success

Extensive results over simulations and real robots are illustrated in [37]. The
trials involved both nonholonomic robots and systems performing in dynamic
environments, i.e. with moving obstacles. Detailed results provide evidence that
the devised algorithms lead to real time compliant systems.

Probabilistic convergence. The former algorithms have been formulated in
a framework based on the expansiveness concept introduced in [38]. We here
report the generalized results illustrated in [37] which concerns the kinodynamic
motion planner. Given (s, t) and (s′, t′) ∈ CT free we say that (s′, t′) is reachable
from (s, t) if there exists a control function that leads to an admissible trajectory
from (s, t) to (s′, t′). If such a trajectory can be obtained by applying just the
inputs of the Ul set, then we say that (s′, t′) is l-reachable from (s, t). According
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to these definitions, it is possible to define the set of points reachable and l-
reachable from from a point p = (s, t). We indicate the first set as R(p) and the
second as Rl(p). Then, given a subset of S ⊂ CT free, it is possible to define its
reachable sets:

R(S) =
⋃
p∈S

R(p)

Rl(S) =
⋃
p∈S

Rl(p)

Definition 2. Let β ∈ [0, 1) be a constant and Let S ⊂ CT . The lookout of the
set S is

Lookoutβ(S) = {p ∈ S | µ(Rl(p)) \ S) ≥ βµ(R(S) \ S)}

Definition 3. Let α, β be constants in [0, 1]. For any p ∈ CT free, R(p) is (α, β)-
expansive if for every connected subset S ⊆ R(p),

µ(Lookoutβ(S)) ≥ αµ(S).

CT free is (α, β)-expansive if for every p ∈ CT free, R(p) is (α, β)-expansive.

The following theorem proves that the algorithm will reach the ENDGAME
region EG, i.e. will succeed in finding a solution, with high probability.

Theorem 7. Let X be the reachability of the start point (s, t) and let g =
µ(EG ∩ X ) be strictly positive. Let X be (α, β)-expansive. Let γ ∈ (0, 1] be a
constant. Let T be a tree rooted at (s, t) with r nodes. The probability that T has
a node in EG is at least 1 − γ if

r ≥ k

α
ln

2k
γ

+
2
g

ln
2
γ
,

where k = (1/β) ln(2/g).

A set of similar results and definitions holds for the basic planner that does
not deal with kinodynamic constraints. It is again evident that probabilistic
convergence can be proved, but convergence rate is difficult to measure in terms
of the problem instance to be solved.

5 Conclusions

We outlined the major algorithms developed in the last years in the field of
randomized motion planning. When dealing with practical implementations a
number of issues have to be taken into consideration. First, it is necessary to have
algorithms for computing the Check function and the Distance function. Collision
detection is a challenging problem in itself, but fortunately there exist very
efficient algorithms whose implementations are freely available to the scientific
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community. These algorithms often assume that the description of the objects
is given in terms of meshes of triangles. This is a very favorable hypothesis, as
many CAD systems export this type of representation for solid objects. However
different algorithms exhibit different performances in various operating scenarios
and a preliminary evaluation is needed in order to select the one better fitting the
needs of the problem to be solved. The choice of the collision detector is extremely
important, as most of the time spent by planners is devoted to collision checking,
either for validating samples or edges connecting samples. For what concerns
the computation of the distance function, many more alternatives are possible.
Luckily, this is much easier to implement, so it is viable to try different definitions
and than rely on the one giving better experimental results. Common choices
are the L1, L2 or L∞ norms over the configuration space C. While computing
distances between configurations, it is also usual to assign different weights to
the degrees of freedom, or to normalize them to a given common interval. This
is often the case when both translational and rotational joints are present, as
rotating and translating can have a different impact on the geometry of the
system. If the problem involves kinodynamic constraints, there is also the need
for the incremental simulator. In this case no general rules or software libraries
can be used, as this strongly depends on the underlying system model. In this
case, as anticipated, the distance function, should reflect the effort needed to
drive the system between two points in the state space. Ad hoc norms should
then be designed and implemented.

The choice of the planning algorithm to use is driven by many different factors.
If the problem involves kinodynamic constraints than the choice is on one of
the two algorithms illustrated in section 4. Up to now no analytic comparison
is possible and also no fair experimental comparison has been performed. On
the other hand both algorithms proved to be suitable for being used in real
world applications, they address the same class of problems, and they require
the same components. It is then somehow difficult to give general indications on
the one which could better fit the needs or could be easier to implement. If the
problem to be solved involves just kinematic constraints, then a wider choice of
algorithms is available. In the single shot scenario, tree based algorithms and
lazy PRM perform better, while in a situation where many queries should be
answered, also the use of the basic PRM algorithm appears appropriate. If the
operating environment stems a configuration space with narrow passages, then
one of the outlined refined PRM algorithms is the choice. It is somehow evident
that in general no algorithm is better, but rather the environment influences the
performance. The opportunity of having more planners to be used in different
regions is addressed in [24], but up to now no criteria have been proved. It is
indeed not easy to efficiently determine during the computation which strategy
is better.

Another important issue is the sampling and resampling strategy. The vast
majority of the proposed planners use uniform sampling over either C or a suit-
able subset. This leads to easy implementation, but has the outlined drawbacks.
The use of a different sampling schema, like Gaussian sampling, could overcome
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these limitations, but up to now very few planners have been developed accord-
ing to this paradigm. For what concerns resampling, associating a weight to each
vertex and then choosing vertices to resample with a probability proportional to
the inverse of the weight is easy to implement. The easiest weight to compute
is the number of edges outgoing from a vertex. Also the weight suggested in
Algorithm 11 is easy to compute, but could take more time.

This paper illustrated the most widely used algorithmic techniques, namely
graph based and tree based. The field is however continuously growing, and
more and more refinements are being proposed, so that an exhaustive listing
is doomed to early obsolescence. Instead, some of the algorithms which proved
to have more influence in the related scientific literature have been illustrated.
The user needing to implement them should have had concrete indications about
their strength and limitations, and will not find too much difficulties in adapting
them to its specific needs.
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VII
Information Theoretic Models in Language

Evolution

R. Ahlswede, E. Arikan, L. Bäumer, and C. Deppe�

Abstract. We study a model for language evolution which was intro-
duced by Nowak and Krakauer ([12]). We analyze discrete distance spaces
and prove a conjecture of Nowak for all metrics with a positive semidefi-
nite associated matrix. This natural class of metrics includes all metrics
studied by different authors in this connection. In particular it includes
all ultra-metric spaces.

Furthermore, the role of feedback is explored and multi-user scenarios
are studied. In all models we give lower and upper bounds for the fitness.

1 Introduction

The human language is used to store and transmit information. Therefore there is
a significant interest in the mathematical models of language development. These
models aim to explain how natural selection can lead to the gradual emergence
of human language. Nowak and coworkers ([12], [13]) created a mathematical
model, in which they introduced the fitness of a language as a measure for the
communicative performance of a signalling system. In this model the signals can
be misinterpreted with certain probabilities. In this case it was shown that the
performance of such systems is intrinsically limited, meaning that the fitness can
not be increased over a certain threshold by adding more and more signals to the
repertoire of the communicators. This limitation can be overcome by concatenat-
ing signals or phonemes to form words, which increases significantly the fitness.

In the model the signals are elements of a given distance space. The fitness of
the distance space is then defined as the supremum of the fitness values taken
over all languages. In [13] and [5] the fitnesses of different metric spaces were
investigated. Nowak conjectures that the fitness of a product-space is equal to
the product of the fitnesses of the individual spaces. In the following we will refer
to this conjecture as product conjecture.

In this paper we analyze discrete distance spaces. We prove the product con-
jecture for this model under assumptions which are sufficiently general so that
the result includes all the models of metric spaces considered before in [12], [13]
and [5].

We also show in this model that Hamming codes asymptotically achieve the
maximal possible fitness.
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This model for simple signalling systems and their fitness suggests the in-
vestigations of other classical information theoretical problems in this context.
We will start this direction of research by considering feedback problems and
transmission problems for multiway channels. In the feedback model that we
introduced we show that feedback-fitness can be bigger than the fitness without
feedback.

In [14] a relation between Shannon’s noisy coding theorem and the fitness of
a language is shown. They show that Shannon’s error probability is inversely
proportional to the fitness function.

2 Definitions, Notations and Known Results

We consider a special case of a model which was introduced in [13]. In this model
a group of individuals can communicate about a given number of objects. We
denote this set of objects by

O = {o1, . . . , oN}.

These are objects of the environment, other individuals, concepts or actions.
Each object is mapped to a sequence of signals by the function

r : O → Xn.

We represent each signal-sequence by a sequence of length n, where X is the set
of all possible signals in the language. We call a signal-sequence, which describes
an object, a word of the language. It is possible, that several objects are mapped
to the same word. We assume that we have a distance function

d : X × X → R+

and (X , d) forms a distance space. We always write X for the distance space, if
it is clear which distance function we use. If d satisfies, in addition, the following
triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X and d(x, y) = 0
holds only for x = y, then (X , d) is called a metric space.

We denote by xt for 1 ≤ t ≤ n the t-th letter of a word xn, thus xn =
(x1, . . . , xn). The distance between two words is defined by dn(xn, yn) =

∑n
t=1

d(xt, yt), where xn, yn ∈ Xn.
As in [13] we define the similarity of two words by s : Xn ×Xn → R+, where

s(xn, yn) = exp(−dn(xn, yn)).

We call a family
L = {xn(i) : i = 1, . . . , N}

with xn(i) = r(oi) a language for N objects in Xn. Note that in this way it is
allowed to use the same word in order to describe different objects.

The probability of understanding yn when xn was signalled is given by

p(xn, yn) =
s(xn, yn)∑N

i=1 s(xn, xn(i))
.
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We assume that successful communication is of benefit to speaker and listener.
Thus for each correct transmitted word for the i-th object both get a payoff ai,
which defines the value of this object. We assume here that ai = 1 for all i.

With this restriction we define the fitness of a language L of length N in Xn
by

F (L,Xn) =
N∑
i=1

p(xn(i), xn(i)).

The fitness of the distance space Xn is then defined as the maximal possible
value of the fitness of all languages in Xn. Thus

F (Xn) = sup{F (L,Xn) : L language in Xn}.

If we restrict the languages to be for a fixed number N of objects we define
correspondingly:

F (Xn, N) = sup{F (L,Xn) : L language in Xnfor N objects}.

The next statement shows how the fitness values behave if we form languages
of product type.

Let L be a language in the space X then the product language Ln is defined
as the n-fold Cartesian product of L, i.e., Ln = ×nk=1Lk, with Lk = L for all
k and the elements of the family Ln consist of all possible concatenations of n
words from L.

Proposition 1. Let L be a language in the space X . Then

F (Ln,Xn) = F (L,X )n

and therefore
F (Xn) ≥ F (X )n.

In [13] the authors considered three models for X .

1. X = [0, a] ⊂ R and d(x, y) = |x− y|,
2. X = [0, 1) ⊂ R and d(x, y) = min{|x− y|, 1 − |x− y|},
3. X = {0, d} and d(x, y) =

{
0 , if x=y
d , else

For the model 1 they obtained the

Theorem (NKD, [5])

1. F ([0, a]) = 1 + a
2 .

2. F ([0, a] × [0, b]) = F ([0, a])F ([0, b]).
3. F ([0, a]n) =

(
1 + a

2

)n
.

Motivated by some experiments and this result Nowak formulated the following

Conjecture 1 (Product conjecture). Let (X , d) be a metric space, then

F (Xn) = (F (X ))n.
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3 The Product Conjecture

Let (X , d) be a finite distance space. For a language L with N words (of length 1,
that is letters) from X we introduce a language vector λ = (λx)x∈X , with

λx =
Number of occurences of the word x

N
,

so that λ is a probability distribution (PD) on X . With these definitions we can
denote

F (L,X ) = F (X , λ) =
∑
x

λx∑
y λye

−d(x,y) .

For the fitness of the space X we can write

F (X ) = max
λ

F (X , λ).

For a PD λ on X , let λn denote the product-form distribution on Xn with
marginals λ.

Property 1 now takes the form F (Xn, λn) = F (X , λ)n and F (Xn) ≥ F (X )n.
The product conjecture states that equality holds here for any metric space.

Supposition. In the following we shall assume, unless stated otherwise, that

(i) the diameter D(X ) of the set X , defined as the maximum of d(x, y) over
all pairs (x, y) in X , is finite, and

(ii) the matrix [e−d(x,y)]x,y∈X is positive semi-definite (psd.),

that is a self-adjoint square matrix with A = AT (Hermitian matrix) and all
of whose eigenvalues are nonnegative. In our case all matrices are Hermitian
because they are symmetric. We shall prove the product conjecture for such
spaces. Recall that dn(xn, yn) =

∑n
t=1 d(xt, yt) is of sum-type.

We note that if [e−d(x,y)]x,y∈X , is psd., then [e−d
n(xn,yn)]xn,yn∈Xn is psd.

This follows from the fact that [e−d
n(xn,yn)] is the nth tensor power of [e−d(x,y)].

3.1 A Lower Bound on F (X )

Since F (X ) ≥ F (X , λ) for all PDs λ on X , we obtain a lower bound on F (X )
for any choice of λ. Let λ∗ be a PD that achieves the minimum in

min
λ

∑
x

∑
y

λxλye
−d(x,y). (1)

Since by assumption the matrix [e−d(x,y)] is psd., the necessary and sufficient
conditions for λ∗ to achieve this minimum are given by the Karush-Kuhn-Tucker
conditions, namely,∑

y

λ∗ye
−d(x,y) ≥ c, for all x with equality if λ∗x > 0, (2)
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where c is a constant whose value can be found by multiplying the two sides of
the inequality by λ∗x and summing over x,

c =
∑
x

λ∗x
∑
y

λ∗ye
−d(x,y). (3)

It turns out that the parameter R0(X ) defined by

R0(X ) = − log c (4)

plays a crucial role here. In terms of this parameter, we notice that

F (X , λ∗) =
∑
x

λ∗x
1

e−R0(X )
= eR0(X ). (5)

This gives us the following lower bound.

Proposition 2. Under our Supposition for a space X ,

F (X ) ≥ eR0(X ), (6)

where
R0(X ) = − logmin

λ

∑
x

∑
y

λxλye
−d(x,y). (7)

As an example we note that for X as Hamming space, X = {0, 1} with

d(x, y) =
{

0 , if x=y
1 , else ,

R0(X ) = log[2/(1 + e−1)] and the lower bound is

F (X ) ≥ 2
1 + e−1

. (8)

For use in the next section we note that R0(Xn) = nR0(X ). This follows by
observing that the optimality conditions (2) written for the space Xn are sat-
isfied by a product-form distribution with marginals equal to λ∗. (We note the
similarity of this result to the “parallel channel theorem” in [7], Chapter 5).

3.2 An Upper Bound

The following upper bound combined with the above lower bound establishes
the product conjecture.

Proposition 3. For all n ≥ 1

F (Xn) ≤ enR0(X )+o(n).

Before proving this proposition, let us show that the product conjecture follows
as a consequence.
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Theorem 1. For spaces satisfying our Supposition, the fitness function is given
by F (Xn) = enR0(X ).

Proof: Suppose to the contrary that for some m, F (Xm) ≥ emR0(X )+ε for some
ε > 0. Then, by the fact that F ((Xm)k) ≥ (F (Xm))k, we have F (Xmk) ≥
ekm(R0(X )+ε/m). Since ε/m is not an o(m) term, this contradicts Proposition 2.
Hence, we must conclude that for all m ≥ 1, F (Xm) ≤ emR0(X ). Since the
reverse inequality F (Xm) ≥ emR0 has already been established, the conclusion
follows. �

Proof of Proposition 2: Fix n ≥ 1 arbitrarily. Let λ be any PD on Xn. Let
S be the support set of λ. For each x ∈ S, define

Ax =
∑
y

λye
−d(x,y)

Note that for all x ∈ S
e−nD ≤ Ax ≤ 1

where D = D(X ) is the diameter of X which is finite by assumption. Fix δ > 0
arbitrarily and put K = 	nD/δ
. For k = 1, . . . ,K define

Sk = {x ∈ S : e−kδ < Ax ≤ e−(k−1)δ}

Note that these sets form a partition of S. So, we may write and justify afterwards

F (Xn, λ) =
K∑
k=1

∑
x∈Sk

λx
1
Ax

(9)

=
∑
k

λ(Sk)
∑
x∈Sk

λx
λ(Sk)

1
Ax

(10)

≤
∑
k

λ(Sk)
eδ∑

x∈Sk

λx

λ(Sk)Ax
(11)

=
∑
k

λ(Sk)
eδ∑

x∈Sk

λx

λ(Sk)

∑
y∈S λye

−d(x,y) (12)

≤
∑
k

λ(Sk)
eδ∑

x∈Sk

λx

λ(Sk)

∑
y∈Sk

λye−d(x,y)
(13)

=
∑
k

eδ∑
x∈Sk

λx

λ(Sk)

∑
y∈Sk

λy

λ(Sk)e
−d(x,y)

(14)

≤
∑
k

eδ

e−nR0(X )
(15)

= KeδenR0(X ) (16)

In (10) we have used λ(Sk) =
∑
x∈Sk

λx. Inequality (11) follows by the following
argument. For shorthand put px = λx/λ(Sx) and recall that, for all x ∈ Sk,
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e−kδ < Ax ≤ e−(k−1)δ. Then,∑
x∈Sk

px
1
Ax

≤
∑
x∈Sk

px
1

e−kδ
(17)

=
1∑

x∈Sk
pxe−kδ

(18)

≤ eδ∑
x∈Sk

pxAx
(19)

In line (15), we used the assumption (ii) that the distance matrix is psd., hence
R0(Xn) = nR0(X ). The remaining inequalities are self-explanatory. Now, we
may choose δ =

√
n, say, then K ≈

√
n, and we have

F (Xn, λ) ≤ enR0(X )+o(n).

Since the upper bound holds uniformly for all PDs λ, the fitness of the space is
also upper-bounded by enR0(X )+o(n). This completes the proof. �

Remark 1

1. It does not follow from the above results that F (X , λ) is a concave function
of λ.

2. The proof can possibly be extended to any distance space with a bounded
distance function but generalization to arbitrary distance spaces is not at all
obvious.

3. The assumption about the positive semidefiniteness of the distance matrix
appears to be essential. The Hamming metric, the metrics |x−y| and (x−y)2
defined on real spaces satisfy this constraint, as we show in the next section.

3.3 A Connection Between Fitness and Parameters of
Communication Channels

It is noteworthy that the Nowak fitness has an interesting relationship to pairwise
error probabilities in noisy channels. Given a discrete memoryless channel W :
A → B, the Bhattacharyya distance (B-distance) between two input letters
a, a′ ∈ A is defined as

dB(a, a′) = − log
∑
b∈B

√
W (b|a)W (b|a′).

The cutoff rate parameter of the channel is defined as

R0(W ) = − log min
λ

[∑
a∈A

∑
a′∈A

λaλa′e
−d(a,a′)

]
,

where the minimum is over all PDs λ = {λa : a ∈ A}.
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To illustrate the connection between fitness and channel coding, let X = {0, 1}
with d the Hamming metric. The Hamming distance d(x, y) for any x, y ∈ X
equals the B-distance dB(x, y) of a binary symmetric channel W : X → X with
crossover probability ε chosen so that dB(0, 1) = 1, i.e.,

√
4ε(1 − ε) = e−1. For

W chosen this way, the cutoff rate of the BSC equals R0(W ) = log[2/(1 + e−1)].
Thus, the R0(X ) that appears as the exponent in the fitness growth rate for space
(X , d) can be identified as the cutoff rate R0(W ) of the associated BSC W .

This type of association between the metrics considered by Nowak et al. and
B-distances of DMC’s can be established in certain other cases as well. E.g., the
metric |x−y| is the B-distance for an exponential noise channel W : X → X+N ,
where X ≥ 0 is the channel input and X + N is the channel output with N
equal to an independent exponentially distributed random variable with intensity
µ = 2 (mean 1/2). Likewise, the metric (x − y)2 can be interpreted as the B-
distance for a Gaussian noise channel. Whenever a distance d can be associated
with the B-distance of a channel, the matrix [e−d(x,y)] is a Gramm matrix and
hence psd. Thus, the product conjecture holds for such distances on finite spaces.

This association between the fitness model and noisy communication channels
is significant in that it explains the confoundability of phonemes as the result of
the phonemes being sent across a noisy channel. This association also helps in-
terpret Nowak’s formula in terms of well-studied concepts in information theory,
such as pairwise error probabilities and average list sizes in list-decoding.

3.4 Embedding of Distance Spaces

Let (X, d) and (X ′, d′) be two distance spaces. Then (X, d) is said isometrical-
ly embeddable into (X ′, d′) if there exists a mapping Φ (the isometric embed-
ding) from X to X ′ such that d(x, y) = d′(Φ(x), Φ(y)) for all x, y ∈ X . For
any p ≥ 1, the vector space Rm can be endowed with the lp-norm defined by

||x||p = (
∑m
k=1 |xk|p)

1
p for x ∈ Rm. The associated metric is denoted by dlp .

The metric space (Rm, dlp) is abbreviated as lmp . A distance space is said to
be lp-embeddable, if (X, d) is isometrically embeddable into the space lmp for
some integer m ≥ 1. We call a distance space psd., if the corresponding matrix
[e−d(x,y)] is psd.

Lemma 1. If a distance space is psd., then all distance subspaces are also psd.
Furthermore all distance spaces, which can be isometrically embedded in a sub-
space of a psd. distance space are psd.

Proof: If [e−d(x,y)] is psd., then for all non-zero vectors x in Rn we have

xT [e−d(x,y)]x ≥ 0.

This property remains if we delete a finite number of columns and rows of
[e−d(x,y)]. Therefore the remaining space is still psd. �

With the help of this lemma it is possible for us to establish the product con-
jecture for an arbitrary distance space whenever it is possible to embed it in
a larger distance space which is psd. The following theorems of Vestfried and
Fichet are very useful.
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Theorem 1 (V, [16]). Any separable ultrametric space is l2-embeddable.

Theorem 2 (F, [6]). Any metric space with 4 points is l1-embeddable.

We describe now in a proposition situations where this technique applies. Re-
call that in an ultra-metric space for any three points a, b, c holds d(a, b) ≤
max(d(a, c), d(c, b)).

Proposition 4. 1. All ultra-metric spaces are psd.
2. All finite metric spaces with up to 4 elements are psd.
3. There exist some metric spaces with 5 elements which are not psd.
4. For every distance space there exists a scaling, such that the space becomes psd.

Proof: 1. follows from the theorem of Vestfried and Lemma 1.
2. follows fromthe theoremofFichet.To show3. consider the followingmetric space
on five points: Let for i = j d(i, j) = a if i, j ∈ {1, 2, 3} and d(i, j) = a

2 otherwise.
Then if 0 < a < 7.07 ·10−6 the corresponding matrix is not psd. 4. follows, because
the matrix [e−αd(x,y)] converges for α → ∞ to the identity matrix. �

4 A Hamming Code Is a Good Language

In the previous section we have shown that the product conjecture is true in
particular for the Hamming model. The optimal fitness is attained at λ =
( 1
2n , . . . ,

1
2n ). But this means, that one has to use all possible words in the lan-

guage to achieve the optimal fitness. In general the memory of the individuals
is restricted. For this reason we look for languages, which use only a fraction of
all possible words, but have large fitness.

We consider simple and perfect codes: The Hamming codes ([8]). A q-ary
block-code of length n is a map c from a finite set O to {0, 1, . . . , q−1}n. c(o) with
o ∈ O is called a codeword and C = {c(o) : o ∈ O} is called the code. Thus we can
view each code as a language. There exists a lot of work about codes (see [11]).
A special class of codes are the t-error correcting block-codes. These codes have
the property that for two different codewords the Hamming-distance is larger
than 2t+1. For a block-code of length n the weight-distribution (A0, A1, . . . , An)
and the distance distribution (B0, . . . , Bn) are defined. Ai denotes the number
of codewords of weight i and Bi is the number of ordered pairs of codewords
(u, v) such that d(u, v) = i divided by the number of messages. We summarize
the properties of the single-error-correcting Hamming-codes.

Proposition 5. 1. Hamming codes exist for the lengths 2k − 1.
2. Their number of codewords is N = 22k−1−k. The minimal distance is 3.
3. The weight distribution is the same for each word.

In [9] and [10] it is shown that the weight distribution is very easy to calculate.
Let (A0, A1, . . . , An) be the distance-distribution of the Hamming-code C, then
we define the Hamming weight enumerator by

WC(x) =
n∑
i=0

Aix
i.
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Theorem 3 (McW, [9],[10]). Let (A0, A1, . . . , An) be the distance-distribution
of the Hamming-code C, then the Hamming weight enumerator of this code is
given by

W (x) =
1

n + 1

(
(1 + x)n + n(1 − x)(1 − x2)

n−1
2

)
.

With FH(n) we denote the fitness of a Hamming Code of length n.

Theorem 2. The fitness of theHamming code approaches asymptotically the opti-
mal fitness. Not only limn→∞ 1

nFH(n)=limn→∞ 1
nF (Xn) and limn→∞

FH(n)
F (Xn) = 1,

but even the stronger condition

lim
n→∞

FH(n) − F (Xn) = 0

holds.

Proof

The fitness of the Hamming code can be expressedusing the weight enumeratorW .

FH(n) =
22k−1−k

W (exp(−1))
=

2n−log2(n+1)

W (exp(−1))
.

We now show that the difference F (Xn) − FH(n) goes to zero.

F (Xn) − FH(n) =
(

2
1 + exp(−1)

)n
− 2n−log2(n+1)

W (exp(−1))

=
(

2
1 + e−1

)n
− 2n−log2(n+1)

1
n+1 (1 + e−1)n + n(1 − e−1)(1 − e−2)

n−1
2

=
(

2
1 + e−1

)n
− 2n

(1 + e−1)n + n(n+ 1)(1 − e−1)(1 − e−2)
n−1

2

=
2nn(n+ 1)(1 − e−1)(1 − e−2)

n−1
2

(1 + e−1)2n + (1 + e−1)nn(n+ 1)(1 − e−1)(1 − e−2)
n−1

2

≤ 2nn(n+ 1)(1 − e−1)(1 − e−2)
n−1

2

(1 + e−1)2n
,

=

(
2
√

(1 − e−2)
)n

n(n+ 1)(1 − e−1)

((1 + e−1)2)n
√

(1 − e−2)
.

The last term goes to zero if n goes to infinity, because

2
√

1 − e−2

(1 + e−1)2
< 1,

(2
√

1−e−2

(1+e−1)2 < 0.995). Since the difference is always positive the proof is
complete. �
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Next we show that ratewise the fitness of the Hamming space is attained if
we choose the middle level as a language.

Suppose that n is even and let the language L consist of all words xn with
exactly n

2 ones, i.e. w(xn) = n
2 . If we fix any word from this language then there

are
(n

2
j

)2
words in L at a distance of 2j, (j = 0, . . . , n2 ). Therefore the fitness of

L is

F (L,Xn) =

(
n
n
2

)
∑n

2
j=0

(n
2
j

)2
e−2j

.

Let j�(n) denote the j for which the summand in the denominator is maximal
and let τ�(n) = j
(n)

n . Then we can estimate the rate of the fitness of L as
follows. Let ε > 0.

1
n

logF (L,Xn) =
1
n

log
(
n
n
2

)
− 1
n

log

n
2∑
j=0

(n
2

j

)2

e−2j

≥ 1
n

log
(
n
n
2

)
− 1
n

log

(
(
n

2
+ 1)

( n
2

j�(n)

)2

e−2j
(n)

)

=
1
n

log
(
n
n
2

)
− 1
n

log
(n

2
+ 1

)
− 1

n
2

log
( n

2

2τ�(n) · n2

)
+ 2τ�(n) log(e),

which we can bound further for sufficiently large n by

≥ 1 − 0 + min
τ

{−h(2τ) + 2τ log(e)} − ε, (20)

where h is the binary entropy function, h(τ) = −τ log τ − (1 − τ) log(1 − τ).
We can find the minimum of the convex function −h(2τ)+2τ log(e) by looking

at the root of the first derivative. The first derivative is 2 log(2τ)−2 log(1−2τ)+
2 log(e), which is zero for τ = 1

2(1+e) . Substituting this in (20) we can conclude
that for sufficiently large n

1
n

logF (L,Xn) ≥ 1 − log(1 + e−1) − ε.

The opposite inequality 1
n logF (L,Xn) ≤ 1 − log(1 + e−1) is also true because

we know from Theorem 1 that for the Hamming space F (Xn) =
(

2
1+e−1

)n
.

Therefore we can summarize our result in the following theorem.

Theorem 3. Let L be the language in the Hamming space Xn that consists of
all words of weight n2 . Then the fitness of the language L is ratewise optimal, i.e.,

lim
n→∞

1
n

logF (L,Xn) − 1
n

logF (Xn) = 0.
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Theorem 4. Let c be a fixed integer and L be the language in the Hamming
space Xn that consists of all words of weight n

2 with 	 c2
 fixed position with
0’s and � c2� fixed positions with 1’s. Then the fitness of the language L is also
ratewise optimal, i.e.,

lim
n→∞

1
n

logF (L,Xn) − 1
n

logF (Xn) = 0.

Proof: We assume that n and c are even. Following the same idea as in
Theorem 3 we get for ε > 0.

1
n

logF (L,Xn) =
1
n

log
(

1
2c

(
n
n
2

))
− 1
n

log

n−c
2∑
j=0

(n−c
2

j

)2

e−2j

≥ 1
n

log
(

1
2c

(
n
n
2

))
− 1
n

log

(
(
n− c

2
+ 1)

( n−c
2

j�(n)

)2

e−2j
(n)

)

=
1
n

log
(

1
2c

(
n
n
2

))
− 1
n

log
(
n− c

2
+ 1

)
− 1

n
2

log
( n−c

2

2τ�(n) · n2

)
+ 2τ�(n) log(e),

which we can bound further for sufficiently large n by

≥ 1 − 0 + min
τ

{−h(2τ) + 2τ log(e)} − ε. (21)

�

5 A Language with Noiseless Feedback

In this section we consider a language with noiseless feedback. The channel
model is well known in Information Theory ([3], [2]). It can be described in our
language model as follows. Individual A signalled a letter (word of length 1) and
is informed which letter individual B understood (because of some reaction of
B). Individual A has a special strategy for each object. After n repetitions of
this procedure B notices some object with a certain probability. We denote the
set of objects like before by O = {o1, . . . , oN}.

The functions
stj(oi, yj−1)

for j = 1, . . . , n define the next signal given by the speaker if he wants to speak
about object i and the listener understands yn ∈ {0, 1}n. Thus

stj : O × {0, 1}j−1 → {0, 1}.

We define the set of error vectors by

E = {0, 1}n.

This is the set of all possible error vectors. Let en = (en(1), . . . , en(n)) ∈ E ,
if en(t) = 1 then an error happened at the t-th position, otherwise en(t) = 0.
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We set 0n = (0, . . . , 0) a vector of length n. The error vector and the strategy
determine what the the speaker says. Thus we have a function

st : O × E → {0, 1}n

where st(oi, en) is defined by

(st1(oi), st2(oi, st1(o1)+e1 = y1), . . . , stn(oi, stn−1(on−1, y
n−2)+en−1 = yn−1)).

We define the feedback-language as Lst = (st(ot, 0n))Nt=1. We need a distance-
function to define the fitness in this case. We define the similarity for two words
as follows. s(xn, yn) = e−t, where

t =
{

min{w(en) : st(oi, en) ⊕ en = yn} if ∃yn : st(oi, en) ⊕ en = yn

0 otherwise
.

The feedback fitness of a strategy is defined as

F f (st,Xn) =
|Lst|∑
t=1

∑
en:st(ot,en)∈L

1∑
en:st(ot,en)∈L s(st(ot, 0n), st(ot, en))

and the fitness is defined as the maximal possible value of the fitness of all
strategies in Xn. Thus

F f (Xn) = sup
st

{F f(st,Xn)}.

This is a generalization of the model without feedback. If the speaker just ignores
the feedback, we get the same model like before. We write F f for all fitness
definitions, if we consider the fitness with feedback.

Proposition 6

F (Xn) = F (Xn,Xn) = F f (Xn,Xn).

Proof: The property holds because, if we use all possible words of a language,
all similarities between the words occur in the fitness formula in the summands
just in another order. �

Now we will give an example where the feedback-fitness is bigger than the usual

fitness. For the case n = 3 we know that F ({0, 1}3) =
(

2
1+exp(−1)

)3

. We will
show now that the fitness can be increased with feedback. We give an example
for a feedback-language with seven objects and a bigger fitness.

Example: Strategy f : Map the i-th object to the binary representation of i. If
a 1 is understood as a 0 start saying 0.
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o1 o2 o3 o4 o5 o6 o7

t = 0 001 010 011 100 101 110 111
000 000 000 000 000 000 000

t = 1 011 110 111 101 100 111 110
101 011 010 110 111 100 100
100 001 001 001 001 001 001

t = 2 010 111 110 010 010 010 010
111 100 100 111 110 101 101

t = 3 110 101 101 011 011 011 011

Obviously Lst = {0, 1}n\0n.
It holds F f (L∗) = 3, 19 > F (Xn,Xn). Our strategy can be generalized and

gives a lower bound for the feedback fitness.

Proposition 7

F f (Xn) ≥ 2n − 1(∑n
j=0

(
n
j

)
e−j

)
− e−1

.

Proof: Use the generalization of the strategy in the example and the result
follows. �

It is also possible to give a trivial upper bound.

Proposition 8

F f (Xn, N) ≤ N

1 + (N − 1)e−n
.

Proof: The smallest possible similarity between two different words is e−n. Thus
we assume that all similarities of all possible words are as small as possible and
get the upper bound for the fitness. �

6 List-Language

In a “list-language”, we divide the words of a language L into lists (subfamilies).
For example words about food, words about danger e.t.c.. The goal of the listener
is just to find out about which list the speaker speaks. To simplify the situation
we assume that all words of the language L belong to exactly one list, all lists
are of the same size l and we look only at languages with l|N , (N = |L|). In
general, if |L| = l · k+ r with r < l, we have r lists of size l+ 1 and k− r lists of
size l, i.e., here we assume that r = 0 and call such a language an l-list-language.

We denote the lists by Li for i = 1, . . . , k. We set L(xn) = Li, if the word xn

belongs to the list Li.
In a list-language the individuals get some profit, if the listener understands

the list of the speaker. Therefore we define

F l(L,Xn) =
∑
xn∈L

∑
yn∈L(xn)

p(xn, yn).



Information Theoretic Models in Language Evolution 783

Then naturally the question of the best l-list-language arises:

F l(Xn) = sup{F l(L,Xn) : L is l − list − language in Xn}.

Next we calculate the fitness of list-languages in a special case, namely that
of constant similarity. Let C > 0 be a constant and let d be the following metric
on X

d(x, y) =
{

0 , if x=y
C , else .

In this case the following proposition holds.

Proposition 9. F l(L,X ) ≤ F (L,X ) + l− 1

Proof

F l(L,X ) =
∑
x∈L

∑
y∈L(x)

exp(−d(x, y))∑
z∈L exp(−d(x, z))

= F (L,X ) +
∑
x∈L

∑
y∈L(x),y �=x

exp(−d(x, y))∑
z∈L exp(−d(x, z))

= F (L,X ) +
Nexp(−C)(l − 1)

1 + (N − 1)exp(−C)
≤ F (L,X ) + l− 1.

�

7 Multi-access-Language

In this section we will consider the following situation. Two individuals speak
simultaneously. There is some interference and one individual wants to under-
stand both. We look at two models. In the first model the speakers use the same
language, in the second model they use different languages. Such models are well
known in Information Theory. They were introduced in [1].

7.1 Model I

In this model X = {0, 1} and Y = {0, 1, 2}. The individuals can only speak
words which contain the signals 0 and 1. The listener understands 0 if both
use the signal 0. He understands 1, if one individual uses the signal 0 and the
other the signal 1 and he understands 2 if both use the signal 1. The listener
understands some word in Yn. We search now for a language with the biggest
multi-access-fitness. This model is known in information theory as the binary
adder channel.

We set d((xn, yn), (vn, wn)) = dH(xn + yn, vn + wn), where xn + yn = (x1 +
y1, . . . , xn + yn) and define the fitness of a multi-access-adder-language as

FA(L,Xn) =
N∑
i=1

N∑
j=1

p((x(i)n, y(j)n), (x(i)n, y(j)n)).
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The probability and the similarity are defined as before. We will consider an
example for n = 2. The language contains all elements of {0, 1} exactly once.
Thus we get the following table:

r(o1) = 00 r(o2) = 01 r(o3) = 10 r(o4) = 11
r(o1) = 00 00 01 10 11
r(o2) = 01 01 02 11 12
r(o3) = 10 10 11 20 21
r(o4) = 11 11 12 21 22

Now we have for example d((01, 01), (10, 01)) = d(02, 11) = 2. The fitness of this
language is FA(L,Xn) ≈ 2.83.

Proposition 10
FA(Xn) ≤ F ({0, . . . , 2|X |}.

We know consider a generalization of this model. The speaker uses two different
languages over the same distance space. We search for two languages which have
the biggest common multi-access-fitness.

FA(L,M,Xn) =
m∑
i=1

k∑
j=1

p((x(i)n, y(j)n), (x(i)n, y(j)n)).

For example let L = (00, 01, 10, 11) and M = (00, 11). Then we get the following
table.

00 01 10 11
00 00 01 10 11
11 11 12 21 22

The fitness of this language is FA(L,M) = 2, 71.

7.2 Model II

In this model X = Y = {0, 1} and d((xn, yn), (xn, yn)) = dH(xn ⊕ yn, xn ⊕ yn),
where ⊕ is the sum modulo |X | = 2 in all components. All other definition are
the same. Let us look at our example:

00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

All words are contained four times in the table. Thus this language attains the
maximum, because the product conjecture holds. This can be generalized.

Theorem 5. The optimal fitness for the adder model II is attained, if the lan-
guage consists of all possible codewords.
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Another configuration with the same fitness as the previous example:

00 01
00 00 01
10 10 11

If we allow two different languages for the two speakers, we find more config-
urations, which attain the optimal fitness.

Let us look at our example:

00 01 10 11
00 00 01 10 11

8 Broadcast to Two Different Languages

In this section we will consider the following situation. We have two individuals
with two different languages L = (x(1), . . . , x(N)) and M = (y(1), . . . , y(N)) on
the same distance space (X , d), such that x(i) describes the same object as y(i)
for all i = 1, . . . , N . Our goal is to find a good language for a third individual,
which wants to communicate with both of them simultaneously. In Information
Theory this kind of models were introduced in [4].

We define the fitness between two languages as

F (L,M) =
N∑
i=1

exp(−d(x(i), y(i)))∑N
j=1 exp(−d(x(i), y(j))

.

There exists also examples in human language, where both people can speak
in their own language and understand each other. An example is a conversation
between a Swede and a Dane, who both speak in their language.

We define the fitness of a broadcast-language N as

FB (N , (L,M) ,Xn) =
1
2

(F (N ,L) + F (N ,M)) .

Proposition 11

FB (N , (L,M) ,Xn) ≥ 1
2

max{F (L,Xn) + 1, F (M,Xn) + 1}.

9 Language Without Multiplicity

In all previous sections we allowed multiplicity of words. That means the indi-
viduals were allowed to use one word for more than one object. We will show
that in the case without multiplicity there are examples, where the fitness of a
product space is bigger than the product of the fitnesses of the single spaces.

Again we consider the set of objects

O = {o1, . . . , oN}
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and now each object is mapped to a sequence of signals by the injective function

r : O → Xn.

We call the languages of this type injective and denote the corresponding fitness
values by Fin.

We consider the metric space (M = {a, b, c}, d), where the distance is defined
as follows:

d a b c
a 0 0.01 3
b 0.01 0 3
c 3 3 0

In this case holds:

Fin(M) = Fin({a, c},M) =
2

1 + e−3
> Fin({a, b, c},M),

but for the product we have:

Fin(M2) = Fin({aa, ac, cb, cc},M2) > Fin({aa, ac, ca, cc},M2).

Thus Fin(M)2 < Fin(M2). This means the product conjecture does not hold for
injective languages. The reason for this behavior is, that the distance between a
and b is very small and the optimal fitness does not consist of all possible letters.
In the product space we can use the unused letter to improve the fitness. This
counterexample does not work in the original problem, because in the case of
such a finite metric space it is always better to choose all elements with a certain
multiplicity.
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Zipf’s Law, Hyperbolic Distributions and

Entropy Loss

P. Harremoës and F. Topsoe�

Abstract. Zipf’s law – or Estoup-Zipf’s law – is an empirical fact of
computational linguistics which relates rank and frequency of words
in natural languages. The law suggests modelling by distributions of
“hyperbolic type” . We present a satisfactory general definition and an
information theoretical characterization of the resulting hyperbolic distri-
butions. When applied to linguistics this leads to a property of stability
and flexibility, explaining that a language can develop towards higher
and higher expressive powers without changing its basic structure.

Keywords: Zipf’s law, hyperbolic distributions, entropy loss.

1 Zipf’s Law

Consider word usage in a comprehensive section of a language such as a novel, a
collection of newspaper texts or some other material, in the following referred to
as “the text”. The text will contain a number of distinct words, each occurring
with a certain frequency. The words may be characterized by their rank. The
most frequent word in the text has rank 1, the second most frequent word has
rank 2 and so on.

In 1916 the French stenographer J.B. Estoup noted that rank (r) and frequen-
cy (F ) in a French text were related by a “hyperbolic” law which states that
r ·F is approximately constant, cf. [1]. This observation became well known after
studies by the American linguist George Kingsley Zipf (1902–1950). He collect-
ed his findings in the monograph “Human Behavior and the Principle of Least
Effort” from 1949, cf. [6]. Zipf could confirm that the hyperbolic rank-frequency
relationship appeared to be a general empirical law, valid for any comprehensive
text and with a surprisingly high accuracy. Because of Zipf’s careful studies, the
law is now known as Zipf’s law.

In [6] Zipf argues that in the development of a language, a certain vocabulary
balance will eventually be reached as a result of two opposing forces, the force
of unification and the force of diversification. The first force tends to reduce the
vocabulary and corresponds to a principle of least effort seen from the point
of view of the speaker, whereas the second force has the opposite effect and is
connected with the auditors wish to associate meaning to speech. Though Zipf
does not transform these ideas into a mathematical model, we note his basic
� Peter Harremoës is supported by a post-doc stipend from the Villum Kann-
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ence Research Council and by INTAS (project 00-738).

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 788–792, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Zipf’s Law, Hyperbolic Distributions and Entropy Loss 789

consideration as a two-person game, however without a precise definition of the
cost-functions involved.

Zipf’s study relied on very thorough empirical investigations. He used James
Joyce’s Ulysses with its 260.430 running words as his primary example. Ulysses
contains 29.899 different words. The hyperbolic rank-frequency relationship is
illustrated by plotting the points (r, Fr); r ≤ 29.899 on doubly logarithmic paper
with Fr the number of occurrences in the text of the word with rank r. The
result is quite striking and clearly reveals the closeness to an exact hyperbolic
law r · Fr = C. Some of the frequencies found by Zipf are listed in Table 1.

Table 1. Rank-frequency in Ulysses (adapted after [6])

r Fr r · Fr

10 2.653 26.530
20 1.311 26.220

100 265 26.500
500 50 25.000

2000 12 24.000
5000 5 25.000

10000 2 20.000
20000 1 20.000
29899 1 29.899

If we model the rank-frequency relation by a probability distribution we are led
to a harmonic distribution, which we shall here take to mean a distribution over
a section of the natural numbers, here {1, 2, . . . , 29.899}, for which the i’th point
probability is proportional to 1

i . According to Zipf, cf. notes to Chapter two in [6],
the choice of Ulysses was made as it was expected that a harmonic distribution
would not be found in a large and artistically sophisticated text as this 1.

The positive findings have led to the general acknowledgement of Zipf’s law
as an empirical fact2. However, there is of course something dubious about this.
Clearly, in the above example, 29.899 is no sacred number. The phenomenon is a
limiting phenomenon — a phenomenon of vocabulary balance in Zipf’s words —
and, given the time, James Joyce would surely have used more words or be forced
to introduce new words in order to increase his expressive power. This points to a
need for models based on probability distributions over the entire set N of natural
numbers. A key goal of the research reported on here is to define precisely a class
of distributions, called hyperbolic distributions3, which serves this purpose.

1 Our theoretical findings later point to the expectation that sophisticated texts as
Ulysses (with a high bit rate) will follow Zipf’s law more closely than other texts.

2 Linguists today have some reservations about the law and seek more precise relation-
ships and associated models. This search is facilitated bymodern computer technology.
The reader may want to visit http://www.ucl.ac.uk/english-usage/ in this connection.

3 The literature dealing with Zipf’s law does operate with a notion of hyperbolic distri-
butions, but, typically, these are not precisely defined and also incorporate what we
called harmonic distributions above, hence allowing distributions with finite support.
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Shannon used Zipf’s law to estimate the entropy of English words in his well–
known study [5] from 1951. Other studies include an interesting paper from
1961 by B. Mandelbrot who essentially argues that a purely random mechanism
will generate a text obeying Zipf’s law, cf. [3]. As put by Schroeder, cf. [4],
“a monkey hitting typewriter keys at random will also produce a “language”
obeying Zipf’s law”.

Apparently then, Zipf’s considerations with two opposing forces and a move
towards vocabulary balance cannot be put on a sound mathematical footing.
Some comments are in order. Firstly, other routes to Zipf’s law than via the type-
writing monkey are of course possible on purely logical grounds and here Zipf’s
game-theoretic oriented reflections appear sound. Also note that Mandelbrot in
his paper [3] operates with game-theoretic elements via coding considerations.
We believe that such considerations contain the key to a better understanding,
cf. the section to follow.

Though the route to Zipf’s law from the point of view of linguistic develop-
ment is of course interesting, we shall not be much concerned with it but rather
accept the end result in whichever way it is arrived at and try to characterize in
information-theoretic terms the distributions that occur.

2 Hyperbolic Distributions

In a condensed form we shall now give the definitions and results needed for the
theoretical part of the manuscript. Further details can be found in [2].

We shall only define hyperbolic distributions over N and only consider dis-
tributions P for which the point probabilities are ordered (p1 ≥ p2 ≥ · · · ) and
positive. Clearly, for all i, pi ≤ 1

i . The condition we shall look at goes in the
other direction. Precisely, P is said to be hyperbolic if, given any a > 1, pi ≥ i−a

for infinitely many i.
Any distribution with infinite entropy H(P ) is hyperbolic. Clearly, when we

use such distributions for our linguistic modelling, this will lead to a high expres-
sive power. It is surprising that the same effect can be achieved with distributions
of finite entropy. Therefore, for the present study, hyperbolic distributions with
finite entropy have our main interest. It is easy to give examples of such distrib-
utions: For i ≥ 2, take pi proportional to i−1(log i)−c for some c > 2. Also note
that any convex combination of distributions with ordered point probabilities,
which assigns positive weight to at least one hyperbolic distribution, is again
hyperbolic. These distributions are thus plentiful and yet, as we shall explain,
have very special properties.

The special properties are connected with the Code Length Game, pertaining
to any model P ⊆ M1

+(N), the set of distributions over N. By K(N) we denote
the set of (idealized) codes over N, i.e. the set of κ : N → [0;∞] for which∑∞

1 exp(−κi) = 1. The Code Length Game for P is a two–person zero–sum
game. In this game, Player I chooses P ∈ P and Player II chooses κ ∈ K(N).
The game is defined by taking the average code length 〈κ, P 〉 as cost function,
seen from the point of view of Player II.
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We put Hmax(P) = sup{H(P )|P ∈ P}. It turns out that the game is in
equilibrium with a finite value if and only if Hmax(co(P)) = Hmax(P) < ∞. If
so, the value of the game is Hmax(P) and there exists a distribution P ∗, the
Hmax-attractor, such that Pn → P ∗ (say, in total variation) for every sequence
(Pn)n≥1 ⊆ P for whichH(Pn) → Hmax(P). Normally, one expects that H(P ∗) =
Hmax(P). However, cases with entropy loss, H(P ∗) < Hmax(P), are possible.
This is where the hyperbolic distributions come in.

Theorem 1. Assume that P ∗ ∈ M1
+(N) is of finite entropy and has ordered

point probabilities. Then a necessary and sufficient condition that P ∗ can occur
as Hmax–attractor in a model with entropy loss is that P ∗ is hyperbolic. If this
condition is fulfilled then, for every h with H(P ∗) ≤ h < ∞, there exists a
model P = Ph with P ∗ as Hmax–attractor and Hmax(Ph) = h. In fact, Ph =
{P |〈κ∗, P 〉 ≤ h} is the largest such model. Here, κ∗ denotes the code adapted to
P ∗, i.e. κ∗i = − ln p∗i ; i ≥ 1.

3 Hyperbolic Distributions and Zipf’s Law

Put negatively, hyperbolic distributions are connected with entropy loss. Howev-
er, we find it more appropriate to view these distributions as, firstly, distributions
expressing the basic underlying structure of a model (they are Hmax–attractors)
and, secondly, as guarantors of stability. In the context of computational linguis-
tics this translates into a potential to enrich the language to higher and higher
expressive powers without changing the basic structure of the language.

Consider an ideal language where the frequencies of words are described by a
hyperbolic distribution P ∗ with finite entropy. Small children use the few words
they know with relative frequencies very different from the probabilities given
by P ∗. They only form simple sentences, and at this stage the number of bits
per word will be small, i.e. the entropy of the child’s distribution is small. The
parents talk to their children at a lower bit rate than they normally use, but
with a higher bit rate than their children. Thereby new words and grammatical
structures will be presented to the child. At a certain stage the child will be able
to communicate at a reasonably high rate (about H(P ∗)). Now the child knows
all the basic words and structures of the language. The child is able to increase
its bit rate still further. Bit rates higher than H(P ∗) are from now on obtained
by the introduction of specialized words, which occur seldom in the language
as a whole. This can continue during the rest of the life. Therefore one is able
to express even complicated ideas without changing the basic structure of the
language, indeed there is no limit, theoretically, to the bit rate at which one can
communicate without change of basic structure.

One may speculate that modelling based on hyperbolic laws lies behind the phe-
nomenon that “we can talk without thinking”. We just start talking using basic
structure of the language and then from time to time stick in more informative
words and phrases in order to give our talk more semantic content, and in doing so,
we use more infrequent words and structures, thus not violating basic principles –
hence still speaking recognizably Danish, English or what the case may be.



792 P. Harremoës and F. Topsoe

Another consideration: If Alice, who we consider to be an expert, wants to get
a message across to Bob and if Alice knows the level of Bob (layman or expert),
Alice can choose the appropriate entropy level, h, and use that level, still main-
taining basic structural elements of the language. Speaking to the layman, Alice
will get the message across, albeit at a lower bit rate, by choosing h sufficiently
small, and if Alice addresses another expert, she can choose a much higher level
h and increase the bit rate considerably. The considerations here point to an
acceptance of the maximal models of Theorem 1 as natural models to consider.

We believe that the interpretation of Zipf’s law in the light of Theorem 1 is
fundamental. Naturally, it raises a number of questions. More qualitative con-
siderations are desirable, the dynamic modelling should be considered, the fact
that the hyperbolic distributions are multiple parameter distributions poses cer-
tain problems which are connected with the apparent fundamental difficulty —
perhaps impossibility – of estimating statistically the entropy of models as those
considered. Basically these questions seem to offer a fruitful new area of research
which will also be of relevance for other fields than computational linguistics, in
particular perhaps for branches of biology and physics.

Our approach leads to assertions which can be tested empirically. Thus
language development should evolve in the direction of Zipf’s law. There ex-
ist primitive computer models of language development and some preliminary
investigations 4 provides supportive evidence. Further work is evidently needed.
In view of the difficulties involved in the study of long term effects in the de-
velopment of natural languages, it appears that experiments based on computer
models is the most realistic way forward.
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Bridging Lossy and Lossless Compression by

Motif Pattern Discovery

A. Apostolico�,��, M. Comin, and L. Parida

Abstract. We present data compression techniques hinged on the no-
tion of a motif, interpreted here as a string of intermittently solid and
wild characters that recurs more or less frequently in an input sequence
or family of sequences. This notion arises originally in the analysis of
sequences, particularly biomolecules, due to its multiple implications
in the understanding of biological structure and function, and it has
been the subject of various characterizations and study. Corresponding-
ly, motif discovery techniques and tools have been devised. This task
is made hard by the circumstance that the number of motifs identi-
fiable in general in a sequence can be exponential in the size of that
sequence. A significant gain in the direction of reducing the number
of motifs is achieved through the introduction of irredundant motifs,
which in intuitive terms are motifs of which the structure and list of
occurrences cannot be inferred by a combination of other motifs’ oc-
currences. Although suboptimal, the available procedures for the ex-
traction of some such motifs are not prohibitively expensive. Here we
show that irredundant motifs can be usefully exploited in lossy com-
pression methods based on textual substitution and suitable for signals
as well as text. Actually, once the motifs in our lossy encodings are
disambiguated into corresponding lossless codebooks, they still prove
capable of yielding savings over popular methods in use. Preliminary
experiments with these fungible strategies at the crossroads of lossless
and lossy data compression show performances that improve over pop-
ular methods (i.e. GZip) by more than 20% in lossy and 10% in lossless
implementations.

Keywords: Pattern discovery, pattern matching, motif, lossy and loss-
less data compression, off-line textual substitution, grammar based
codes, grammatical inference.
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1 Introduction

Data compression methods are partitioned traditionally into lossy and lossless.
Typically, lossy compression is applied to images and more in general to signals
susceptible to some degeneracy without lethal consequence. On the other hand,
lossless compression is used in situations where fidelity is of the essence, which
applies to high quality documents and perhaps most notably to text files. Lossy
methods rest mostly on transform techniques whereby, for instance, cuts are
applied in the frequency, rather than in the time domain of a signal. By contrast,
lossless textual substitution methods are applied to the input in native form, and
exploit its redundancy in terms of more or less repetitive segments or patterns.

When textual substitution is applied to digital documents such as fax, image
or audio signal data, one could afford some loss of information in exchange for
savings in time or space. In fact, even natural language can easily sustain some
degrees of indeterminacy where it is left for the reader to fill in the gaps. The two
versions below of the opening passage from the Book1 of the Calgary Corpus, for
instance, are equally understandable by an average reader and yet when applied
to the entire book the first variant requires 163,837 less bytes than the second
one, out of 764,772.

DESCRIPTION OF FARMER OAK – AN INCIDENT When Farmer Oak
smile., the corners .f his mouth spread till the. were within an unimportant
distance .f his ears, his eye. were reduced to chinks, and ...erging wrinklered
round them, extending upon ... countenance li.e the rays in a rudimentary
sketch of the rising sun. His Christian name was Gabriel, and on working
days he was a young man of sound judgment, easy motions, proper dress, and
...eral good character. On Sundays, he was a man of misty views rather given to
postponing, and .ampered by his best clothes and umbrella : upon ... whole, one
who felt himself to occupy morally that ... middle space of Laodicean neutrality
which ... between the Communion people of the parish and the drunken section,
– that ... he went to church, but yawned privately by the t.ime the cong.egation
reached the Nicene creed,- and thought of what there would be for dinner when
he meant to be listening to the sermon.
DESCRIPTION OF FARMER OAK – AN INCIDENT When Farmer Oak
smiled, the corners of his mouth spread till they were within an unimportant
distance of his ears, his eyes were reduced to chinks, and diverging wrinkles
appeared round them, extending upon his countenance like the rays in a rudi-
mentary sketch of the rising sun. His Christian name was Gabriel, and on
working days he was a young man of sound judgment, easy motions, proper
dress, and general good character. On Sundays he was a man of misty views,
rather given to postponing, and hampered by his best clothes and umbrella :
upon the whole, one who felt himself to occupy morally that vast middle space
of Laodicean neutrality which lay between the Communion people of the parish
and the drunken section, – that is, he went to church, but yawned privately by
the time the congregation reached the Nicene creed,- and thought of what there
would be for dinner when he meant to be listening to the sermon.

In practice, the development of optimal lossless textual substitution meth-
ods is made hard by the circumstance that the majority of the schemes are
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NP-hard [27]. Obviously, this situation cannot improve with lossy ones. As an
approximation, heuristic off-line methods of textual substitution can be based
on greedy iterative selection as follows (see e.g., [2,6,10]). At each iteration, a
substring w of the text x is identified such that encoding a maximal set of non-
overlapping instances of w in x yields the highest possible contraction of x; this
process is repeated on the contracted text string, until substrings capable of pro-
ducing contractions can no longer be found. This may be regarded as inferring a
“straight line” grammar [15,16,19] by repeatedly finding the production or rule
that, upon replacing each occurrence of the “definition” by the corresponding
“nonterminal”, maximizes the reduction in size of the current text string repre-
sentation. Recent implementations of such greedy off-line strategies [6] compare
favorably with other current methods, particularly as applied to ensembles of
otherwise hardly compressible inputs such as biosequences. They also appear to
be the most promising ones in terms of the achievable approximation to optimum
descriptor sizes [19].

Off-line methods can be particularly advantageous in applications such as
mass production of Cd-Roms, backup archiving, and any other scenario where
extra time or parallel implementation may warrant the additional effort imposed
by the encoding (see, e.g., [14]).

The idea of trading some amount of errors in reconstruction in exchange for
increased compression is ingrained in Rate Distortion Theory [11,12], and has
been recently revived in a number of papers, mostly dealing with the design
and analysis of lossy extensions of Lempel-Ziv on-line schemata. We refer to,
e.g., [17,18,21], and references therein. In this paper, we follow an approach
based on the notion of a motif, a kind of redundancy emerged particularly in
molecular biology and genomic studies. In loose terms, a motif consists of a
string of intermittently solid and wild characters, and appearing more or less
frequently in an input sequence. Because motifs seem to be implicated in many
manipulations of biological as well as more general sequences, techniques for
their discovery are of broad interest. We refer to the quoted literature for a more
comprehensive discussion. In a nutshell, the role of motifs in our constructions
is to capture the auto-correlation in the data by global pattern discovery. The
combinatorial structure of our motifs is engineered to minimize redundancy in
the “codebook”. The presence of a controlled number of don’t care characters
enhances the compression achievable in the subsequent stage of off-line greedy
textual substitution.

In general, the motif discovery and use is made particularly difficult by the
fact that the number of candidate motifs in a sequence grows exponentially with
the length of that string. Fortunately, a significant reduction in the basis of can-
didate motifs is possible in some cases. In the context of our textual substitution
schemes, for instance, it comes natural to impose that the motif chosen at each
iteration satisfies certain maximality conditions that prevent forfeiting informa-
tion gratuitously. To begin with, once a motif is chosen it seems reasonable to
exploit the set of its occurrences to the fullest, compatibly with self-overlaps.
Likewise, it seems reasonable to exclude from consideration motifs that could be
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enriched in terms of solid characters without prejudice in the corresponding set
of occurrences.

Recently, a class of motifs called “irredundant” has been identified along these
lines that grows linearly with input size [7,8,9]. We examine here the application
of such motifs to various scenarios of lossy and lossless compression. As it turns
out, significant savings can be obtained with this approach.

This paper is organized as follows. In the next section, we recall some basic
definitions and properties, and the combinatorial facts subtending to our con-
struction. Section 3 is devoted to the description of our method and the section
that follows lists preliminary experiments. Conclusions and plans of future work
close the paper.

2 Notions and Properties

Let s = s1s2...sn be a string of length |s| = n over an alphabet Σ. We use sufi
to denote the suffix sisi+1...sn of s and s[i] for the i-th symbol. A character from
Σ, say σ, is called a solid character and ‘.’ is called a “don’t care” character.

Definition 1. (σ1 ≺,=,/ σ2) If σ1 is a don’t care character then σ1 ≺ σ2. If
both σ1 and σ2 are identical characters in Σ, then σ1 = σ2. If either σ1 ≺ σ2 or
σ1 = σ2 holds, then σ1 / σ2.

Definition 2. (p occurs at l, Cover) A string, p, on Σ ∪ ‘.‘, occurs at position
l in s if p[j] / s[l + j − 1] holds for 1 ≤ j ≤ |p|. String p is said to cover the
interval [l, l + |p| − 1] on s.

A motif is any element of Σ or any string on Σ · (Σ ∪ {.})∗ ·Σ.

Definition 3. (k-Motif m, Location list Lm) Given a string s on alphabet Σ
and a positive integer k, k ≤ |s|, a string m on Σ ∪ ‘.‘ is a motif with location
list Lm = (l1, l2, . . . , lq), if all of the following hold: (1) m[1],m[|m|] ∈ Σ, (2)
q ≥ k, and (3) there does not exist a location l, l = li, 1 ≤ i ≤ q such that m
occurs at l on s (the location list is of maximal size).

The first condition ensures that the first and last characters of the motif are
solid characters; if don’t care characters are allowed at the ends, the motifs can
be made arbitrarily long in size without conveying any extra information. The
third condition ensures that any two distinct location lists must correspond to
distinct motifs.

Using the definition of motifs, the different 2-motifs are as follows: m1 = ab
with Lm1 = {1, 5}, m2 = bc with Lm2 = {2, 6}, m3 = cd with Lm3 = {3, 7},
m4 = abc with Lm4 = {1, 5}, m5 = bcd with Lm5 = {2, 6} and m6 = abcd with
Lm6 = {1, 5}.

Notice that Lm1 = Lm4 = Lm6 and Lm2 = Lm5 . Using the notation L + i =
{x+ i|x ∈ L}, Lm5 = Lm6 + 1 and Lm3 = Lm6 + 2 hold. We call the motif m6

maximal as |m6| > |m1|, |m4| and |m5| > |m2|. Motifs m1, m2, m3, m4 and m5

are non-maximal motifs.
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We give the definition of maximality below. In intuitive terms, a motif m is
maximal if we cannot make it more specific or longer while retaining the list Lm
of its occurrences in s.

Definition 4. (m1 / m2) Given two motifs m1 and m2 with |m1| ≤ |m2|,
m1 / m2 holds if m1[j] / m2[j + d], with d ≥ 0 and 1 ≤ j ≤ |m1|.

We also say in this case that m1 is a sub-motif of m2, and that m2 implies or
extends or covers m1. If, moreover, the first characters of m1 and m2 match
then m1 is also called a prefix of m2. For example, let m1 = ab..e, m2 = ak..e
and m3 = abc.e.g. Then m1 / m3, and m2 / m3. The following lemma is
straightforward to verify.

Lemma 1. If m1 / m2 then ∃ d | Lm1 ⊇ Lm2 + d, and if m1 / m2, m2 / m3,
then m1 / m3.

Definition 5. (Maximal Motif) Let m1, m2, . . ., mk be the motifs in a string
s. A motif mi is maximal in composition if and only if there exists no ml, l = i
with Lmi = Lml

and mi / ml. A motif mi, maximal in composition, is also
maximal in length if and only if there exists no motif mj, j = i, such that mi
is a sub-motif of mj and |Lmi | = |Lmj |. A maximal motif is a motif that is
maximal both in composition and in length.

Requiring maximality in composition and length limits the number of motifs that
may be usefully extracted and accounted for in a string. However, the notion of
maximality alone does not suffice to bound the number of such motifs. It can be
shown that there are strings that have an unusually large number of maximal
motifs without conveying extra information about the input.

A maximal motif m is irredundant if m and the list Lm of its occurrences
cannot be deduced by the union of a number of lists of other maximal motifs.
Conversely, we call a motif m redundant if m (and its location list Lm) can be
deduced from the other motifs without knowing the input string s. More formally:

Definition 6. (Redundant motif) A maximal motif m, with location list Lm,
is redundant if there exist maximal sub-motifs mi, 1 ≤ i ≤ p, such that Lm =
Lm1 ∪Lm2 . . .∪Lmp , (i.e., every occurrence of m on s is already implied by one
of the motifs m1,m2, . . . ,mp).

Definition 7. (Irredundant motif) A maximal motif that is not redundant is
called an irredundant motif.

We use Bi to denote the set of irredundant motifs in sufi. Set Bi is called the
basis for the motifs of sufi. Thus, in particular, the basis B of s coincides with B1.

Definition 8. (Basis) Given a sequence s on an alphabet Σ, let M be the set of
all maximal motifs on s. A set of maximal motifs B is called a basis of M iff the
following hold: (1) for each m ∈ B, m is irredundant with respect to B − {m},
and, (2) let G(X ) be the set of all the redundant maximal motifs generated by
the set of motifs X , then M = G(B).
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In general, |M| = Ω(2n). The natural attempt now is to obtain as small a basis
as possible. Before getting to that, we examine some basic types of maximality.

Lemma 2. Let m be a maximal motif with no don’t care and |Lm| = 1, then
m = s.

Proof. Any motif with those properties can be completed into s, by the notion
of maximality.

Lemma 3. Let m be a maximal motif with at least one don’t care, then |Lm| ≥ 2.

Proof. Under the hypothesis, it must be |m| > 1. The rest is a straightforward
consequence of the notion of maximality.

Lemmas 2 and 3 tell us that, other than the string s itself and the characters of
the alphabet, the only maximal motifs of interest have more than one occurrence.
Solid motifs, i.e., motifs that do not contain any don’t care symbol, enjoy a
number of nice features that make it pedagogically expedient to consider them
separately. Let the equivalence relation ≡s be defined on a string s by setting
y ≡s w if Ly = Lw. Recall that the index of an equivalence relation is the number
of equivalence classes in it. The following well known fact from [13] shows that
the number of maximal motifs with no don’t care is linear in the length of the
text string. It descends from the observation that for any two substrings y and
w of s, if Lw ∩ Ly is not empty then y is a prefix of w or vice versa.

Fact 1. The index k of the equivalence relation ≡x obeys k ≤ 2n.

When it comes to motifs with at least one don’t care, it is desirable to obtain
as small a basis as possible. Towards this, let x and y be two strings with m =
|x| ≤ |y| = n. The consensus of x and y is the string z1z2...zm on Σ ∪ ‘.‘ defined
as: zi = xi if xi = yi and zi = ‘.‘ otherwise (i = 1, 2, ...,m). Deleting all leading
and trailing don’t care symbols from z yields a (possibly empty) motif that is
called the meet of x and y. The following general property [7] (cf. proof given in
the Appendix) shows that the irredundant 2-motifs are to be found among the
pairwise meets of all suffixes of s.

Theorem 1. Every irredundant 2-motif in s is the meet of two suffixes of s.

An immediate consequence of Theorem 1 is a linear bound for the cardinality
of our set of irredundant 2-motifs: by maximality, these motifs are just some of
the n− 1 meets of s with its own suffixes. Thus

Theorem 2. The number of irredundant 2-motifs in a string x of n characters
is O(n).

With its underlying convolutory structure, Theorem 1 suggests a number of
immediate ways for the extraction of irredundant motifs from strings and arrays,
using available pattern matching with or without FFT. We refer to [1] for a
nice discussion of these alternatives. Specific “incremental” algorithms are also
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available [7] that find all irredundant 2-motifs in time O(n3). The paradigm
explored there is that of iterated updates of the set of base motifs Bi in a string
under consecutive unit symbol extensions of the string itself. Such an algorithm is
thus incremental and single-pass, which may lend itself naturally to applications
of the kind considered here. The construction used for our experiments must take
into account additional parameters related to the density of solid characters,
the maximum motif length and minimum allowed number of occurrences. This
algorithm is described next.

3 The Pattern Discovery Algorithm

The algorithm follows a standard approach to association discovery: it begins by
computing elementary patterns of high quorum and then successively extends
motifs one solid character at a time until this growth must stop. In general, one
drawback of this approach is that the number of patterns at each step grows
very rapidly. In our case, the patterns being grown are chosen among O(n2)
substrings of pairwise suffix meets, so that no more than O(n3) candidates are
considered overall. Trimming takes place at each stage, based on the quorum,
to keep the overall number of growing patterns bounded. Thus our basis can be
detected in polynomial time.

The algorithm makes recurrent use of a routine that solves the following

Set Union Problem, SUP(n, q). Given n sets S1, S2 . . . , Sn on q elements
each, find all the sets Si such that Si = Si1 ∪ Si2 ∪ . . . ∪ Sip i = ij , 1 ≤ j ≤ p.
We present an algorithm in Appendix 6 to solve this problem in time O(n2q).

Input Parameters. The input parameters are: (1) the string s of length n, (2)
the quorum k, which is the minimum number of times a pattern must appear, and
(3) the maximum number D of consecutive ‘.’ characters allowed in a motif. For
convenience in exposition, the notion of a motif is relaxed to include singletons
consisting of just one character.

For the rest of the algorithm we will let m1.
dm2 denote the string obtained

by concatenating the elements m1 followed by d ‘.’ characters followed by the
element m2. Also, recall that Lm = {i|m occurs at i on s}.

Computing the Basis
The algorithm proceeds in the following steps. M is the set of motifs being

constructed.

1. M = M ′ ← {m′ = σ ∈ Σ and Lm′ ≥ k}

2. (a) Let σi.dm, with 0 ≤ d ≤ D, denote the left extension of the motif m
along a meet. For each motif m′ ∈ M ′, use meets to compute all of its
possible left extensions and store them in the set M ′′.

For every m′′ ∈ M ′′, if |Lm′′ | < k then M ′′ ← M ′′ − {m′′}
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(b) Remove all redundant motifs.
For each mi ∈M , with mi / m′′j for some m′′j ∈M ′′,

if ∃ m′′i1 ,m
′′
i2
, . . .m′′ip ∈M ′′, p ≥ 1 such that

mi / m′′ij and
Lmi = Lm′′

i1
+f1 ∪ Lm′′

i2
+f2 . . . ∪ Lm′′

ip
+fp

then
M ← M − {mi}.

The above is solved using an instance of the SUP() problem.
(c) Update the basis and M ′.

M ← M ∪M ′′; M ′ ← M ′′

3. The previous step is repeated until no changes occur to M .

The algorithm works by iterated extensions of motifs previously in M , where
at each iteration a motif is extended (to the left) by zero or more don’t cares
followed by precisely one solid character. Thus, at the end of the i-th iteration
of Step 2, the set M contains motifs with at most i+1 solid characters. As there
can be no more that n solid characters in a meet, the number of iterations is
bounded by n. Since motifs come from meets at all times, and at most one new
motif is considered at one iteration for every ending position on a meet, we have
that M ′ and M ′′ are each bounded by O(n2), whereas the elements in M are
O(n3) at all times (in fact, much fewer in practice). At each iteration we have
O(n2) extensions to perform. By solving the SUP(n3, n), the algorithm must
now try and cover each motif in M by using the new O(n2) ones in M ′′. Step 2-b
ensures that no motif currently in the set M can be deduced with its location
list from the union of other discovered motifs. In other words, the elements of
M are irredundant relative to M itself, in the sense that no member of M can
be inferred from the others. The following claim gives a sharper characterization
of the set M .

Theorem 3. Let M (i) be the set generated by the pattern discovery algorithm
at step i, 0 ≤ i ≤ n. Then M (i) contains every k-motif m such that:

1. m is a substring of the meet of two suffixes, with at most i+1 solid characters
and density D.

2. m is irredundant relative to the elements of M (i).
Moreover,

3. for every k-motif with these properties not in M (i), there are motifs in M (i)

capable of generating it.
4. M (i) is a minimum cardinality set with such properties.

Proof. The claim holds trivially prior to the first iteration. In fact, by initial-
ization M = M (0) = {m = σ is a substring of a meet and m has at least k
occurrences }. Clearly, the elements of M (0) are mutually irredundant since they
correspond each to a distinct character and hence there is no way to express
one of them using the others. M (0) is also exhaustive of such motifs, so that
no character of quorum k is left out. At the same time, M (0) is the smallest
set capable of generating itself. The first time Step 2 is executed this generates
all distinct motifs in the form σ1.

dσ2 that are substrings of meets of quorum k.
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These motifs are stored in M ′′. As they are all distinct, they cannot express each
other, and the only possibility is for them to obliterate single characters. The
latter are now in M ′, which coincides with M . Through Step 2, a single-character
motif m = σ is eliminated precisely when it can be synthesized by two-character
motifs that either begin or end by σ. As all and only such singletons are elimi-
nated, this propagates all claimed properties. Assuming now the claim true up
to step i − 1 ≥ 2, consider the i-th execution of Step 2. We note that, in an
application of Step 2-b, any motif in the set which is used to eliminate motif
m must coincide with m on each and every solid character of m. Therefore, no
one of the newly introduced motifs with exactly i+1 solid characters can be ex-
pressed and discarded using different motifs with i+ 1 solid characters, or (even
worse) motifs with less than i solid characters. Consequently, no such motif can
be discarded by this execution of Step 2-b. Also, no collection of motifs formed
solely by members of M (h) with h < i can be used to discard other motifs, since,
by the operation of the algorithm, any such action would have to have already
taken place at some prior iteration. Finally, no mixed collection formed by some
new motifs in M ′′ and motifs currently in M can obliterate motifs in M . In fact,
such an action cannot involve only suffixes of the members of M ′′, or it would
have had to be performed at an earlier iteration. Then, it must involve prefixes
of motifs in M ′′. But any such prefix must have been already represented in M ,
by the third invariant condition.

In conclusion, the only thing that can happen is that motifs currently in M
are obliterated by motifs with i + 1 solid characters, currently in M ′′. At the
beginning of step i, all and only the qualifying k-motifs with i characters are
by hypothesis either present directly or generated by motifs in M (i−1), which
represents also the smallest possible base for the collection of these motifs. The
algorithm extends all the motifs in M (i−1) along a meet of two suffixes, hence
all candidate extensions are considered. Now, the net worth of Step 2 is in the
balance between the number of newly introduced motifs with i+ 1 solid charac-
ters and the number of motifs with i solid characters that get discarded. Assume
for a contradiction that a base M̂ exists at the outset which is smaller than
M (i−1). Clearly, this savings cannot come from a reduction in the number of
motifs with i+1 solid characters, since eliminating any one of them would leave
out a qualifying motif and play havoc with the notion of a base. Hence, such
a reduction must come from the elimination of some extra motifs in M (i−1).
But we have argued that all and only the motifs in M (i−1) that can be elimi-
nated are in fact eliminated by the algorithm. Thus M (i) must have minimum
cardinality. �
Theorem 4. The set M at the outset is unique.

Proof. Let h be the first iteration such that from M (h−1) we can produce two
sets, M (h) and M̄ (h), such that M (h) = M̄ (h) but |M (h)| = |M̄ (h)|. Clearly, the
members of M ′′ that come from extensions of M (h−1) must belong both to M (h)

and M̄ (h). Hence the two sets must differ by way of an alternate selection of the
members of M (h−1) that are eliminated on behalf of the motifs in M ′′. But it
is clear that any motif that could be, but is not eliminated by M ′′ will fail to
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comply with the second clause of the preceding theorem. Hence no option exists
in the choice of motifs to be eliminated.

4 Implementation and Experiments

Each phase of our steepest descent paradigm alternates the selection of the pat-
tern to be used in compression with the actual substitution and encoding. The
sequence representation at the outset is finally pipelined into some of the popular
encoders and the best one among the overall scores thus achieved is retained. By
its nature, such a process makes it impossible to base the selection of the best
motif at each stage on the actual compression that will be conveyed by this motif
in the end. The decision performed in choosing the pattern must be based on
an estimate, that also incorporates the peculiarities of the scheme or rewriting
rule used for encoding. In practice, we estimate at log i the number of bits need-
ed to encode the integer i (we refer to, e.g., [5] for reasons that legitimate this
choice). In one scheme (hereafter, Code1) [6], we eliminate all occurrences of m,
and record in succession m, its length, and the total number of its occurrences
followed by the actual list of such occurrences. Letting |m| denote the length of
m, fm the number of occurrences of m in the text string, |Σ| the cardinality of
the alphabet and n the size of the input string, the compression brought about
by m is estimated by subtracting from the fm|m| log |Σ| bits originally encum-
bered by this motif on s, the expression |m| log |Σ|+ log |m|+ fm logn+ log fm
charged by encoding, thereby obtaining:

G(m) = (1)
(fm − 1)|m| log |Σ| − log |m| − fm logn− log fm.

This is accompanied by a fidelity loss L(m) represented by the total number
of don’t cares introduced by the motif, expressed as a fraction of the original
length. If d such gaps were introduced, this would be:

L(m) =
fmd log |Σ|
fm|m| log |Σ| =

d

|m| . (2)

Other encodings are possible (see, e.g., [6]). In one scheme (hereafter, Code2),
for example, every occurrence of the chosen pattern m is substituted by a pointer
to a common dictionary copy, and we need to add one bit to distinguish original
characters from pointers. The space originally occupied bym on the text is in this
case (log |Σ|+1)fm|m|, from which we subtract |m| log |Σ|+log |m|+log |fm|+
fm(logD + 1), where D is the size of the dictionary, in itself a parameter to be
either fixed a priori or estimated.

The tables and figures below were obtained from preliminary experiments. The
major burden in computations is posed by the iterated updates of the motif oc-
currence lists, that must follow the selection of the best candidate at each stage.
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This requires maintaining motifs with their occurrences in a doubly linked list as
in Fig. 1: following each motif selection, the positions of the text covered by its
occurrences are scanned horizontally. Next, proceeding vertically from each such
position, the occurrences of other motifs are removed from their respective lists.

To keep time manageable, most of the experiments were based on a small
number of iterations, typically in the range 250-3,000. For Book1, for instance,
more than 30k motifs could be extracted. Each one of these would convey some
compression if used, but time constraints allowed only less than 10% to be im-
plemented. In the pattern discovery stage, a maximum length for motifs was
enforced at about 40 to 50 characters, and a threshold of 5 or 6 was put on
the overall number of don’t care allowed in a single motif, irrespective of its
length. The collection of these measures made it possible to test the method on
a broad variety of inputs. By the same token, the resulting scores represent quite
a conservative estimate of its potential.

The tables summarize scores related to various inputs under various accep-
tances of loss. Table 1 refers to 8-bit grey-level images as a function of the don’t
care density allowed (last column). The next table, Table 2 shows results on
black and white pictures. These are similar except in this case the loss of one bit
translates into that of 1 byte. By their nature, binary or dithered images such as
in facsimile transmission seem to be among the most promising applications of
our method. At the same time, it has already been reported that “directional”
lossy textual substitution methods can compete successfully even with chromi-
nance oriented methods like JPEG [1]. In view of the results in [6], off-line lossy
variants of the kind presented here should perform just as well and probably
better. Table 3 shows results for musical records sampled at 8 bits. For this
family of inputs, the motif extraction phase alone seems to present independent
interest in applications of contents-based retrieval.

Tables 5, 6, and 7 cover inputs from the Calgary Corpus and some yeast fami-
lies. DNA sequences represent interesting inputs for compression, in part because
of the duality between compression and structural inference or classification, in
part due to the well know resiliency of bio-sequences towards compression (see,
e.g., [6] and references therein). Particularly for text (we stress that lossy com-
pression of bio-sequences is a viable classification tool), lossy compression may
be not very meaningful without some kind of reconstruction. As suggested at the
beginning of the paper, this might be left to the user in some cases. Otherwise,
Table 4 list results obtained by exact completions of the motifs involved in im-
plementation of all of our lossy schemata. It suggests that the bi-lateral context
offered by motifs lends itself to better predictors than the traditional ones based
on the left context alone. In any case, the iteration of motif extraction at several
consecutive levels of hierarchy unveils structural properties and descriptors akin
to unconventional grammars.

We use Figure 2 to display encodings corresponding to the images from
Table 1. The single most relevant parameter here is represented by the density of
don’t care, which is reported in the last column of the table and also evidenced
by the black dots injected in figures at the last column. As mentioned, the max-
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imum length of motifs extracted had to be limited by practical considerations.
Even so, it was found that images rarely produce motifs longer than a few tens
of characters. More severe consequences of these practical restrictions came from
the need to limit the number of motifs actually deployed in compression, which
was kept at those with at least 5 to 10 occurrences, corresponding to a quite
limited dictionary of 1,000 to 2,000 entries. Interpolation was carried out by av-
eraging from the two solid characters adjacent to each gap. The corresponding
discrepancies from the original pixel values reach into 16% in terms of % num-
ber of inexact pixels, but was found to be only a few percentage points if the
variation in value of those pixels was measured instead as a percentage of the
affected pixels (next to last column of Table 8, and entirely negligible (a fraction
of a percent, see last column in Table 8) when averaged over all pixels. This is
demonstrated in the reconstructed figures, that show little perceptible change.

As mentioned, our main interest was testing the breadth of applicability of
the method rather that bringing it to the limit on any particular class of inputs.
This is the scope of future work. In the experiments reported here, the number
of iterations (hence, motifs selected or vocabulary size) was in the range of 250
to 1,000 and slightly higher (3,000) for the Calgary Corpus. The length of motifs
was limited to few tens of characters and their minimum number of occurrences
to 20 or higher. Typically, motifs in the tens of thousands were excluded from
consideration on these grounds, which would have been provably capable of
contributing savings.

Table 1. Lossy compression of gray-scale images (1 pixel = 1 byte)

file file len GZip len Codec2 Codec1 %Diff %loss ‘.’/
[%compr] [%compr] [%compr] gzip char

bridge 66336 61657[7.05] 60987[8.06] 57655[13.08] 6.49 0.42 1/4
60987[8,06] 50656[23.63] 17.84 14.29 1/3

camera 66336 48750[26.51] 47842[27.88] 46192[30.36] 5.25 0.74 1/6
48044[27.57] 45882[30.83] 5.88 2.17 1/5
47316[28.67] 43096[35.03] 11.60 9.09 1/4

lena 262944 234543[12.10] 226844[13.73] 210786[19.83] 10.13 4.17 1/4
186359[29.13] 175126[33.39] 25.33 20.00 1/3

peppers 262944 232334[11.64] 218175[17.03] 199605[23.85] 14.09 6.25 1/4
180783[31.25] 173561[33.99] 25.30 20.00 1/3

5 LZW Encoding

Ziv and Lempel designed a class of compression methods based on the idea of
back-reference: while the text file is scanned, substrings or phrases are identified
and stored in a dictionary, and whenever, later in the process, a phrase or con-
catenation of phrases is encountered again, this is compactly encoded by suitable
pointers or indices [20,30,31]. In view of Theorem 1 and of the good performance
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Fig. 1. Compression and reconstruction of images. The original is on the first column,
next to its reconstruction by interpolation of two closest solid pixels. Black dots used in
the figures of the last column are used to display the distribution of the don’t care char-
acters. Compression of “Bridge” at 1/4 and 1/3 (shown here) ’.’/char densities yields
savings of 6.49% and 17.84% respectively. Correspondingly. 0,31% and 12,50% of the
pixels differ from original after reconstruction. The lossy compression of Camera at
1/4 ’.’/char density saves 11.60% over GZip. Only 6.67% of pixels differ from the orig-
inal after reconstruction. Gains by “Lena” at 1/4 and 1/3 (shown) ’.’/char density are
respectively of 10,13% and 25,33%, while interpolation leaves resp. 3,85% and 10,13%
differences from original. For “Peppers” (last row), the gains at 1/4 and 1/3 (shown)
’.’/char densities were respectively 14,09% (5,56% the corresponding difference) and
25,30% (16,67% diff).
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Table 2. Lossy compression of binary images

file file len GZip len Codec2 Codec1 %Diff %loss ‘.’/
[%compr] [%compr] [%compr] GZip char

ccitt7 513229 109612[78.64] 98076[80.89] 91399[82.19] 16.62 16.67 1/5
93055[81.87] 90873[82.29] 17.10 16.67 1/4
92658[81.95] 85391[83.36] 22.10 25.00 1/3

test4 279213 58736[78.96] 57995[79.23] 54651[80.42] 6.95 0,91 1/4
57714[79.32] 54402[80.51] 7.38 1.27 1/3

Table 3. Lossy compression of music (1 sample = 1 byte)

file file len GZip len Codec2 Codec1 %Diff %loss ‘.’/
[%compr] [%compr] [%compr] GZip char

crowd 128900 103834[19.44] 92283[28.41] 86340[33.01] 16.85 16.67 1/3
eclipse 196834 171846[12.96] 148880[24.36] 139308[29.22] 18,93 9.09 1/4

114709[41.72] 111058[43.57] 35.37 25.00 1/3

Table 4. Lossy vs. lossless performance

file file dim GZip Codec1 %loss ‘.’/ Lossless %Diff
[%compr] [%compr] char [%compr] GZip

bridge 66336 61657[7.05] 50656[23.63] 14.29 1/3 59344[10.54] 3.75
camera 66336 48750[26.51] 43096[35.03] 9,09 1/4 45756[31.02] 6.14
lena 262944 234543[12.10] 175126[33.39] 20.00 1/3 199635[24.07] 14.88

peppers 262944 232334[11.64] 199605[23.85] 6.25 1/4 211497[19.56] 8.97
173561[33.99] 20.00 1/3 195744[25.55] 15.75

ccitt7 513229 109612[78.64] 90873[82.29] 16.67 1/4 97757[80.09] 10.82
85391[83.36] 25.00 1/3 89305[82.59] 18.53

test4 279213 58736[78.96] 54402[80.51] 1.27 1/3 54875[80.34] 6.57

crowd 128900 103834[19.44] 86340[33.01] 16.67 1/3 96903[24.82] 6.68
eclipse 196834 171846[12.96] 139308[29.22] 9.09 1/4 159206[19.11] 7.36

111058[43.57] 25.00 1/3 151584[22.98] 11.97

of motif based off-line compression [8], it is natural to inquire into the structure
of ZL and ZLW parses which would use these patterns in lieu of exact strings.
Possible schemes along these lines include, e.g., adaptations of those in [26], or
more radical schemes in which the innovative add-on inherent to ZLW phrase
growth is represented not by one symbol alone, but rather by that symbol plus
the longest match with the substring that follows some previous occurrence of
the phrase. In other words, the task of vocabulary build-up is assigned to the
growth of (candidate), perhaps irredundant, 2-motifs.
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Table 5. Lossless compression of Calgary Corpus

file file len GZip Codec1 %loss ‘.’/ Lossless %Diff
[%compr] [%compr] char [%compr] GZip

bib 111261 35063[68.49] 36325[67.35] 3,70 1/3 37491[66.30] 6.92
book1 768771 313376[60.01] 245856[68.01] 12.50 1/3 277180[63.95] 11.55
book2 610856 206687[66.16] 197199[67.72] 4,35 1/4 202713[66.81] 1.92
geo 102400 68493[33.11] 40027[60.91] 16.67 1/4 63662[37.83] 7.05
news 377109 144840[61.59] 144541[61.67] 0.42 1/3 144644[61.64] 0.14
obj1 21504 10323[51.99] 8386[61.00] 16.67 2/5 9221[57.12] 10.68
obj2 246814 81631[66.93] 71123[71.18] 20.00 1/2 83035[66.36] -1.72

paper1 53161 18577[65.06] 19924[62.52] 1.75 1/3 20174[62.05] -8.60
paper2 82199 29753[63.80] 29920[63.60] 0.76 1/2 30219[63.24] -1.57

pic 513216 56422[89.01] 52229[89.82] 0.56 1/3 52401[89.79] 7.13
progc 39611 13275[66.49] 13840[65.06] 1.32 1/2 14140[64.30] -6.52
progl 71646 16273[77.29] 17249[75.92] 0.58 1/3 17355[75.78] -6.65
progp 49379 11246[77.23] 12285[75.12] 0.64 1/3 12427[74.83] -10.50

Table 6. Lossless compression of sequences from DNA yeast families

file file len GZip Codec1 %loss ‘.’/ Lossless %Diff
[%compr] [%compr] char [%compr] GZip

Spor EarlyII 25008 8008[67.98] 6990[72.05] 0.45 1/3 7052[71.80] 11.94
Spor EarlyI 31039 9862[68.23] 8845[71.50] 0.36 1/3 8914[71.28] 9.61
Helden CGN 32871 10379[68.43] 8582[73.89] 1.33 1/3 8828[73.14] 14.94
Spor Middle 54325 16395[69.82] 14839[72.68] 0.36 1/4 14924[72.53] 8.97
Helden All 112507 33829[69.93] 29471[73.81] 1.56 1/4 29862[73.46] 11.73
Spor All 222453 68136[69.37] 56323[74.68] 1.61 1/3 57155[74.31] 16.12

All Up 400k 399615 115023[71.22] 93336[76.64] 14.29 1/3 106909[73.25] 7.05

Of the existing versions of the method, we recapture below the parse known
as Ziv-Lempel-Welch, which is incarnated in the compress of UNIX. For the en-
coding, the dictionary is initialized with all the characters of the alphabet. At the
generic iteration, we have just read a segment s of the portion of the text still to
be encoded. With σ the symbol following this occurrence of s, we now proceed as
follows: If sσ is in the dictionary we read the next symbol, and repeat with seg-
ment sσ instead of s. If, on the other hand, sσ is not in the dictionary, then we
append the dictionary index of s to the output file, and add sσ to the dictionary;
then reset s to σ and resume processing from the text symbol following σ. Once
s is initialized to be the first symbol of the source text, “s belongs to the dictio-
nary” is established as an invariant in the above loop. Note that the resulting set
of phrases or codewords obeys the prefix closure property, in the sense that if a
codeword is in the set, then so is also every one of its prefixes.

LZW is easily implemented in linear time using a tree data structure as the
substrate [30,31], and it requires space linear in the number of phrases at the
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Table 7. Synopsis of compression rates for sequences in the yeast DNA by various
lossless methods. The figure in parenthesis is the percentage gain of Codec1 versus
other methods.

Huffman LZ-78 LZ-77 BWT Codec1

File File Len Pack Compress GZip BZip Lossless
[%diff] [%diff] [%diff] [%diff]

Spor EarlyII 25008 7996[13.4] 7875[11.7] 8008[13.6] 7300[3.5] 7052
Spor EarlyI 31039 9937[11.5] 9646[8.2] 9862[10.6] 9045[1.5] 8914
Helden CGN 32871 10590[20.0] 10223[15.8] 10379[17.6] 9530[8.0] 8828
Spor Middle 54325 17295[15.9] 16395[9.9] 16395[9.9] 15490[3.8] 14924
Helden All 112507 36172[21.1] 33440[12.0] 33829[13.3] 31793[6.5] 29862
Spor All 222453 70755[23.8] 63939[11.9] 68136[19.2] 61674[7.9] 57155

All Up 400k 399615 121700[13.8] 115029[7.6] 115023[7.6] 112363[5.1] 106909

Table 8. Compression, fidelity and loss in reconstruction of grey scale images

% Loss % Loss
File File len GZip len Codec1 Diff % %Loss ’.’/ recon all

[%compr] [%compr] GZip car pix pix

bridge 66336 61657[7.05] 57655[13.08] 6.49 0.42 1/4 5.67 0.02
50656[23.63] 17.84 14.29 1/3 7.69 0.90

camera 66336 48750[26.51] 43090[35.03] 11.60 9.09 1/4 0.78 0.05
lena 262944 234543[12.10] 210786[19.83] 10.13 4.17 1/4 7.26 0.27

175126[33.39] 25.33 20.00 1/3 5.11 0.81
peppers 262944 232334[11.64] 199605[23.85] 14.09 6.25 1/4 1.53 0.08

173561[33.99] 25.30 20.00 1/3 3.29 0.52

Table 9. Lossy/Lossless compression of gray-scale images using LZW-like encoding

File File len GZip LZW-like % Diff % Loss LZW-like % Diff ‘.’ /
len lossy GZip lossless GZip car

bridge 66.336 61.657 38.562 37.46 0.29 38.715 37.21 1/4
38.366 37.78 5.35 42.288 31.41 1/3

camera 66.336 48.750 34.321 29.60 0.00 34.321 29.60 1/6
34.321 29.60 0.06 34.321 29.60 1/5
32.887 32.54 6.16 35.179 27.84 1/4

lena 262.944 234.543 120.308 48.71 1.36 123.278 47.44 1/4
123.182 47.48 7.32 135.306 42.31 1/3

peppers 262.944 232.334 117.958 49.23 1.75 121.398 47.75 1/4
119.257 48.67 4.45 129.012 44.47 1/3

outset. Another remarkable property of LZW is that the encoding and decoding
are perfectly symmetrical, in particular, the dictionary is recovered while the
decompression process runs (except for a special case that is easily taken care of).

We test the power of ZLW encoding on the motifs produced in greedy off-line
schemata such as above. Despite the apparent superiority of such greedy off-line
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Table 10. Lossy/Lossless compression of the Calgary Corpus by LZW-like encoding

File File len GZip LZW-like % Diff % Loss LZW-like % Diff ‘.’ /
len lossy GZip lossless GZip car

bib 111.261 35.063 26.679 23.91 14.11 34.174 2.54 1/4
26.679 23.91 14.11 34.174 2.54 1/3

geo 102.400 68.493 30.951 54.81 19.43 57.098 16.64 1/4
33.334 51.33 20.63 58.038 15.26 1/3

news 377.109 144.840 104.807 27.64 11.42 128.429 11.33 1/4
106.483 26.48 19.95 153.243 -5.80 1/3

obj1 21.504 10.323 8.447 18.17 8.38 9.642 6.60 1/4
7.409 28.23 18.03 9.849 4.59 1/3
6.736 34.75 21.61 8.521 17.46 2/5

obj2 246.814 81.631 56.810 30.41 12.75 67.857 16.87 1/3
53.094 34.96 19.88 67.117 17.78 1/2

paper1 53.161 18.577 16.047 13.62 13.63 19.411 -4.49 1/3
15.626 15.89 18.22 19.198 -3.34 1/2

paper2 82.199 29.753 23.736 20.22 15.19 28.743 3.39 1/3
22.519 24.31 36.44 35.390 -18.95 1/2

pic 513.216 56.422 36.491 35.32 0.56 36.599 35.13 1/4
progc 39.611 13.275 11.576 12.80 6.88 12.812 3.49 1/4

11.381 14.27 8.69 12.854 3.17 1/3
11.010 17.06 24.86 15.246 14.85 1/2

progl 71.646 16.273 14.828 8.88 2.72 15.601 4.13 1/4
14.748 9.37 6.99 16.149 0.76 1/3
14.676 9.81 7.70 16.261 0.07 2/5

progp 49.379 11.246 10.287 8.53 3.83 10.879 3.26 1/4
10.265 8.72 7.43 11.328 -0.73 1/3
10.416 7.38 7.12 11.569 -2.87 2/5

approaches in capturing long range repetitions, one drawback is in the encoding
of references, which are bi-directional and thus inherently more expensive than
those in ZLW. Our exercise consists thus of using the motifs selected in the
greedy off-line to set up an initial vocabulary of motif phrases, but then encode
these and their outgrowth while we carry out a parse of the source string similar
to that of ZLW. Assuming that we have already selected the motifs to be used,
this adaptation of ZLW to motifs requires to address primarily the following
problems:

1. We need to modify the parsing in such a way that for every chosen motif,
every one of its occurrences is used in the parsing.

2. We need to modify the dictionary in order to accommodate motifs in addition
to strings. This is to be done while retaining prefix closure.

To ensure that a motif is correctly detected and deployed in the parsing, it has
to be stored in the dictionary before its first occurrence is detected. This requires
building a small dictionary that needs to be sent over to the decoder together
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Table 11. Lossy/Lossless compression of sequences from DNA yeast families by
LZW-like encoding

File File len GZip LZW-like % Diff % Loss LZW-like % Diff ‘.’ /
len lossy GZip lossless GZip car

Spor EarlyII 25.008 8.008 6.137 23.36 16.93 7.430 7.22 1/4
6.163 23.04 12.01 7.052 11.94 1/3

Spor EarlyI 31.039 9.862 7.494 24.01 14.66 8.865 10.11 1/4
7.494 24.01 14.66 8.865 10.11 1/3

Helden CGN 32.871 10.379 7.728 25.54 15.36 9.330 10.11 1/3
Spor Middle 54.325 16.395 11.565 29.46 0.38 11.672 28.81 1/4

11.555 29.52 0.43 11.703 28.62 1/3
Helden All 112.507 33.829 25.873 23.52 18.83 32.029 5.32 1/4

26.010 23.11 18.86 32.182 4.87 1/3
Spor All 222.453 68.136 48.035 29.50 18.98 60.042 11.88 1/4

47.896 29.71 19.00 59.955 12.01 1/3
All Up 400k 399.615 115.023 90.120 21.65 18.62 110.659 3.79 1/3

with the encoded string. In order to enforce the prefix closure, all prefixes of a
motif are inserted in the dictionary together with that motif.

With the dictionary in place, the parse phase of the algorithm proceeds in
much the same way as in the original scheme, with the proviso that once a motif
is chosen, then all of its occurrences are to be deployed. For this, the algorithm
looks at each stage for the longest substring in the tree that does not interfere
with the next motif occurrence already allocated from previous stages. The motif
chosen in this way is then concatenated with the symbol following it and the
result is inserted in the dictionary. In order to avoid the insertion of undesired
don’t cares in text regions not encoded by motifs, that symbol is treated as
mismatching all other characters at this stage of the search.

Decoding is easier. The recovery follows closely the standard ZLW, except for
initialization of the dictionary. The only difference is thus that now the decoder
receives, as part of the encoding, also an initial dictionary containing all motifs
utilized, which are used to initialize the tree.

The tables below summarize results obtained on gray-scale images (Table 9,
1 pixel = 1 byte), the Calgary Corpus (Table 10), and genetic data (Table 11).
For each case, the compression is reported first for lossy encoding with various
don’t care densities, then also for the respective lossless completions.

6 Conclusion

Irredundant motifs seem to provide an excellent repertoire of codewords for
grammar based compression and syntactic inference of documents of various
kinds. Various completion strategies and possible extensions (e.g., to nested de-
scriptors) and generalizations (notably, to higher dimensions) suggest that the
notions explored here can develop in a versatile arsenal of data compression
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methods capable of bridging lossless and lossy textual substitution in a way that
is both aesthetically pleasant and practically advantageous. Algorithms for ef-
ficient motif extraction as well as for their efficient deployment in compression
are highly desirable from this perspective. In particular, algorithms for comput-
ing the statistics for maximal sets of non-overlapping occurrences for each motif
should be set up for use in gain estimations, along the lines of the constructions
given in [10] for solid motifs. Progress in these directions seems not out of reach.
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Appendix

Proof of Theorem 1
Let m be a 2-motif in B, and Lm = (l1, l2, . . . , lp) be its occurrence list. The
claim is true for p = 2. Indeed, let i = l1 and j = l2, and consider the meet m′

of sufi and sufj. By the maximality in composition of m, we have that m′ / m.
On the other hand, for any motif m̂ with occurrences at i and j it must be
m̂ / m′, whence, in particular, m / m′. Thus, m = m′. Assume now p ≥ 3 and
that there is no pair of indices i and j in Lm such that m is the meet of sufi
and sufj. Again, for any choice of i and j in Lm, we must have that m / m′,
where m′ denotes as before the meet of sufi and sufj. Therefore, we have that
m / m′ but m = m′ for all choices of i and j. Assume now one such choice is
made. By the maximality of m, it cannot be that m′ is the meet of all suffixes
with beginning in Lm. Therefore, there must be at least one index k such that
m′ differs either from the meet of sufk and sufi or from the meet of sufk and
sufj, or from both. Let, to fix the ideas, m′′ be this second meet. Since m / m′′

and m / m′ then Lm′ and Lm′′ are sublists of Lm, by Lemma 1. In other words,
Lm can be decomposed into two or more lists of maximal motifs such that their
union implies m and its occurrences. But this contradicts the assumption that
m is irredundant. �

The Set Union Problem, SUP(n, q). Given n sets S1, S2 . . . , Sn on q elements
each, find all the sets Si such that Si = Si1 ∪ Si2 ∪ . . . ∪ Sip i = ij, 1 ≤ j ≤ p.

This is a very straightforward algorithm (this contributes an additive term to
the overall complexity of the pattern detection algorithm): For each set Si, we
first obtain the sets Sj j = i, j = 1 . . . n such that Sj ⊂ Si. This can be done in
O(nq) time (for each i). Next, we check if ∪jSj = Si. Again this can be done in
O(nq) time. Hence the total time taken is O(n2q).



Reverse–Complement Similarity Codes

A. D’yachkov�, D. Torney, P. Vilenkin, and S. White

Abstract. In this paper, we discuss a general notion of similarity func-
tion between two sequences which is based on their common subse-
quences. This notion arises in some applications of molecular biology [14].
We introduce the concept of similarity codes and study the logarithmic
asymptotics for the size of optimal codes. Our mathematical results an-
nounced in [13] correspond to the longest common subsequence (LCS)
similarity function [2] which leads to a special subclass of these codes
called reverse-complement (RC) similarity codes. RC codes for additive
similarity functions have been studied in previous papers [9,10,11,12].

Keywords: sequences, subsequences, similarity, DNA sequences, codes,
code distance, rate of codes, insertion-deletion codes.

1 Introduction

This paper in organized as follows. In Section 2, we define similarity functions,
similarity codes and a reverse-complement operation for codewords. In Section
3, we consider some types of similarity functions. In Section 4, we describe some
biological applications that give motivation for our study. Finally, in Section 5
we obtain random coding bounds on the rate of reverse-complement similarity
codes. We restrict ourselves to only one special similarity function, namely, the
length of a longest common subsequence of given sequences.

2 Notations and Definitions

In the whole paper, the symbol � denotes definitional equalities.

2.1 Similarity Functions and Similarity Codes

Consider a finite alphabet A. For a positive integer n denote by An the set of all
sequences (codewords) of length n: An �

{
x = (x1, . . . , xn), xi ∈ A

}
. A subset

C ⊂ An is called a (fixed-length) code of length n. We will use symbol A� to
denote the set of all finite codewords, i.e. the union of An over all n ≥ 1.

Definition 1. A symmetric function S(n) defined on the set An × An is called
a (fixed-length) similarity function if 0 ≤ S(n)(x,y) ≤ S(n)(x,x) for any x,y ∈
An. We call a similarity family a set of fixed-length similarity functions S′ =
{S(n), n ≥ 1}.
� The work of Arkadii D’yachkov and Pavel Vilenkin was supported by the Russian

Foundation of Basic Research, Grant 01-01-00495, and INTAS-00-738.
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For a code C ⊂ An and a given similarity function S(n) consider the following
similarity parameters:

– the minimum self-similarity: S(n)
s (C) � min

x∈C
S(n)(x,x);

– the maximum cross-similarity: S(n)
c (C) � max

x,y∈C
x �=y

S(n)(x,y);

– the similarity threshold: S(n)
t (C) � S(n)

s (C) − S(n)
c (C).

A code C ⊂ An is called a similarity code if the value S(n)
s (C) is large enough

and the value S(n)
c (C) is small enough.

Definition 2. Let S and ∆ be nonnegative numbers. A code C ⊂ An is called
a similarity code with threshold ∆ (St-code) if S(n)

t (C) ≥ ∆. A code C ⊂ An is
called a similarity code with parameters (S,∆) (Sp-code) if S(n)

s (C) ≥ S+∆ and
S(n)

c (C) ≤ S.

2.2 Rates of Similarity Codes

Let a similarity family S′ =
{
S(n), n ≥ 1

}
be fixed. For a given n denote by M(n)

t

and M(n)
p the maximum sizes of St-code and Sp-code with given parameters:

M(n)
t (∆) � max

{
|C| : C ⊂ An, S(n)

t (C) ≥ ∆
}
, ∆ ≥ 0,

M(n)
p (S, ∆) � max

{
|C| : C ⊂ An, S(n)

s (C) ≥ S + ∆, S(n)
c (C) ≤ S

}
, S ≥ 0, ∆ ≥ 0.

We would like to study the logarithmic asymptotics of these values described
by the following rate functions :

Rt(d) � lim
n→∞

logM(n)
t (dn)
n

, d ≥ 0,

Rp(s, d) � lim
n→∞

logM(n)
p (sn, dn)
n

, s ≥ 0, d ≥ 0.

The following relation between these functions is obvious.

Proposition 1. Rt(d) = max
s≥0

Rp(s, d).

2.3 Pseudodistance Functions

Let S(n) be a similarity function on An. Consider the following function

D(n)(x,y) � S(n)(x,x) + S(n)(y,y)
2

− S(n)(x,y), x,y ∈ An. (1)

One can see that D(n)(x,y) = D(n)(y,x) ≥ 0 and D(n)(x,x) = 0 for any x,y ∈
An. The function D(n) is called a pseudodistance function corresponding to the



816 A. D’yachkov et al.

similarity function S(n). On the other hand, let D(n) be a function with the
properties mentioned above and let W be a positive function on An such that
D(x,y) ≤ W(x) for any x,y ∈ An. Then there exists a similarity function on
An having the form

S(n)(x,y) � W(x) + W(y)
2

−D(n)(x,y).

Let S(n) be a similarity function, D(n) be the corresponding pseudodistance
function and C be a similarity code with threshold ∆. Then D(n)(x,y) ≥ ∆
for any x,y ∈ An, x = y. If D(n) is a distance function, then C is a code with
distance∆. This relation between similarity codes and well-known distance codes
is useful for the problem of obtaining bounds on the rates of similarity codes.

For a function D(n) becomes a real distance we need the triangle inequality
and also need that D(n)(x,y) > 0 for any x = y. The second property will
be held if for example S(n)(x,y) < S(n)(x,x) for any x = y. And the triangle
inequality for D(n) is equivalent the following relation

S(n)(x, z) + S(n)(y, z) ≤ S(n)(x,y) + S(n)(z, z) for any x,y, z ∈ An.

2.4 Reverse-Complement Codes

Now we introduce the additional reverse-complement condition which is impor-
tant for the most significant biological application of similarity codes. Assume
that a complement operation on A is fixed, i.e. for any element a ∈ A a com-
plement element ā ∈ A is specified. We assume that ¯̄a = a for any element
a ∈ A.

For a sequence x = (x1, x2, . . . , xn) ∈ An define a reverse-complement se-
quence ←−x ∈ A that has the form

←−x � (xn, . . . , x2, x1). (2)

Definition 3. A code C ⊂ An is called a reverse-complement code (RC-code)
if for any x ∈ C the corresponding reverse-complement sequence ←−x ∈ C. If
in addition ←−x = x for any x ∈ C, then we call a code C the dual reverse-
complement code (RCd-code). Any RCd-code is composed of pairs of distinct
reverse-complement codewords.

The notion of RC-codes generalizes the notion of reversible codes [1] that corre-
sponds to a trivial complement operation ā = a.

3 Some Types of Similarity Families

3.1 Subsequence Similarity Function

One of the natural (especially for biological applications) approach for measuring
similarity between two sequences is based on common subsequences. Denote by
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CS(x,y), x,y ∈ A�, the set of all sequences z ∈ A� such that z is a subsequence
of both x and y. Let a subset ACS(x,y) ⊂ CS(x,y) be defined for any x,y ∈ A�

such that ACS(x,y) = ACS(y,x) and x ∈ ACS(x,x) for any x ∈ A�. We call
ACS(x,y) a set of admissible common subsequences of x and y. The functional
ACS itself will be referred to as the rule that singles out admissible common sub-
sequences among all common subsequences. Now define the following function:

S(x,y) � max
z∈ACS(x,y)

W(z), x,y ∈ A�. (3)

We call it a subsequence similarity function based on the weight function W and
a rule ACS. One can see that such function satisfies all terms of definition 1.

If we restrict ourselves to the fixed-length sequences, then we obtain a fixed-
length similarity function. Taking all possible lengths we get a similarity family.

Now we consider some examples of similarity families obtained by this method.

3.2 LCS Similarity Function

Let ACS(x,y) = CS(x,y). Put W(z) equals the length of the sequence z. Then
equality (3) defines the well-known measure of similarity between two sequences
— the length of the longest common subsequence of x and y. It is usually denoted
by LCS(x,y).

Consider the corresponding fixed-length similarity function S(n) on An. In this
case the pseudodistance function (1) coincides with the well-known Levenstein
distance, i.e. the minimum number of insertion–deletion transformations that
transform one sequence to another.

LCS similarity function can be generalized in several ways. We can assign
weights to different symbols from A. Then the weight function W can be defined
as the component-wise sum of alphabetic weights:

W(z) �
∑
i

w(zi). (4)

In the case w(z) ≡ 1 this approach gives the LCS similarity function.
Another way of generalization is to consider non-trivial rules ACS(x,y). We

would like to mention the paper [15] where the authors consider the following
rule: a sequence z ∈ CS(x,y) is called admissible if any consecutive elements zi
and zi+1 which are separated in x are also separated in y and vice versa. This
rule has a good biological motivation (see below).

3.3 Additive Similarity Functions

Anumber of fixed-length similarity functions canbe defined taking the component-
wise sum of alphabetic similarities. Let S be a similarity function on the alphabet
A. For an integer n ≥ 1 put

S(n)(x,y) �
n∑
i=1

S(xi, yi), x,y ∈ An.
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In this case S(n) is called an additive similarity function corresponding to the
alphabetic similarity function S. Obviously, in this case the corresponding
pseudodistance function D(n) also has the form of the component-wise sum of
alphabetic pseudodistances.

Consider a special case of additive similarity functions. Namely, let w be
an arbitrary positive function on the alphabet A. We call w the alphabetic
weight function. Define the following alphabetic similarity function S(x, y) �

0, ifx = y,
w(x), ifx = y,
x, y ∈ A

. We call S the alphabetic weight similarity function and

the corresponding additive similarity function S(n) the weight additive similari-
ty function. One can see that the corresponding function D(n) is a real distance
function. It has the form of component-wise sum of the following alphabetic
distance function

D(x, y) =
w(x) + w(y)

2
, x, y ∈ A, x = y and D(x, x) = 0. (5)

As an example consider the weight function w(x) ≡ 1. In this case D(n)(x,y) is
the Hamming distance between vectors x and y, and S(n)(x,y) is the Hamming
similarity between x and y, i.e., the number of coordinates i such that xi = yi.
If C ⊂ An is a similarity code with threshold ∆, then C is also a code with
Hamming distance ∆.

Note that weight additive similarity functions can be considered as the special
case of subsequence similarity functions. For this we need to take the additive
weight function (4) and define the following rule: a sequence z ∈ CS(x,y) is
admissible if any element zi has the same indices in x and y.

For a biologically motivated case of quaternary alphabet and a special weight
function such codes were considered in [9] without the reverse-complement con-
dition. The general case was studied in [11]. The results are based on the men-
tioned relationship between similarity codes and distance codes. Some of the
methods which are used for Hamming distance [5] can be generalized to the
weight distance (5).

4 Biological Motivation

4.1 DNA Sequences and Their Properties

A DNA molecule is a sequence which is composed of consecutive bases. There
exist 4 types of bases: adenine (A), citosine (C), guanine (G), and thymine (T ).
A DNA molecule is directed, i.e., one endpoint of it can be considered as the
beginning and another one as the end. Due to this fact, the one-to-one corre-
spondence exists between DNA molecules and codewords over the quaternary
alphabet A � {A,C,G, T }. We will use the term DNA sequence to indicate both
a DNA molecule and a codeword that corresponds to it.

An important property of DNA sequences that plays the fundamental role for
many practical purposes is that a pair of oppositely oriented molecules can form
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a duplex which is based on hydrogen bonds between some base pairs. Namely, a
pair “A—T ” forms two bonds, a pair “C—G” forms three bonds, and any other
pair is called a mismatch because it does not form any bond. This leads to the
following natural complement operation on the alphabet A:

A � T , C � G, G � C, T � A. (6)

Thus, hydrogen bonds occur only in pairs that are formed by complement bases.
Fig. 1 shows an example of a duplex. Using the notations of molecular biology

we denote the beginning and the end of each molecule by the symbols 5′ and 3′,
respectively. In the given example two pairs “A—T ” and three pairs “C—G”
form 2 · 2 + 3 · 3 = 13 hydrogen bonds. Other 4 pairs of bases are mismatches
and form no hydrogen bonds. A process of forming a duplex from single strands
is referred to as DNA hybridization.

3′ A �T �G �G �A �C �C �A �G 5′

5′ A � A � C � G � T � G � G � C � T 3′

Fig. 1. A duplex formed by the DNA sequences x = AACGT GGCT and y =
GACCAGGT A

An important characteristic of a duplex is its energy. It can be considered
as a measure of a duplex stability. It is connected with an important physics
characteristic called the melting temperature of a duplex. If a temperature of the
environment grows higher than this level, then all bonds collapse and the duplex
splits back to the single strands. In other words, the more stable a duplex is, the
greater temperature is necessary to melt it.

Let x,y ∈ A� be two DNA sequences. Let E(x,y) be the energy of the duplex
formed by x and y. Regardless of the exact definition of this function (which
will be discussed later) several properties follow from its physical meaning:

(E1) It is obvious that E(x,y) = E(y,x).
(E2) Let a sequence x be fixed. We wish to maximize the value E(x,y) over all

y ∈ A�, i.e., find a sequence y forming the most stable duplex with x. One
can easily understand that the most stable duplex appears if and only if
there are no mismatches in it, i.e., it contains only complement base pairs.
One can see that this holds iff y is the reverse-complement (2) sequence to
x based on the complement operation (6). Thus, we obtain

max
y

E(x,y) = E(x,←−x ). (7)

(E3) We assume that E(x,y) = E(←−x ,←−y ). This assumption is based on the fact
that the duplexes that are formed by the given DNA sequences have the
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same complement pairs located in the same order. Only the mismatches
between them may differ, see Fig. 2. We assume that such differences do
not affect the value of stability.

3′ T �A �G �G 5′

5′ A � G � C � C 3′

3′ C �C �T �A 5′

5′ G � G � C � T 3′

Fig. 2. Duplexes formed by the DNA sequences AGCC and GGAT with their reverse-
complements GGCT and AT CC

4.2 Using DNA Sequences as Tags

Properties of DNA sequences described above yield many interesting applica-
tions. One of the popular application is DNA computing. We consider the tech-
nique of using DNA sequences as tags for molecular objects. Assume that we
have a pool containing p types of some molecular objects. Each object of the
i-th type is marked by a DNA sequence xi, i = 1, . . . , p. These sequences are
referred to as capture tags.

Our aim is to separate the objects. To do this we consider a set of other p
DNA sequences {y1, . . . ,yp} which are called address tags. Then a solid support
is taken. It is divided into p separate zones. Many copies of an address tag yj are
immobilized onto the corresponding j-th zone that physically segregates them.
Then the support is placed into the pool (Fig. 3).

y1 y1

zone 1

y2 y2

zone 2

yp yp

zone p

1
x1

1
x1

1
x1

2
x2

2
x2

2
x2

p
xp

p
xp

p
xp

Fig. 3. A pool with capture tags xi and address tags yi

Each pair of DNA sequences in a pool may form a duplex (except immobilized
address tags). In particular, any capture tag xi may form a duplex with an
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address tag yj . In this case the corresponding object of the i-th type finds itself
settled on the j-th zone of the support. Since there are many copies of each
object and many copies of each address tag, one can finally find any type of
object settled on j-th zone for any j = 1, . . . , p.

For the simplicity assume that the energy function E expresses exactly the
melting temperature of a duplex. Assume that for an index j ∈ {1, 2, . . . , p}
a certain temperature range separates the large value E(xj ,yj) from the small
values E(xi,yj) for i = j. This means that there exists a temperature range
at which all duplexes on the j-th zone melt except those which are formed by
xj and yj . Finally, only the objects of the j-th type will be settled on the
corresponding zone and that separates them from the other types, see Fig. 4.
Whenever this condition holds for all values j, we are able to separate all types of
objects.

zone j

yj

1

x1 yj

j

xj yj

p

xp

�

�E(xj, yj)

E(xi,yj)

i �= j

Fig. 4. Separation of the j-th objects

Consider two simple conditions which should be imposed on the DNA se-
quences that are used in the process. Obviously, the tags of the same type should
be different, i.e., xi = xj and yi = yj for any i = j. In addition, we require that
not only E(xi,yj) must be small enough for i = j but also E(xi,xj) for any i
and j. This requirement is based on the fact that a capture tag may also form a
duplex with another capture tag. If this occur, then two molecular objects will
be attached to themselves. If such duplexes are stable enough, then this may
affect the experiment and the separating procedure. In particular, this yields
xi = yj for any i and j. Thus, all 2p tags should be mutually different.

4.3 Statements of the Problems

Let p be a fixed positive integer. The model which was introduced above leads
to the following problems:

Problem π1: for given numbers S and ∆ ≥ 0 construct 2p different DNA tags
x1, . . . ,xp,y1, . . . ,yp ∈ A� such that E(xi,yi) ≥ S +∆ for any i, E(xi,yj) ≤ S
for any i = j, and E(xi,xj) ≤ S for any i and j.
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Problem π2: for a given number ∆ ≥ 0 construct 2p different tags for which
there exists a number S such that these tags solve problem π1 for the pair (S,∆).

One can see that in problem π1 a pair (S,∆) specifies the exact temperature
range (starting at the point S and having the length ∆) which is used for sep-
arating. In problem π2 a number ∆ specifies only the size of this range but not
the exact location of it.

We will not consider these general problems but use a certain simplification.
Namely, we put yi � ←−xi for all i. This choice is motivated by the equality (7)
and the requirement that tags xi and yi should form the stable duplex for any
i. This reduction leads to the following problems.

Problem π′1: for given numbers S and ∆ ≥ 0 construct p different tags x1, . . . ,
xp such that: (a) xi = ←−xj for any i and j; (b) E(xi,←−xi) ≥ S + ∆ for any i; (c)
E(xi,←−xj) ≤ S for any i = j; (d) E(xi,xj) ≤ S for any i and j; (e) E(←−xi ,←−xj) ≤ S
for any i and j. Note that condition (e) follows from (d) and the property (E3).

Problem π′2: for a given number ∆ ≥ 0 construct p different tags x1, . . . ,xp
such that there exists a number S for which these tags solve problem π′1 for the
pair (S,∆).

4.4 DNA Similarity Function

Consider the following DNA similarity function

SDNA(x,y) � E(x,←−y ), x,y ∈ A�. (8)

Using (8) we can formulate problem π′1 in the following equivalent form: for
given numbers S ≥ 0 and ∆ ≥ 0 construct 2p mutually different DNA sequences
x1, . . . ,xp,←−x1, . . . ,

←−xp such that:

(a) SDNA(xi,xi) ≥ S +∆ for any i; (b) SDNA(xi,xj) ≤ S for any i = j.

One can see that these conditions coincide with the definition of similarity
RCd-code with parameters (S,∆) (see definitions 2 and 3). Similarly, problem
π′2 leads to similarity RCd-code with threshold ∆.

Let us discuss possible ways for measuring duplex energy E(x,y). This prob-
lem does not seem to be easy and the authors do not know a satisfactory answer.
To start with, any pair of DNA sequences may form different duplexes. Figures
1 and 2 show the simplest configuration in which DNA sequences of the same
length are located exactly opposite each other. But it is known that many oth-
er configurations are also possible. We can single out four configurations which
form the basis for all possible locations of molecules in a duplex. We call them
normal location, overhang, loop, and hairpin. They are shown on Fig. 5. Note
that a hairpin is based on a single DNA sequence. Since these configurations
appear in different combinations, a pair of long DNA sequences may form large
number of duplexes.

Even if we choose a specific duplex configuration, it is not obvious how to
measure its energy value. One possible method is to calculate the number of
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� �5′ 3′

3′ 5′
�

5′

3′

� �5′ 3′

3′ 5′
� �5′ 3′

3′ 5′

Fig. 5. Basic configurations of DNA duplexes. Top left: normal; top right: overhang;
bottom left: loop; bottom right: hairpin.

hydrogen bonds. Thus, a duplex shown on figures 1 and 2 have energy values
13 and 8, respectively. This model leads to additive similarity functions. But
it is too simple and rough model. For example, it is known that gaps between
sequences bonded bases powerfully decrease the stability of a duplex.

A better approach is the nearest-neighbor interactions method which is pre-
sented in [6]. In this method, the stability function has the form of the sum which
is taken not over single positions of the DNA sequences but over pairs of them.
For example, the stability of the duplex shown on Fig. 1 should be calculated as
the sum

e(AA/AT ) + e(AC/T G) + e(CG/GG) + · · ·

The values of the function e are chosen by experimental methods.
Unfortunately, in [6] authors consider only the stability of DNA double helixes,

i.e., duplexes with normal configuration and no mismatches (in other words,
duplexes formed by pairs of DNA sequences (x,←−x )).

A survey of different methods of calculating the stability function can be found
in [7]. We should only note that more precise methods can be found much more
difficult for mathematical analysis.

Thus, we can only work with more or less precise model describing the chemical
process under consideration. We can consider the general subsequence method
considered in section 3.1. A rule ACS used in this method singles out physically
realizable duplex configurations and a weight function W is used to measure the
stability of a given configuration. In the rest of the paper we will consider the
simplest model in which weight function is equal to the length of the sequence
and all subsequences are considered as physically realizable. In the paper [15] the
authors consider a special rule (see comment in section 3.2) which is based on the
idea that if there is a gap in one molecule, then there should be a corresponding
gap in another.

5 Bounds on the Rate of LCS Similarity Codes

5.1 Definitions

In the present section we study the LCS similarity function defined in section
3.2. We will use symbol q to denote the size of the alphabet |A|. Denote by
LCS(x,y) the length of a longest common subsequence z ∈ CS(x,y), x,y ∈ A�.
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The function LCS(x,y) is the similarity measure that will be considered in the
rest of the paper.

Obviously, LCS(x,x) equals the length of the sequence x itself. This property
simplifies definition 2 because LCS(x,x) = n for all x ∈ An. Thus, we will study
codes defined as follows.

Definition 4. A fixed-length code C ⊂ An is called an LCS code with similarity
S if LCS(x,y) ≤ S for any x,y ∈ C, x = y. One can see that this condition is
equivalent to the following one: the Levenstein distance between any two different
codewords is not less than n− S. Although these codes are well known and have
been studied before, the lower bound on the rate which is proved in this section
seems to be new.

Definition 5. Let a complement operation on the alphabet A be fixed (see sec-
tion 2.4). We call a set C ⊂ An a reverse-complement LCS (RC-LCS) code with
similarity S if C satisfied definition 4 and ←−x ∈ C for any x ∈ C.

Definition 6. A set C ⊂ An will be referred to as a dual reverse-complement
LCS (dRC-LCS) code with similarity S if C satisfied definition 5 and ←−x = x for
any x ∈ C.

Denote byM(n)
LCS(S),M(n)

RC−LCS(S),M(n)
dRC−LCS(S) the maximum sizes of codes

defined above. Consider the corresponding similarity rate functions RLCS(s),
RRC−LCS(s), RdRC−LCS(s) defined as follows:

R�(s) � lim
n→∞

logM(n)
� (sn)
n

, s ≥ 0. (9)

We will obtain a lower bound on these functions. Denote the pseudodistance
function (1) for LCS similarity function by D(n)

id . It has the form D(n)
id (x,y) =

n− LCS(x,y), x,y ∈ An, and coincides with the Levenstein distance [2,?], i.e.,
the minimum number of insertion-deletion transformations that transform x to
y. An LCS code with similarity S is equivalent to a code with insertion-deletion
distance D = n−S. Thus, using notations of coding theory we will consider the
distance rate functions Rid(d) = RLCS(1 − d), RRC−id(d) = RRC−LCS(1 − d),
and RdRC−id(d) = RdRC−LCS(1 − d), 0 ≤ d ≤ 1.

5.2 Additional Statements

Let us consider two propositions which will be used in the proof of lower bound
on the rate functions for LCS similarity codes.

The first statement is considered with the size of spheres for the Levenstein
metric. For the case q = 2 the statement was proved in [3]. Although the proof
for the general case is the same, we perform it below for the completeness of the
paper.

Proposition 2. [3]Let n and m be integers, 0 ≤ m ≤ n. For an arbitrary
sequence y ∈ Am denote by B(y, n) ⊂ An the set of all sequences x ∈ An that
include y as a subsequence, i.e., that can be obtained from y by n−m insertions.
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Then for the fixed n and m the size of B(y, n) does not depend on y ∈ Am and
has the form

|B(y, n)| =
n−m∑
k=0

(
n

k

)
(q − 1)k � B(m,n). (10)

Proof. First we prove that for the given integer m the size of a set B(y, n) does
not depend on y ∈ Am and we can denote it by B(m,n). We use induction over
m. For m = 0 and m = 1 the statement is trivial. Assume that it is proved for
all integers less than m ≥ 2. Take a vector y = (y1, . . . , ym) ∈ Am. Consider the
subsequence ỹ � (y2, . . . , ym) ∈ Am−1. Divide the set B(y, n) into the sum of
mutually disjoint sets Bk(y, n), k = 1, . . . , n − m + 1, where the set Bk(y, n)
is composed of vectors x ∈ B(y, n) such that xi = y1 for i = 1, . . . , k − 1, and
xk = y1. Obviously, any such vector x belongs to the set B(y, n) if and only if
the sequence (xk+1, . . . , xn) ∈ An−k contains a subsequence ỹ. Thus,

|Bk(y, n)| = (q − 1)k−1|B(ỹ, n− k)| = (q − 1)k−1B(m− 1, n− k),

where we used the induction hypothesis. Thus, the size |Bk(y, n)| is the same
for all vectors y. This proves that the size |B(y, n)| also does not depend on y.

To complete the proof, take a vector y = (0, . . . , 0). The equality (10) for it
is trivial.

Proposition 2 is proved.

For a random coding bound we will also need the logarithmic asymptotics of the
function B(m,n).

Proposition 3. Let a number µ be fixed, 0 ≤ µ ≤ 1. Then βq(µ) � limn→∞
logq B(µn,n)

n =
{

1, 0 ≤ µ ≤ 1
q ,

hq(µ) + (1 − µ) logq(q − 1), 1
q ≤ µ ≤ 1, where the function

hq(µ) = −µ logq µ− (1 − µ) logq(1 − µ) is the entropy function.

The proof of proposition 3 is a simple analysis of the logarithmic asymptotics.
It is omitted here.

Proposition 4. Let x ∈ An be an arbitrary sequence. Put m � LCS(x,←−x ).
Then for the pair (x,←−x ) there exist a longest common subsequence y ∈ CS(x,←−x ),
y ∈ Am, such that y = ←−y .

Proof. Introduce some additional notations. Put [n] � {1, 2, . . . , n}. Consider
the set of index pairs [n]2 � [n] × [n]. Notations which are given below are
motivated by representation of a pair (i, j) ∈ [n]2 in the form of a segment as
shown at Fig. 6. We say that a pair (i1, j1) ∈ [n]2 does not intersect a pair
(i2, j2) if either i1 < i2 and j1 < j2, or i1 > i2 and j1 > j2. Otherwise we say
that (i1, j1) intersects (i2, j2). Moreover, we say that (i1, j1) intersects (i2, j2)
from the left if i1 ≤ i2 and j1 ≥ j2. On the other hand, if i1 ≥ i2 and j1 ≤ j2,
then we say that (i1, j1) intersects (i2, j2) from the right.

We will call an index pair (i, j) ∈ [n]2 admissible for a sequence pair (x,y) ∈
An × An if xi = yj . One can see that a common subsequence of a sequence
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1 2 j3 j1 j2 n

1 2 i1 i2 i3 n

Fig. 6. The pairs (i1, j1) and (i2, j2) do not intersect; the pair (i3, j3) intersects (i1, j1)
and (i2, j2) from the right

pair is uniquely specified by a set of mutually nonintersecting admissible index
pairs.

Consider the following reverse-complement operation for index pairs:
←−−
(i, j) �

(n+1−j, n+1− i). If an index pair (i, j) is admissible for a sequence pair (x,y),
then the pair

←−−
(i, j) is admissible for (←−y ,←−x ). In particular, if (i, j) is admissible

for (x,←−x ), then
←−−
(i, j) is also admissible for (x,←−x ).

Take a sequence pair (x,←−x ). Let m = LCS(x,←−x ) and y ∈ Am be a common
subsequence

y = (xi1 , . . . , xim) = (←−xj1 , . . . ,←−−xjm),

where ←−x = (←−x1, . . . ,
←−xn), ←−xi = xn+1−i. Consider the corresponding system of

mutually nonintersecting admissible pairs:

σ =
{
(i1, j1), . . . , (im, jm)

}
⊂ [n]2.

We will divide the whole set σ into three mutually disjoint subsets: σc, σr and
σ�. The first subset σc is composed of pairs (i, j) ∈ σ such that

←−−
(i, j) ∈ σ. We

call them correct pairs. One can see that if σ = σc, then y = ←−y .
If

←−−
(i, j) /∈ σ, then there exists a pair (i′, j′) ∈ σ that intersects with

←−−
(i, j)

because otherwise we could include the admissible pair
←−−
(i, j) into σ and obtain a

common subsequence of length m+1 > LCS(x,←−x ) what is impossible. Moreover,
one can see that if

←−−
(i, j) intersects several pairs from the set σ, then it intersects

all of them identically, i.e., either from the left or from the right. This can be
easily proved by contradiction using the fact that pairs from σ are mutually
nonintersecting. Thus, if a pair (i, j) ∈ σ is not included into σc, then we put it
into σ� or σr depending on how

←−−
(i, j) intersects other pairs from σ.

Assume that (i, j) ∈ σ\σc and
←−−
(i, j) intersects (i′, j′) ∈ σ. Then either (i, j) ∈

σr and (i′, j′) ∈ σ� or (i, j) ∈ σ� and (i′, j′) ∈ σr. This follows from the fact that
if
←−−
(i, j) intersects (i′, j′) from the right, then

←−−−
(i′, j′) intersects (i, j) from the left

and vise versa.
One can see that if we remove the set σ� from σ, then we can add to σ

all pairs
←−−
(i, j) such that (i, j) ∈ σr. All pairs in the new set are admissible and

mutually nonintersecting. Thus we obtain a new common subsequence yr having
the length m−|σ�|+ |σr|. Similarly, removing the set σ� we can obtain a common
subsequence y� having the length m−|σr|+ |σ�|. Since both these values can not
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exceed m we obtain that |σ�| = |σr| and both lengths are equal to m. Moreover,
one can see that both new sets are composed of correct pairs and, thus, both
new subsequences yr and y� are self-reverse-complement: ←−yr = yr and ←−y� = y�.

Proposition 4 is proved.

5.3 Lower Bound on the Rate of LCS Similarity Codes

Theorem 1. Denote by d̂q the unique root d, 0 < d < q−1
q , of the equation

1 + d(1 − 2 logq(q − 1)) − 2hq(d) = 0,

where hq(d) is the entropy function. Then all distance rate functions Rid(d),
RRC−id(d), and RdRC−id(d) satisfy the same inequality R�(d) > 0 for 0 ≤ d < d̂q
and

R�(d) ≥ 1 + d(1 − 2 logq(q − 1)) − 2hq(d), 0 ≤ d ≤ d̂q. (11)

Proof. We will use the random coding method. Fix integers M > 0 and n > 0
and consider a family composed of M sequences C = {x1, . . . ,xM} ⊂ An. Each
sequence xi is choose randomly according to the uniform distribution on the set
An independently from other sequences.

Let a number S ≥ 0 be fixed. Consider the following three conditions on a
sequence xi ∈ C:

(a) LCS(xi,xj) ≤ S for all j = i; (b) LCS(xi,←−xi) ≤ S; (c) xi = ←−xi .
If a sequence xi ∈ C satisfies condition (a), then we call it LCS-good within C.

If xi satisfies both conditions (a) and (b), then we call it RC-LCS-good with-
in C. Finally, if xi satisfies all conditions (a)–(c), then we call it dRC-LCS-good
within C. Otherwise we will call a sequence xi ($)-bad within C.

Note that condition (a) is mutual, i.e. it corresponds to a pair of sequences
within a family, while conditions (b) and (c) correspond to a single sequence.
It will be shown that due to this property the random coding bound essentially
depends only on the first condition. This yields that the bound is the same for
all three types of codes under consideration.

To obtain a random coding bound we need to study the probabilities that
conditions (a)–(c) do not hold for a randomly chosen sequence.

Consider the setK(n, S) �
{
(x,y) ∈ An × An : LCS(x,y) > S

}
. If LCS(x,y)

> S, then there exists a common subsequence z ∈ CS(x,y) having length S. Thus,
the following upper bound is true

|K(n, S)| ≤ qS
(
B(S, n)

)2
.

Let sequences x and y are chosen independently according to the uniform dis-
tribution from An. Then consider the following probability

Pa(S, n) � Pr
{
LCS(x,y) > S

}
=

|K(n, S)|
q2n

≤
(
B(S, n)

)2
q2n−S

.



828 A. D’yachkov et al.

From (3) we obtain

lim
n→∞

logq Pa(sn, n)
n

≤ πq(s) � 2βq(s) + s− 2. (12)

Let πq(s) < 0 for a number s. The we use the following well-known method. For
a random family C described above and an index i we have

Pr
{
xi is LCS-bad within C

}
≤

∑
j �=i

Pr
{
LCS(xi,xj) > S

}
= (M − 1)Pa(S, n).

(13)
Let S = sn, n → ∞. Then Pa(sn, n) < Cqnπ(s) for some constant C and large
enough values of n. TakeM � q−nπ(s)/(2C). Then the mathematical expectation
of the number of LCS-bad codewords in C is less than M/2. Thus, there exists a
family C contains more than M/2 LCS-good sequences. Note that all LCS-good
sequences are mutually different if S < n. Removing all bad sequences from this
family we obtain an LCS similarity code of size M � q−nπ(s)/(4C). Thus, the
following bound on the similarity rate function holds

RLCS(s) ≥ −π(s). (14)

Finally note that the function π(s) = s for 0 ≤ s ≤ 1
q , and for larger values

of s the function π(s) decreases to the value π(1) = −1. Thus, at the interval
1
q ≤ s ≤ 1 these exists a unique root ŝq of the equation π(s) = 0, and the
bound (14) holds for the values ŝq ≤ s ≤ 1. Finally, considering the new variable
d = 1 − s we obtain the statement for the distance rate function Rid(d).

Now consider RC-LCS codes. For a random sequence x ∈ An consider the
following probability

Pb(S, n) � Pr
{
LCS(x,←−x ) > S

}
.

From proposition 4 it follows that if LCS(x,←−x ) = S′ > S, then there exists a
sequence z ∈ CS(x,←−x ) having length S′ and such that z = ←−z . A self-reverse
complement sequence is specified by half of its length. Thus, we obtain the
following bound

P ′b(S
′, n) � Pr

{
LCS(x,←−x ) = S′

}
≤ q
S

′/2�B(S′, n)
qn

.

The logarithmic asymptotic of this value has the form (see (12)):

lim
n→∞

logq P
′
b(s

′n, n)
n

≤ βq(s′) +
s′

2
− 1 = πq(s′).

Again let s be a number such that π(s) < 0. Then this function decreases and
π(s′) < π(s) for s′ > s. Thus, Pb(sn, n) = Pr

{
LCS(x,←−x ) > sn

}
→ 0 as n → ∞.

Based on the random family C = {x1, . . . ,xM} consider a reversed-complement
family

C′ = {x1, . . . ,xM ←−x1, . . . ,
←−xM}.
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Note that if a pair (x,y) has the uniform distribution over An × An, then the
same is true for the pairs (x,←−y ) and (←−x ,←−y ). Thus, the following upper bound
holds (see (13)):

Pr
{
xi is RC-LCS-bad within C′

}
≤ (2M − 1)Pa(S, n) + Pb(S, n).

After this we perform the same reasoning as before and obtain the same bound
for RC-LCS codes.

For dRC-LCS code we must consider the additional (c) condition for good
codewords. One can see that the following inequality is true:

Pc(n) � Pr
{
x = ←−x

}
≤ q−�n/2� → 0, n → ∞.

The random coding method for dRC-LCS codes will be based on the following
inequality

Pr
{
xi is dRC-LCS-bad within C′

}
≤ (2M − 1)Pa(S, n) + Pb(S, n) + Pc(n),

where the last two terms are asymptotically small. After this we use the same
method as before.

Theorem 1 is proved.

We do not have a special upper bound on the distance rate functions under
consideration. One can see that the Hamming distance of a code is not less
than the Levenstein distance. Thus, any upper bound on the rate of codes with
Hamming distance [4,?] can also serve an upper bound for the rate of LCS
similarity codes as well as RC-LCS and dRC-LCS codes. Although this bound
is definitely rough, the authors do not know better results.

We also do not know the critical point, i.e. the value d0(q) such that Rid(d) > 0
for 0 ≤ d < d0(q) and Rid(d) = 0 for d ≥ d0(q). Known upper and lower bounds
yield the inequality d̂q ≤ d0(q) ≤ q−1

q . For some numerical values of q these
bounds have the form

q d̂q
q−1
q

2 0.133404 0.5
3 0.213527 0.6666
4 0.270294 0.75
5 0.313882 0.8
6 0.349016 0.8333
7 0.378281 0.8571
8 0.403244 0.875
9 0.424926 0.8888
10 0.444028 0.9
95 0.763101 0.9895
96 0.764152 0.9896
97 0.76519 0.9897
98 0.766212 0.9898
99 0.767221 0.9899
100 0.768216 0.99
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Probably, the critical point problem is connected with the problem of the ex-
pected LCS length for independent random sequences. This problem is carefully
studied in [8]. The method which is considered there allows to obtain a better
lower bound than stated in Theorem 1 for LCS-codes. This better bound yields
the following inequalities for the critical point: d0(2) ≥ 0.16237, d0(3) ≥ 0.23419,
d0(4) ≥ 0.29176. But we do not know how to generalize that method for reverse-
complement codes.
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On Some Applications of Information Indices in

Chemical Graph Theory�

E.V. Konstantinova

Abstract. Information theory has been used in various branches of sci-
ence. During recent years it is applied extensively in chemical graph
theory for describing chemical structures and for providing good corre-
lations between physico–chemical and structural properties by means of
information indices. The application of information indices to the prob-
lem of characterizing molecular structures is presented in the paper. The
information indices based on the distance in a graph are considered with
respect to their correlating ability and discriminating power.

Keywords and Phrases: information theory, Shannon formula, infor-
mation indices,moleculargraphs, correlatingability,discriminatingpower.
Mathematics Subject Classification 2000: 94A15, 94A17, 94C15.

1 Introduction

We briefly review here selected topics in chemical graph theory, in particular,
being concerned with the use of information theory to characterizing molecular
structure. Chemical graph theory is interested in the nature of chemical structure
[1]. All structural formulae of chemical compounds are molecular graphs where
vertices represent atoms and edges represent chemical bonds. Figure 1 gives
the schematic representation of the derivation of a molecular graph from an
alkane molecule. The molecular graph is the hydrogen–suppressed one. That is
the commonly used representation in chemical graph theory because hydrogen
atoms are small and so add very little to the overall size of the molecule. Using
the molecular graph one can obtain, for example, the carbon–number index (the
number of carbon atoms in the hydrocarbon molecule) which is known since 1844
as one of the first topological indices used in chemistry to characterize molecular
structures. Basically the topological index expresses in numerical form the 2–
dimensional topology of the chemical species it presents. Topological indices are
designed by transforming a molecular graph into a number. Topological indices
possess the remarkable ability of being able to correlate and predict a very wide
spectrum of properties for a vast range of molecular species. The carbon–number
index is well–known to provide an effective measure of the molecular volume: for
the members of homologous series, the molecular volume is known to be directly
proportional to the carbon–number index [2].

The construction and investigation of topological indices which could uniquely
characterize molecular topology is one of the main directions of chemical graph
theory. Among the most important such trends in chemical graph theory are:
� This work was partially supported by the RFBR grant 06-01-00694.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 831–852, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1 – unique representation of compounds;
2 – isomer discrimination (by developing indices with high discriminating

power);
3 – structure–property relationships and structure–activity correlations; (An

universally accepted paradigm is that similar molecules have similar properties.
In other words, structures that differ little in the mathematical invariant prop-
erties will differ little also in their physical, chemical and biological properties.
The above immediately reveals a strategy to attack the problems of structure–
property relationship. Rather than directly trying to relate a property to struc-
ture, we may instead investigate different mathematical properties (invariants)
of a structure and then follow with property–property correlations in which rel-
atively simpler mathematical properties are used to express more complicated
or convoluted physico–chemical and biological properties.)

4 – design of compounds of desired properties; ( The development of a single
drug can take anything from 8–20 years and involve a cost of some $ 100 million.
The current success rate in the testing of possible new drugs is only around one
in 10.000. In drug design, one can synthesize a

large number of derivatives from a ”lead” structure. It is unusual that one
to test 200.000 or more chemicals to discover a molecule that is marketable. In
many cases, one might be interested to know the property of a molecule not yet
synthesized. Then the only solution is to estimate properties using theoretical
parameters which can be calculated for any arbitrary chemical structure, real or
hypothetical.)

5 – enumeration and construction of compounds of certain classes;
We concentrate our attention on the second and third trends. Moreover, we

consider all the aspects with respect to the information theory application.
It is well-known that application of some ideas from one scientific field to

another one often gives a new view on the problems. Information, one of the
most general ideas in contemporary science, should be expected to penetrate
in various branches of science. Indeed, applications of information theory to
molecular graphs have produced results which are important in chemistry.

The science of information theory has grown mainly out of the pioneering
studies of Shannon [3], Ashby [4], Brillouin [5], and Kolmogorov [6]. There is
more than one version of information theory. In Shannon’s statistical information
theory, information is measured as reduced uncertainty of the system. Ashby
[4] describes information as a measure of variety. In the algorithmic theory of
Kolmogorov, the quantity of information is defined as the minimal length of
a program which allows a one–to–one transformation of an object (set) into
another.

Applying information theory to material structures like atoms, molecules,
crystals, etc., as well as to different mathematical structures like sets, groups,
graphs, etc., the interpretation given by Mowshovitz [7–10] in 1968 is more
appropriate.

Let a given system I having n elements be regarded according to a certain
equivalence relation, into k equivalence classes with cardinalities ni. Considering
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Alkane Molecule

↓

C3H8

Chemical formula

↓

H C C C H

H H H

H H H

Structural formula

↓

Molecular hydrogen–suppressed graph

↓

n = 3

Topological index

Fig. 1. Schematic representation of the derivation of the molecular graph and the
carbon–number index from an alkane molecule

all the n elements partitioned into k classes, we can define the probability pi,
i = 1, . . . , k, for a randomly selected element of this system to be found in the
i-th class. Therefore, a finite probability scheme may be associated with the
following structure:  1 2 3 . . . k

n1 n2 n3 . . . nk
p1 p2 p3 . . . pk


where n =

∑k
i=1 ni, pi = ni/n and

∑k
i=1 pi = 1.
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The information content of a system I with n elements is defined by the
relation [5]

I = nlog2n−
k∑
i=1

ni log2 ni (1)

The logarithm is taken to base 2 for measuring the information contents in bits.
Another information measure is the mean information content of one element of
the system I defined by means of the total information content or by the Shannon
relation [3] (which is also called the binary entropy of a finite probability scheme):

I = I/n = −
k∑
i=1

pi log2 pi, (2)

where pi = ni/n. The application of information theory to different systems or
structures is based on the possibility of constructing a finite probability scheme
for every system. One can mention here, that the criterium for partitioning the
elements of a given system is not unique. The number of information measures
is equal to the number of ways in which a set of n elements may be partitioned
into different subsets, that is, the number of Young diagrams for a given n. It
is always possible to select for any system several information measures, each
of them closely connected with certain properties of the system. They reflect
the essence of the idea of information, given by Ashby [4] as a measure of the
variety in a given system. This idea was used in graph theory and in chemical
graph theory for characterizing graphs as well as molecular graphs and molecular
structures.

At first information theory was applied to graphs in 1955 by Rashevsky [11],
who defined the so–called topological information content of the graph Itop. His
definition is based on the partitioning of the vertices of a given graph into classes
of equivalent vertices having the same valences. Trucco [12,13] in 1956 made this
definition more precise on the basis of an automorphism group of the graphs.
In the latter case, two vertices are considered equivalent if they belong to the
same orbit of the automorphism group, i.e., if they can interchange preserving
the adjacency of the graph. Later [14] the topological information was used by
Rashevsky in studying the possibility of self-generation of the life on earth. As
for chemical structures, information theory has been successfully applied in the
study of various molecular properties [15–17], in the field of molecular dynam-
ics [18,19] and quantum chemistry [20–23], in the description of the electronic
structure of atoms [24], in the interpretation of the Pauli principle and Hund
rule [25].

A molecular topology determines a large number of molecular properties. It
was found in the last years that some biological activities of molecules, and
even carcinogenecity, are closely related to a molecular topology. Thus, it is of
a pertinent interest for chemistry (as well as for other natural sciences) to have
some quantitative measure reflecting the essential features of a given topological
structure. As it was mentioned above such measures are usually called topolog-
ical indices in chemical graph theory. A lot of such indices have been suggested
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in the last 50 years [26–40]. They have usually correlated more or less satis-
factorily with the molecular properties but could not discriminate well between
structural isomers, often providing the same index for different isomers. The first
topological index reflecting the topological structure of a molecular graph was
proposed by Harry Wiener in 1947 [26]. The Wiener number W was defined as
the sum of all edges between all pairs of carbon atoms in hydrocarbons. It gives
a good correlation with the thermodynamic properties of saturated hydrocarbon
molecules but doesn’t discriminate well among structural isomers.

Bonchev and Trinajstić [41] applied information theory to the problem of
characterizing molecular structures and molecular topology [42–46] by means
of information indices [47] which are just the quantitative measures of a given
topological structure. The advantage of such kind of indices is in that they may
be used directly as simple numerical descriptors in a comparison with physi-
cal, chemical or biological parameters of molecules in quantitative structure–
property relationships and in structure–activity relationships [48–50]. It can also
be noted that information indices normally have greater discriminating power
for isomers than the respective topological indices. The reasons for this are that
information indices are not restricted to integral values as topological indices
frequently are and information indices are formed from a summation of differ-
ent magnitudes which is usually greater in number than that for the topological
indices.

We present here some results concerning information indices applications to
characterizing molecular structures. The paper is organized in the following way.
First of all, the information indices based on the distance in a graph are reviewed.
Then the numerical results of discriminating tests of indices on structural iso-
mers and graphs are presented. At last, the correlating ability of information
indices is demonstrated on the several classes of organic and organometallic
compound.

2 Information Indices Based on the Distance in a Graph

One can start looking for possible information indices among the graph invari-
ants. Information indices are constructed for various matrices (adjacency matrix,
incidence matrix, distance matrix, layer matrix) and also for some topological
indices such as the Wiener number.

In 1977 Bonchev and Trinajstić [41] introduced an information on distances to
explain the molecular branching that is the critical parameter determining the
relative magnitude of various molecular thermodynamic properties. Firstly they
used the information indices defined by Rashevsky for graphs. However, these
indices are not suitable for describing branching properties of graphs since they
cannot reflect the essence of branching. This may be exemplified by considering
trees with five vertices presented in Figure 2. The five vertices are partitioned in
different orbits in the above three graphs: T1 (2, 2, 1), T2 (2, 1, 1, 1), T3 (4, 1).
Using Eq.(1), the following values for the information content in bits are ob-
tained: IT1 = 7.61, IT2 = 9.61, IT3 = 3.61. One can see that this index cannot
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1 2 3 4 5

T1 : {1, 5}, {2, 4}, {3}

1 2 3 4

5

T2 : {4, 5}, {1}, {2}, {3}

2 5 4

3

1

T3 : {1, 2, 3, 4}, {5}

Fig. 2. Trees with five vertices and their orbits

reproduce the obvious fact that the branching increases from a chain, through a
branched tree, to a star.

So another approach to find an appropriate information measure of branching
was used. One of the graph invariants is the distance matrix. Let G be a con-
nected graph with the set of vertices V (G) , n = |V (G)|. The distance d(u, v)
between vertices u and v in a graph G is the length of the shortest path that
connects these vertices. The distance matrix D =‖ dij ‖, i, j = 1, . . . , n, con-
tains the distances dij = d(i, j) between the different pairs of connected vertices.
Branching is connected with the distance matrix in an obvious way, since with
increasing branching the distances in the graph become smaller. This can easily
be seen from the distance matrices of the trees T1, T2, T3 presented in Figure 2:

D(T1) =

∣∣∣∣∣∣∣∣∣∣
0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

∣∣∣∣∣∣∣∣∣∣
D(T2) =

∣∣∣∣∣∣∣∣∣∣
0 1 2 3 3
1 0 1 2 2
2 1 0 1 1
3 2 1 0 2
3 2 1 2 0

∣∣∣∣∣∣∣∣∣∣
D(T3) =

∣∣∣∣∣∣∣∣∣∣
0 2 2 2 1
2 0 2 2 1
2 2 0 2 1
2 2 2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
Wiener [26] first made use of the connection between the distance matrix and

branching defining the topological index

W =
1
2

n∑
i,j=1

dij (3)

However, the Wiener number often has the same value for different graphs. For
reducing degeneracies, Bonchev and Trinajstić introduced an information on
distances ID in a graph, considering all the matrix elements of distance matrix dij
as elements of a finite probability scheme associated with the graph in question.
Let the distance of a value i appears 2ni times in the distance matrix, where
1 ≤ i ≤ d(G) and d(G) = maxi,j∈V (G) d(i, j) is the diameter of a graph. Then
n2 matrix elements dij are partitioned into d(G)+1 groups, and d(G)+1 group
contains n zeros which are the diagonal matrix elements. With each one of these
d(G) + 1 groups can be associated a certain probability for a randomly chosen
distance dij to be in the i–th group:
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n 2n1 2n2 . . . 2nd(G)
1
n p1 p2 . . . pd(G)


where pi = 2ni/n2 and p0 = n/n2 = 1/n.

The information on distances of a given graphwill then, according to Eqs.(1),(2)
be

I = n2 log2 n
2 − n log2 n−

d(G)∑
i=1

2ni log2 2ni (4)

I = − 1
n

log2

1
n
−
d(G)∑
i=1

2ni
n2

log2

2ni
n2

(5)

Since D is a symmetric matrix, one can consider, for simplicity of discussion,
only the upper triangular submatrix that does preserve all properties of the
information measure. In that case, the following expressions for the mean and
total information on distances are obtained:

IED =
n(n− 1)

2
log2

n(n− 1)
2

−
d(G)∑
i=1

ni log2 ni (6)

I
E

D = −
d(G)∑
i=1

2ni
n(n− 1)

log2

2ni
n(n− 1)

, (7)

where n(n−1)
2 is the total number of upper off–diagonal elements in the dis-

tance matrix D. These information indices correspond to the information on the
distribution of distances in the graph according to their equality or nonequality
and depend on the partitioning of the total number of distances into
classes.

Using Eq.(7), one can obtain the following information on distances in the
three graphs with five vertices presented in Figure 2:

T1 :

∣∣∣∣∣∣
1 2 3 4
4 3 2 1
4
10

3
10

2
10

1
10

∣∣∣∣∣∣
i
ni
pi

I
E

D(T1) = 1.85 I
E

D(T2) = 1.52 I
E

D(T3) = 0.97

T2 :

∣∣∣∣∣∣
1 2 3
4 4 2
4
10

4
10

2
10

∣∣∣∣∣∣
i
ni
pi

T3 :

∣∣∣∣∣∣
1 2
4 6
4
10

6
10

∣∣∣∣∣∣
i
ni
pi

One can see that I
E

D as well as IED = n(n−1)
2 I

E

D reproduces the branching
properties of trees T1, T2, T3 decreasing regularity with increased branching.
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Moreover, Bonchev and Trinajstić have shown that IED is a rather sensitive mea-
sure of branching having different values for all trees with n = 4, 5, 6, 7, 8 (the
total number of trees is 45). The number of all possible distributions of dij , i.e.,
number of different IED , increases rapidly with the increase in the number of
vertices in the graph. This makes IED an appropriate quantity for distinguishing
structural isomers.

However, there is another possible information measure which can be defined
on the basis of distances in the graph. Bonchev and Trinajstić introduced the
information index IWD as the information on the realized distances in a given
graph which depends on the partitioning of the total distance. It is an informa-
tion on the partitioning the Wiener number (which is the total distance of the
graph) into groups of distances of the same absolute values. Since the Wiener
number is given by formula W =

∑d(G)
i=1 i ni and following Eqs.(1) and (2), we

obtain

IWD = W log2 W −
d(G)∑
i=1

i ni log2 i (8)

I
W

D = −
d(G)∑
i=1

ni
i

W
log2

i

W
(9)

For the three five–vertices trees presented in Figure 2, the following values are
obtained:

T1 : IWD = 62.93, I
W

D = 3.15,
T2 : IWD = 57.55, I

W

D = 3.20,
T3 : IWD = 52.00, I

W

D = 3.25

It is easy to see that IWD decreases with branching. It is a more sensitive quan-
tity than the Wiener number since it can distinguish two graphs having the
same Wiener number but different i and ni. It was checked that I

W

D increases
regularity with branching at lower values of n, but at higher ones some irregu-
larity occur and it cannot be used as a good measure of branching. As for IWD ,
it is a sensitive measure of branching having different values for all trees with
n = 4, 5, 6, 7, 8 (the total number of trees is 45). Figure 3 presents the pair of
trees having the same value of the Wiener number and the different values of
IED and IWD .

In [41] the values of both information measures IED and IWD were inspect-
ed in comparison with several topological indices such as the Wiener number,
the greatest eigenvalue of the characteristic polynomial χ1, the sum of the
polynomial coefficients (or Hosoya index) [28], the information on polynomial
coefficients Ipc, and Randić connectivity index χR [29]. The inspection of these
values indicates the great sensitivity of the two information indices IED , IWD to
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all structural details of the tree graphs. There are no two graphs among the 45
graphs examined which have the same information on the graph distances. All
the other listed indices are not so specific, and they often have the same value
for different graphs. The same results were obtained for information indices I

E

D

and I
W

D . Their values were tested on the set of 45 tree graphs. There are no two
graphs having the same values of these indices.

Thus the information measures introduced on the basis of distance matrix
appear to be very appropriate indices for discrimination of graphs. The number
of different values IED for the graphs having the same number of vertices is
limited by the number of all possible distributions n(n− 1)/2 graph edges into
k different groups. Since the number increases rapidly with increasing values of
n, one may expect the information on graph distances to have a good ability
of differentiation between structural isomers even for very large systems. It was
one of the main result obtained by Bonchev and Trinajstić.

It was confirmed later by Konstantinova, Paleev and Diudea [51–53] that the
information approach allows to design very sensitive information indices based
on the distance in a graph. The information distance index of vertex i was
introduced in [51] and defined as follows:

HD(i) = −
n∑
j=1

dij
d(i)

log2

dij
d(i)

, (10)

where d(i) =
∑n
j=1 dij is the distance of a vertex i. Then the information distance

index of graph vertices takes the form

HnD =
n∑
i=1

HD(i) (11)

The same approach was applied to the layer matrix λ =‖ λij ‖, i = 1, . . . , n, j =
1, . . . , d(G), where λij is equal to the number of vertices located at a distance j
from vertex i. The information layer index of graph vertices is defined by formula

Hnλ =
n∑
i=1

Hλ(i) = −
n∑
i=1

e(i)∑
j=0

λij
n

log2

λij
n

, (12)

where e(i) = maxv∈V (G) d(i, v) is the vertex eccentricity. It will be shown later
that indices HnD and Hnλ have a great discriminating power among structural
isomers.

One more information index based on the distance matrix was considered by
Skorobogatov et. al [54] in structure–activity correlations.

The information index H2 is defined by the relation

H2 = −
k∑
i=1

d(i)ki
2W

log2

d(i)ki
2W

, (13)



840 E.V. Konstantinova

n = 7

W = 48

IED = 41.0774 IWD = 203.0586 IED = 40.9544 IWD = 203.5488

W = 46

IED = 39.9740 IWD = 195.0642 IED = 39.5676 IWD = 195.5544

W = 71

n = 8

IED = 62.0606 IWD = 328.0287 IED = 61.8350 IWD = 328.8834

W = 67

IED = 58.7736 IWD = 311.5341 IED = 55.3448 IWD = 312.3888

W = 62

IED = 52.3253 IWD = 289.3857 IED = 51.2058 IWD = 290.3661

Fig. 3. The pair of trees having the same value of the Wiener number and the different
values of IE

D and IW
D
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where ki, i = 1, . . . , k, is the number of vertices having the distance d(i). This
index gives the linear correlations with information mass–spectrum indices on
the several classes of organic and organometallic compounds [55–58].

D’yachkov, Konstantinova and Vilenkin [59] consider the entropy HD, the
marginal entropy HiD and the information ID based on the distance matrix as
follows

HD ≡ −
n∑
i=1

n∑
j=1

dij
2W

log2

dij
2W

= 1 + log2W − 1
W

d(G)∑
i=1

ni i log2 i (14)

HiD ≡ −
n∑
i=1

d(i)
2W

log2

d(i)
2W

= 1 + log2W − 1
2W

n∑
i=1

d(i) log2 d(i) (15)

ID ≡ 2HiD −HD = 1 + log2W − 1
W

 n∑
i=1

d(i) log2 d(i) −
d(G)∑
i=1

ni i log2 i

 (16)

where ni is the number of vertex pairs being at a distance i from each other and
W =

∑d(G)
i=1 i ni.

Let li be the number of matrix elements equal to i. The entropy Hλ, the
marginal entropies Hjλ and Hiλ and the information Iλ are defined by

Hλ ≡ −
n∑
i=1

d(G)∑
j=1

λij
n(n− 1)

log2

λij
n(n− 1)

= log2 n(n− 1) − 1
n(n− 1)

max∑
i=1

li i log2 i

(17)

Hjλ ≡ −
d(G)∑
j=1

2nj
n(n− 1)

log2

2nj
n(n− 1)

= log2 n(n− 1) − 1
n(n− 1)

d(G)∑
j=1

2nj log2 2nj

(18)

Hiλ ≡ −n n

n(n− 1)
log2

n

n(n− 1)
= log2 n (19)

Iλ ≡ Hiλ+H
i
λ−Hλ = log2 n−

1
n(n− 1)

d(G)∑
j=1

2nj log2 2nj −
max∑
i=1

li i log2 i

 (20)

The information indices I
W

D , HD and Hjλ are based on the vector ni and the
constants n and W that leads to their correlations. In particular, since I

W

D =
log2W− 1

W

∑d(G)
i=1 ni i log2 i then following Eq.(14) we immediately obtain HD =

I
W

D +1. So it is enough to study the only index among them. The index I
W

D was
investigated in discriminating tests as the most known one [60].
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3 Discriminating Tests

The discriminating power [45,61] is one of the basic characteristics of a topo-
logical index I and corresponds to a measure of its ability to distinguish among
the nonisomorphic graphs (the structural isomers) by distinct numerical values
of index I. The theoretical evaluation of index sensitivity S on a fixed set M of
nonisomorphic graphs can be achieved by the formula

S =
N −NI

N
, (21)

where N = |M | is the number of graphs in a set M and NI is the number of
degeneracies of an index I within set M . According to the definition, S = 1
means that among the elements of the set considered, no two nonisomorphic
graphs have the same value of the index I.

Bonchev and Trinajstić [41] investigated the discriminating power of infor-
mation and topological indices between 45 alkane trees. Basak et. al [62], have
continued these investigations on the set of 45 alkane trees as well as on the set
of 19 monocyclic graphs. Razinger, Chretien and Dubois [61] explicitly point-
ed out the fact that the discriminating power of the Wiener number is very
low in alkane series. The first discriminating tests among the polycyclic graphs
were done by Konstantinova and Paleev [51] on the set of 1020 subgraphs of
the regular hexagonal and square lattices. Later Konstantinova [52] has tested
information and topological indices for 2562 subgraphs of the regular hexagonal
lattice. Graphs of this class represent the molecular structures of unbranched
cata-condensed benzenoid hydrocarbons. The discriminating powers of topolog-
ical and information indices as well as the Wiener polynomial derivatives were
studied by Konstantinova and Diudea [53] on 3006 subgraphs of the regular
hexagonal lattice and on the set of 347 cycle–containing graphs with ten vertices
and three to eight–membered cycle.

An exhaustive analysis of 13 information and topological indices based on
the distance in a graph was performed by Konstantinova and Vidyuk [60] on
1 443 032 polycyclic graphs and 3 473 141 trees. The information indices ID, HiD,
Iλ, Hλ, H

n
D, H

n
λ , H2, I

W

D presented in section 2 and the topological indices such
as the Wiener number, the Schultz number, the Balaban number and the Randić
number were examined in the discriminating tests. The formulae for topological
indices are given below.

The Schultz molecular topological index [63] is defined by

MTI =
∑

v∈V (G)

deg(v) · d(v) +
∑

v∈V (G)

deg(v)2, (22)

where deg(v) is the vertex degree. This index has found interesting applications
in chemistry [38]. Its discriminating power was investigated by Dobrynin [64] for
cata–condensed benzenoid graphs.

The average distance sum connectivity was introduced by Balaban [33] and
defined by
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J =
m

m− n+ 2

∑
u,v∈V (G)

(d(u) · d(v))− 1
2 , (23)

where m is the number of edges in a graph G.
The Randić index χ [29] is based on the molecular connectivity and is achieved

by formula

χ =
∑

u,v∈V (G)

(deg(u) · deg(v))− 1
2 (24)

The numerical results of discriminating tests for the indices under considera-
tion are given below on the sets of polycyclic graphs and trees.

3.1 Polycyclic Graphs

The polycyclic graphs embedded to the regular hexagonal, square and trigonal
lattices are tested. The hexagonal graphs correspond to the structural formulae of
planar polycyclic aromatic hydrocarbons [65,66]. The values of 12 information
and topological indices were calculated for 849 285 hexagonal, 298 382 square
and 295 365 triangular graphs. The calculation accuracy for all indices is 10−13.
The discriminating powers of indices were obtained in accordance with Eq.(21)
and the results are given in Table 1, where N is the number of graphs in the
respective class. Table 1 shows the discriminating power of indices on the sets
of N hexagonal, square and triangular graphs:

Table 1.

N ID Hi
D Iλ Hλ Hn

D H2 Hn
λ

849 285 0.999 0.999 0.997 0.993 0.999 0.999 0.997
298 382 0.997 0.995 0.954 0.811 0.998 0.994 0.906
295 365 0.984 0.982 0.844 0.466 0.992 0.981 0.585

N I
W
D J χ MTI W

849 285 0.659 0.998 0.0001 0.004 0.0006
298 382 0.133 0.993 0.005 0.002 0.0003
295 365 0.021 0.986 0.407 0.0008 0.0001

The data show that the information indices give much more discriminating pow-
er. The indices HnD, ID, H

i
D, H2 have the best result (S = 0.999) for hexagonal

graphs. All topological indices, exception of J , could not discriminate between
these graphs. The same situation is observed for square and triangular graphs.
The degeneracy is high for W,MTI, and very low for HnD, ID. The information
index I

W

D discriminates not bad among hexagonal graphs but it doesn’t discrim-
inate among square and triangular graphs. The opposite situation is observed
for the Randić index χ. Its discriminating power is the lowest one on hexagonal
graphs and the highest one on triangular graphs.
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3.2 Trees

Similar results were obtained on the set of trees. A tree is a connected acyclic
graph. The discriminating power of indices was calculated on the set of 3 490 528
trees up to 21 vertices. The obtained data are given in Table 2. The highest
sensitivity corresponds to the information index HnD. There are no degeneracies
of this index, i.e. S = 1 , on the set of trees up to 17 vertices (the number of
trees is N = 81 134). Two trees with 18 vertices and two trees having 19 vertices
give the same values of HnD. There are only 14 degeneracies on the set of trees
on 20 vertices, N = 823 065, and only 12 degeneracies on the set of trees on 21
vertices, N = 2 144 505. This index could be used for characterizing molecular
structures of alkane isomers. Topological indices show a very low discriminating
power. Table 2 shows the discriminating power of indices on the set of N trees
up to 21 vertices:

Table 2.

N ID Hi
D Iλ Hλ Hn

D H2 Hn
λ I

W
D J

3 490 528 0.998 0.912 0.985 0.321 0.999 0.907 0.428 0.683 0.907

N χ MTI W

3 490 528 0.017 0.00004 0.00002

So in this section the discriminating power of information indices were consid-
ered in comparison with the topological indices. The data obtained on the sets
of nonisomorphic graphs and trees indicate that in common the information
indices have greater discriminating power than the topological ones. Another
basic characteristic of a topological index is its correlating ability with a mole-
cular property. The information approach to the correlations between structure
and reactive capability of molecules is considered in the next section.

4 Correlating Ability of Information Indices

One of the key problems of modern chemistry is to find a relation between a struc-
ture and a reactive capability of a molecule. The reactive capability of a molecule
can be characterized by it’s mass–spectrum which contains the information on the
ways of a molecule fragmentation and displays the ”behavior” of some molecular
fragments which can be interpreted as subgraphs of a molecular graph.

Let us define the information index of the chemical mass–spectrum using
the Shannon relation. From the information theory point of view, the mass–
spectrum is the distribution of probabilities pi = Ai

A , i = 1, . . . , k, of the ions
formation, where Ai is the mass–spectrum amplitude of the i-th ion,
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Fig. 4. The distance vertex spectrum

A =
∑k
i=1 Ai, and k is the number of peaks in the mass–spectrum. The am-

plitude information index HA is defined by

HA = −
k∑
i=1

Ai
A

· log2
Ai
A

(25)

On the other hand, a molecular graph that represents a structural formula of a
molecule could be used for defining specific structural features of a molecule by
means of information indices based on the distance in a molecular graph. As it
was mentioned in introduction the topological index is designed by transforming
a molecular graph into a number and it expresses in a numerical form the topolo-
gy of the chemical species it presents. Moreover, it was shown by Skorobogatov et.
al [54] that some information indices have a ”chemical” spectral interpretation.
Let us consider the information index H2 that is based on the vertex distance
d(i) and the number ki of vertices having the distance d(i), and let define the
pairs (d(i), ki) as the points in Euclidean plane. Then the distance vertex spec-
trum can be pictured on the plane by the lines {(d(i), ki), (d(i), 0)}, i = 1, . . . , k.
Figure 4 shows the distance vertex spectrum for the tree. As one can see, there
is even the visual correspondence between the chemical mass–spectra and the
topological spectra of molecular graphs.

One more topological spectrum called the autometricity vertex spectrum was
defined on the basis of a layer matrix. It could happen that some rows of this
matrix are the same. It means that the corresponding vertices belong to one
and the same class of autometricity. By this way the vertex set is divided in-
to the autometricity classes. The autometricity vertex spectrum is defined by
the autometricity classes and the number nλi of vertices in the i−th class of
autometricity.

Figure 5 shows the autometricity vertex spectrum for the same tree. Its canon-
ical layer matrix is the following one:
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λ∗ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 1
1 1 3 2
3 3 1
2 3 2
1 3 3
4 3

∣∣∣∣∣∣∣∣∣∣∣∣

7, 8
1
6
2
4, 5
3

The rows are ordered with respect to their lengths and then the rows are ordered
lexicographically. The numeration of autometricity classes corresponds to the
numeration of rows in the canonical layer matrix. Let us notice, that there is
a finite probability scheme on the vertex set with respect to the autometricity
ratio and one can define the information index Ha = −

∑k
i=1

nλ
i

n log2
nλ

i

n .

1 2 3 4 5 6 7 8 9 10

7, 8

1 6 2

4, 5

1

autometricity classes

�
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ni
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7

8

Fig. 5. The autometricity vertex spectrum

The information indices H2, Ha and HA based on the topological as well
as the chemical spectra provide the presentation of a molecular graph and a
chemical structure in terms of the same quantitative scale because their values
are expressed in information bits. These indices are suitable ones for finding
structure–activity correlations.

At first this approach was applied to the class of ferrocene derivatives CpFeC5

H4R, where R is a substituent [54]. The linear correlations between the infor-
mation indices H2 and HA, and Ha and HA were found. It was shown that the
initial set of molecular structures is divided into three subsets by the linear re-
gression. In the cases considered the correlation ratio ranges from 0.94 to 0.975.
The example of the autometricity vertex spectrum for a molecular structure of
this class is given in Figure 6.

Figure 7 shows the correlations between the information indices Ha and HA
on the set of ferrocene derivatives. The correlation ratio r and the number of
structures n for each subset are presented.

Similar results were obtained for information indices H2 and HA. The corre-
lations between them were found as follows:
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Fig. 6. The example of the autometricity vertex spectrum for the molecular graph of
methylferrocene
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1 : HA = 1.09 + 0.76H2 (r = 0.950, n = 9)
2 : HA = 1.30 + 0.99H2 (r = 0.975, n = 17)
3 : HA = 3.96 + 0.40H2 (r = 0.950, n = 6)

Later this approach was used for finding correlation on several classes (∼ 20) of
organic and organometallic compounds by Prof.Yu.S.Nekrasov, etc. [55–58]. In
particular, they have found the correlations on the set of arylsilanes. There are
three subsets of arylsilanes and each of them has specific structure peculiarities.
Figure 8 shows the correlations between the information indices H2 and HA
on the set of arylsilanes. Line 1 corresponds to the set of phenylmethylsilanes,
line 2 corresponds to the set of phenylallyl– and phenylvinylsilanes and line 3
corresponds to the set of vinylmethylsilanes. As one can see from the picture the
correlation ratio for all cases ranges from 0.856 to 0.982.

5 Conclusion

Information theory is a useful tool in developing the new invariants for charac-
terizing molecular structures. The only limit to the design of invariants is the
imagination and resourcefulness of investigators. The situation is similar to a
search for a system of codes and a design of codes for chemical structures in
particular. There are graph theoretical invariants considered in the mathemat-
ical literature that have not yet been tested for possible chemical applications.
Such may or may not be of interest in chemistry, but without testing we will
not know. If some existing mathematical invariants are shown to correlate with
some of the known molecular properties, the findings may be of considerable
interest for chemistry - not only because such invariants may offer a novel pre-
dictive tool in structure–property studies, or an alternative route to a certain
molecular property, but they may give additional insight into structure–property
relationships. Finally, such results may show novel mathematical concepts of use
in chemistry.
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Largest Graphs of Diameter 2 and Maximum

Degree 6

S.G. Molodtsov

Abstract. The results of computer generation of the largest graphs of
diameter 2 and maximum degree 6 are presented. The order of such
graphs is equal 32. There are exactly 6 graphs of diameter 2 and maxi-
mum degree 6 on 32 vertices including one vertex-transitive graph.

1 Introduction

We consider simple (without loops and multiple edges), finite, and undirected
graphs. The order of the graph is the number of its vertices. The degree of a
vertex is the number of incident edges to that vertex. The distance between two
vertices is the length of the shortest path between them. The diameter of a graph
is the maximum distance between any two vertices. Denote by (d,k)-graph the
graph of diameter k and maximum vertex degree d.

Degree/Diameter Problem. To find the largest possible number of vertices
n(d, k) of (d, k)-graphs for various d and k.

The state of general problem is presented in [1,2]. We focus only on graphs
of diameter 2. A well-known bound on the largest order of (d, 2)-graphs is
Moore bound: n(d, 2) ≤ d2 + 1. This bound is attainable only for d = 1, 2, 3, 7
and, possibly, 57 [3]. Excluding d = 57, the corresponding graphs K2, C2,
the Petersen graph and the Hoffman–Singleton graph are unique. The exist-
ing of a (57, 2)-graph on n = 572 + 1 = 3250 vertices is not known. For
the remaining d, it is shown that n(d, 2) ≤ d2 − 1 [4]. It is known that this
bound is attainable only for d = 4, 5 [5]. The largest known order of (6,2)-
graphs was 32 [1,2]. A theoretic possible bound for these graphs is
n = 62 − 1 = 35.

Our purpose is to construct all the nonisomorphic largest graphs of diameter
2 and maximum vertex degree 6.

2 Computer Graph Generation of Graphs of Diameter 2

An efficient algorithm and the computer program GENM for the generation of
all nonisomorphic graphs from a given set of vertices have been developed [6].
This algorithm is based on the enumerative variant of the branch-and-bound
method [7] and constructs all canonical adjacency matrices in decreasing order.
An adjacency matrix of a graph G is called canonical if it is maximum adjacency
matrix of G.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 853–857, 2006.
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The algorithm of graph generation is a stepwise procedure. On each step a
partially filed matrix is constructed. To generate graphs of diameter 2 efficiently,
a partially filed matrix is tested on possibility of completion up to an adjacency
matrix of a graph of diameter 2. For this purpose, the following criteria were
used.

Let V be the set of vertices of the (d, 2)-graph G. Let H be a spanning
subgraph of G. Denote by AH(v) and BH(v) the subsets of vertices at dis-
tance 1 and 2 from the vertex v ∈ V in the subgraph H , respectively. Then
CH(v) = V \(v ∪AH(v) ∪BH(v)) is the subset of vertices at distance at least 3
from the vertex v in H . Denote by degG(v) the degree of a vertex v in G.
Then dH(v) = degG(v) − degH(v) is called the free valency of a vertex v in
H . Let IH ⊂ V be the subset of vertices such that dH(i) = 0 for every
i ∈ IH .

Criterion of admissibility. The sum of free valences of all vertices from AH(i)
is not less than the number of vertices in CH(i) for any i ∈ IH :∑

j∈AH (i)

dH(j) ≥ |CH(i)|.

Criterion of forcing. If the sum of free valences of all vertices from AH(i) is
equal to the number of vertices in CH(i) for some i ∈ IH ,∑

j∈AH (i)

dH(j) = |CH(i)|,

then all edges (u, v), where u, v ∈ AH(i), and all edges (u, v), where u∈AH(i), v∈
BH(i) of G presence in the subgraph H.

The proof of the both criteria follows from the fact that each vertex from
CH(i) should be adjacent at least with one vertex from AH(i) in the graph G.
Therefore, the criterion of admissibility is used to cut off the current branch
during the generation of (d, 2)-graphs. The criterion of forcing helps to fill in
some elements of the partially filed matrix on an each step.

3 Results

A graph G is called a regular graph of degree d if all vertices of G have the same
degree d. The following statement shows that first of all one should search the
largest (d, 2)-graphs among regular graphs of degree d.

Statement. If G is a (d, 2)-graph on n vertices and n > d(d− 1) + 1 then G is
a regular graph of degree d.

Proof. Let deg(v) be a degree of a vertex v in graph G. Consider an vertex
v ∈ V . Let A and B be the subsets of vertices at distance 1 and 2 from the
vertex v, respectively. Since A, B, and {v} partition V , n = |A| + |B| + 1.
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Obviously, |A| = deg(v). Note that each vertex a ∈ A can be adjacent at most
with deg(a)− 1 vertices of B. Since G is the (d,2)-graph, each vertex of B must
be adjacent with some vertex of A and deg(a) ≤ d for any a ∈ A. Thus

|B| ≤
∑
a∈A

(deg(a) − 1) ≤
∑
a∈A

(d− 1) = (d− 1) · |A| = d · deg(v) − deg(v)

Hence, n = |A| + |B| + 1 ≤ d · deg(v) + 1. Since n > d(d − 1) + 1, we have
d · deg(v) + 1 > d(d− 1) + 1 and deg(v) > d− 1. Therefore, deg(v) = d for any
v ∈ V . �

It follows that all (6,2)-graphs on more than 31 vertices are regular graph of
degree 6. We have searched the (6,2)-graphs starting on 35 vertices. Such graphs
on 35, 34, and 33 vertices are not found. Exactly 6 graphs of diameter 2 and
degree 6 on 32 vertices are constructed. Their lists of adjacent and the order of
the automorphism group are shown below.

| Aut(G1) |= 6
1–2,3,4,5,6,7; 2–3,8,9,10,11; 3–12,13,14,15; 4–8,16,17,18,19; 5–9,20,21,22,23;
6–10,24,25,26,27; 7–28,29,30,31,32; 8–20,21,24,28; 9–16,25,26,29; 10–17,18,22,30;
11–19,23,27,31,32; 12–16,17,23,25,28; 13–16,22,24,31,32; 14–18,20,22,27,29;
15–19,21,24,26,30; 16–27,30; 17–21,29,31; 18–23,26,32; 19–22,25,29; 20–25,30,31;
21–27,32; 22–28; 23–24,30; 24–29; 25–32; 26–28,31; 27–28

| Aut(G2) |= 2
1–2,3,4,5,6,7; 2–3,8,9,10,11; 3–12,13,14,15; 4–8,16,17,18,19; 5–9,20,21,22,23;
6–10,24,25,26,27; 7–28,29,30,31,32; 8–20,21,24,28; 9–16,25,26,29; 10–17,22,30,31;
11–18,19,23,27,32; 12–16,17,23,25,28; 13–16,22,24,30,32; 14–18,20,22,27,29;
15–19,21,24,26,31; 16–27,31; 17–21,29,32; 18–23,26,30; 19–22,25,29; 20–25,31,32;
21–27,30; 22–28; 23–24,31; 24–29; 25–30; 26–28,32; 27–28

| Aut(G3) |= 144
1–2,3,4,5,6,7; 2–3,8,9,10,11; 3–12,13,14,15; 4–16,17,18,19,20; 5–16,21,22,23,24;
6–17,21,25,26,27;7–28,29,30,31,32;8–16,17,21,28,29;9–18,19,22,25,30;10–20,22,26,27,31;
11–20,23,24,25,32; 12–16,26,27,30,32; 13–17,23,24,30,31; 14–18,19,21,31,32;
15–20,22,25,28,29; 16–25,31; 17–22,32; 18–23,26,28; 19–24,27,29; 20–21,30;
21–30; 22–32; 23–27,29; 24–26,28; 25–31; 26–29; 27–28

| Aut(G4) |= 64
1–2,3,4,5,6,7; 2–8,9,10,11,12; 3–8,13,14,15,16; 4–9,17,18,19,20; 5–10,21,22,23,24;
6–11,25,26,27,28; 7–12,29,30,31,32; 8–17,21,25,29; 9–13,22,26,30; 10–14,18,27,31;
11–15,19,23,32; 12–16,20,24,28; 13–17,23,28,31; 14–19,20,26,32; 15–18,22,24,30;
16–19,22,27,29; 17–24,27,32; 18–25,28,29; 19–21,31; 20–23,25,30; 21–26,28,30;
22–25,32; 23–27,29; 24–26,31; 25–31; 26–29; 27–30; 28–32

| Aut(G5) |= 48
1–2,3,4,5,6,7; 2–8,9,10,11,12; 3–8,13,14,15,16; 4–9,17,18,19,20; 5–10,21,22,23,24;
6–11,25,26,27,28; 7–12,29,30,31,32; 8–17,21,25,29; 9–13,22,26,30; 10–14,18,27,31;
11–15,19,23,32; 12–16,20,24,28; 13–17,23,28,31; 14–19,20,26,32; 15–18,24,25,30;
16–19,22,27,29; 17–24,27,32; 18–22,28,29; 19–21,31; 20–23,25,30; 21–26,28,30;
22–25,32; 23–27,29; 24–26,31; 25–31; 26–29; 27–30; 28–32
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| Aut(G6) |= 1920
1–2,3,4,5,6,7; 2–8,9,10,11,12; 3–8,13,14,15,16; 4–9,17,18,19,20; 5–10,21,22,23,24;
6–11,25,26,27,28; 7–12,29,30,31,32; 8–17,21,25,29; 9–13,22,26,30; 10–14,18,27,31;
11–15,19,23,32; 12–16,20,24,28; 13–17,23,28,31; 14–20,21,26,32; 15–18,24,25,30;
16–19,22,27,29; 17–24,27,32; 18–22,28,29; 19–21,26,31; 20–23,25,30; 21–28,30;
22–25,32; 23–27,29; 24–26,31; 25–31; 26–29; 27–30; 28–32

The total time of generation of all (6,2)-graphs on 35, 34, 33, and 32 vertices is
approximately 400 hours on an 1.8 GHz Celeron. Note that the last (6,2)-graph
of the lists is a vertex-transitive graph.

Table 1 contains the order and the number N of known largest (d, 2)-graphs
and vertex-transitive (d, 2)-graphs for 3 ≤ d ≤ 7. Here nt(d, 2) is the largest
order of vertex-transitive (d, 2)-graphs.

Table 1. The known largest order of (d, 2)-graphs

d n(d, 2) N nt(d, 2) N

3 10 1 10 1
4 15 1 13 1
5 24 1 20 1
6 32 6 32 1
7 50 1 50 1

The presence of the vertex-transitive graph among the largest (6,2)-graphs is
according to the fact that the largest known (d, 2)-graphs for some d have been
found among vertex-transitive graphs [8,9].
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VIII
An Outside Opinion

R. Ahlswede

In order to get an outside opinion about Network Coding we cite here the
Network Coding Homepage (www.networkcoding.info) of a leading expert, Ralf
Koetter.

Welcome to the Network Coding Coding Home Page. This site is meant to
provide a service to the community by summarizing the main developments in
network coding. Our hope is that this site can serve as a repository and resource
for researchers and scientists in the field.

1 Network Coding Example

Like many fundamental concepts, network coding is based on a simple basic
idea which was first stated in its beautiful simplicity in the the seminal paper
by R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Information
Flow”, (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000).
The core notion of network coding is to allow and encourage mixing of data at

intermediate network nodes. A receiver sees these data packets and deduces from
them the messages that were originally intended for the data sink. In contrast to
traditional ways to operate a network that try to avoid collisions of data streams
as much as possible, this elegant principle implies a plethora of surprising results.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 858–860, 2006.
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One of the most exciting opportunities of the approach is the use of random
mixing of data streams, thus freeing up the symmetrizing properties of random
coding arguments in the analysis of networks. Not only is network coding a
fresh and sharp tool that has the potential to open up stagnant fundamental
areas of research, but due to its cross-cutting nature it naturally suggests a
unified treatment of previously segmented areas. A striking example of the type
of unification that network coding makes possible is the recently found elegant
and complete characterization of the capacity of multicast networks, which was
possible only through the joint treatment of coding and routing.

The principle of network coding is easiest explained with an example (from
Ahlswede et al.) that kicked off the field of network coding. In this example two
sources having access to bits A and B at a rate of one bit per unit time have to
communicate these bits to two sinks so that both sinks receive both bits per unit
time. All links have a capacity of one bit per unit time. The network problem
can be satisfied with the transmissions outlined in the example but cannot be
satisfied with only forwarding of bits at intermediate packet nodes.

2 Network Coding Bibliography of Kötter with More
Than 100 Papers Since the Start of the Subject in
the Year 2000 with the Paper of Ahlswede et al. Just
Mentioned

We just highlight here 3 contributions. (There are other important contribu-
tions!) The main result of Ahlswede et al., a Min–Max–Theorem, saying that a
string of bits can be sent simultaneously from one source to sinks 1, 2, . . . , k
at a rate determined by min

1≤i≤n
Fi, where Fi is the standard Max–Flow from the

source to sink i.
Significant improvements were made in

S.-Y. R. Li, R. W. Yeung, and N. Cai, Linear network coding, IEEE Transac-
tions on Information Theory, Vol. 49, Issue 2, 371–381, 2003,

where min
1≤i≤n

Fi can be achieved with linear coding (the Best Paper Award win-

ner of the IEEE Information Theory Society for the year 2005).

P. Sanders, S. Egner, L. Tolhuizen, Polynomial Time Algorithms for Network
Information Flow, Proc. of the 15th annual ACM Symposium on Parallel Algo-
rithms and Architectures, 286 - 294, 2003,

where upon our suggestion during this ZIF project a polynomial coding algo-
rithm was given. The results were then merged with those of other authors in
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S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. Tol-
huizen, Polynomial time algorithms for multicast network code construction,
IEEE Transactions on Information Theory, Vol. 51, Issue 6, 1973 – 1982, 2005.

Y. Wu, K. Jain, S.-Y. Kung, A unification of Edmond’s Graph Theorem and
Ahlswede et al’s Network Coding Theorem, in Proc. 42nd Annual Allerton Con-
ference on Communication, Control, and Computing, Sept 29 - Oct 1, 2004.
http://www.princeton.edu/ yunnanwu/papers/WuJK2005.pdf

where an important connection indicated in the title was made.

Recently a first survey Theory of Network Coding in tutorial presenta-
tion was given by R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang; submitted
to Foundations and Trends in Communications and Information Theory.
http://iest2.ie.cuhk.edu.hk/ whyeung/post/netcode/main.pdf



Problems in Network Coding and Error

Correcting Codes Appended by a Draft Version
of S. Riis “Utilising Public Information in

Network Coding”

S. Riis and R. Ahlswede

1 Introduction

In most of todays information networks messages are send in packets of informa-
tion that is not modified or mixed with the content of other packets during trans-
mission. This holds on macro level (e.g. the internet, wireless communications)
as well as on micro level (e.g. communication within processors, communication
between a processor and external devises).

Today messages in wireless communication are sent in a manner where each
active communication channel carries exactly one “conversation”. This approach
can be improved considerably by a cleverly designed but sometimes rather com-
plicated channel sharing scheme (network coding). The approach is very new and
is still in its pioneering phase. Worldwide only a handful of papers in network
coding were published year 2001 or before, 8 papers in 2002, 23 papers in 2003
and over 25 papers already in the first half of 2004; (according to the database
developed by R. Koetters). The first conference on Network Coding and appli-
cations is scheduled for Trento, Italy April 2005. Research into network coding
is growing fast, and Microsoft, IBM and other companies have research teams
who are researching this new field. A few American universities (Princeton, MIT,
Caltech and Berkeley) have also established research groups in network coding.

The holy grail in network coding is to plan and organize (in an automated
fashion) network flow (that is allowed to utilise network coding) in a feasible
manner. With a few recent exceptions [5] most current research does not yet
address this difficult problem.

The main contribution of this paper is to provide new links between Network
Coding and combinatorics. In this paper we will elaborate on some remarks in [8],
[9]. We will show that the task of designing efficient strategies for information
network flow (network coding) is closely linked to designing error correcting
codes. This link is surprising since it appears even in networks where transmission
mistakes never happen! Recall that traditionally error correction, is mainly used
to reconstruct messages that have been scrambled due to unknown (random)
errors. Thus error correcting codes can be used to solve network flow problems
even in a setting where errors are assumed to be insignificant or irrelevant.

Our paper is the first paper that use error correcting codes when channels
are assumed to be error-free. The idea of linking Network Coding and Error
Correcting Codes when channels are not error-free was already presented in [4].

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 861–897, 2006.
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In this paper Cai and Yeung obtained network generalizations of the Hamming
bound, the Gilbert-Varshamov bound, as well as the singleton bound for classical
error-correcting codes.

2 The Basic Idea and Its Link to Work by Euler

The aim of the section is to illustrate some of the basic ideas in network coding.
To illustrate the richness of these ideas we will show that solving the flow problem
for certain simple networks, mathematically is equivalent to a problem that
puzzled Euler and was first solved fully almost 200 years later! First consider
the network in figure 1.

The task is to send the message x from the upper left node, to the lower right
node labelled r : x (indicating that the node is required to receive x) as well as
to send the message y from the upper right node, to the lower left node labelled
r : y . Suppose the messages belong to a finite alphabet A = {1, 2, . . . , n}. If
the two messages are sent as in ordinary routing (as used on the world wide
web or in an ordinary wireless network) there is a dead lock along the middle
channel where message x and message y will clash. If instead we send the message
sx,y = S(x, y) ∈ A through the middle channel, it is not hard to show that the
problem is solvable if and only if the matrix (si,j)i,j∈A forms a latin square (recall
that a latin square of order n is an n×n matrix with entries 1, 2, . . . , n appearing
exactly once in each row and in each column). We can now link this observation
to work by Euler! Consider the extension of the previous flow problem in figure 2.

Now the task is to send the message x and the message y to each of the
five nodes at the bottom. To do this each of the matrices {sx,y} and {tx,y}
must, according to the previous observation, be latin squares. However, the latin
squares must also be orthogonal i.e. if we are given the value s ∈ A of the entry
sx,y and the value t ∈ A of the entry tx,y, the values of x and y must be uniquely
determined. Thus, we notice that:

Fig. 1. Fig. 2.

Proposition 1. There is a one-to-one correspondence between solutions to the
flow problem in figure 2 with alphabet A and pairs of orthogonal latin squares of
order |A|.

The problem of deciding when there exist such two orthogonal latin squares
has an interesting history. Euler knew (c.1780) that there was no orthogonal
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Latin square of order 2 and he knew constructions when n is odd or divisible
by 4. Based on much experimentation, Euler conjectured that orthogonal Latin
squares did not exist for orders of the form 4k + 2, k = 0, 1, 2, . . . . In 1901,
Gaston Tarry proved (by exhaustive enumeration of the possible cases) that
there are no pairs of orthogonal Latin squares of order 6 - adding evidence to
Euler’s conjecture. However, in 1959, Parker, Bose and Shrikhande were able to
construct two orthogonal latin squares of order 10 and provided a construction
for the remaining even values of n that are not divisible by 4 (of course, excepting
n = 2 and n = 6). From this it follows:

Proposition 2 ((corollary to the solution to Euler’s question)). The flow
problem in figure 2 has a solution if and only if the underlying alphabet does not
have 2 or 6 elements.

The flow problem in figure 2 might be considered somewhat ‘unnatural’ however
the link to orthogonal latin squares is also valid for very natural families of
networks. The multicast problem N2,4,2 defined below has for example recently
been shown to be essentially equivalent to Eulers question [6].

3 Network Coding and Its Links to Error Correcting
Codes

The task of constructing orthogonal latin squares can be seen as a special case
of constructing error correcting codes. There is, for example, a one-to-one corre-
spondence between orthogonal latin squares of order |A| and (4, |A|2, 3) |A|-ary
error correcting codes.1

Next consider the flow problem in figure 3.

Fig. 3.

Assume each channel in this multi-cast network has the capacity to carry
one message (pr. unit time). Assume that the task is to send two messages
1 Recall that a (n, c, d) r -ary error correcting code C consists of c words of length

n over an alphabet containing r letters. The number d is the minimal hamming
distance between distinct words w, w′ ∈ C .
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x, y ∈ A from the top nodes to each of the 10 bottom nodes. It can be shown
that this flow problem has a solution over the alphabet A if and only if there
exist an (5, |A|2, 4) |A|-ary error correcting code. It has been shown that there
exit such codes if and only if |A| /∈ {2, 3, 6}. The flow-problem in figure 3 can
be generalized. Consider a network Nk,r,s such that it consists of k messages
x1, x2, . . . , xk ∈ A, that are transmitted from a source node. The source node is
connected to a layer containing r nodes, and for each s element subset of r (there
are

(
r
s

)
= r!

(r−s)!r! such) we have a terminal node. The task is to insure that each
message x1, x2, . . . , xk ∈ A can be reconstructed in each of the terminal nodes.
Notice the previous network flow problem is N2,5,2 . In general it can be shown
[9], [8]:

Proposition 3. The flow problem Nk,r,s has a solution if and only if there exists
an (r, |A|k, r − s+ 1) |A|-ary error correcting code.2

Essentially, there is a one-to-one correspondence between solutions to the net-
work flow problem N2,4,2 and (4, 4, 3) binary error correcting codes, i.e. orthog-
onal latin squares. Thus despite of the fact that the flow problem in figure 2 has
a topology very different from the N2,4,2 problem, the two problems essentially
have the same solutions!

Next, consider the famous Nordstrom-Robinson code: This code is now known
to be the unique binary code of length 16, minimal distance 6 containing 256words.
The point about this code is that it is non-linear, and is the only (16, 256, 6) bina-
ry code. Again we can apply the proposition to show that the multi-cast problem
N8,16,11 has no linear solution over the field F2, while it has a non-linear solution.
Are phenomena like this just rare isolated incidences or much more widespread?

4 The Classical Theory for Error Correcting Needs
Extensions

The previous sections indicate how it is possible to recast and translate network
flow problems into the theory of error correcting codes (thus, using standard
results in coding theory, it is possible to translate network flow problems into
questions about finite geometries). Another approach is outlined in [7].

In [9], [8] the first example with only non-linear solutions was constructed.
Unlike other examples this construction seems to go beyond standard results in
error correcting codes. The construction is based on the network in figure 4. The
network N in figure 4 has the curious property (like N8,16,11) that the maximal
through-put can only be achieved if non-linear flows are allowed (i.e non-linear
boolean functions are needed in any solution). Furthermore it turns out that any
code optimizing the vertical flows has to be a “minimal distance code” [9], [8].
This phenomena is interesting since a minimal distance code from a traditional
perspective is very bad (as it essentially has the worst possible error correcting

2 The fact that known bounds on maximum distance separable codes can be applied
to bound the required alphabet-size was shown in [10].
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Fig. 4.

capability). This example is one of a collection of examples that suggests that
the classical theory of error correcting codes needs to be extended and developed
in order to serve as a basis for network coding. See also [3], [1], [2] more results
pointing in this direction.
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Appendix

Utilising Public Information in Network Coding

Draft Version

S. Riis

Abstract. We show that an information network flow problem N in
which n messages have to be sent to n destination nodes has a solution
(that might utilize Network Coding) if and only if the directed graph
GN (that appears by identifying each output node with its correspond-
ing input node) has guessing number ≥ n. The guessing number of a
(directed) graph G is a new concept defined in terms of a simple cooper-
ative game. We generalize this result so it applies to general information
flow networks.

We notice that the theoretical advantage of Network Coding is as
high as one could have possibly hoped for: for each n ∈ N we define a
network flow problem Nn with n input nodes and n output nodes for
which the optimal through-put using Network Coding is n times as large
as what can be obtained by vector routing or any other technique that
does not allow interference (between messages) . In the paper we obtain
a characterisation of the set of solutions for each flow problem Nn.

1 Network Coding

1.1 A. The Wave Approach to Information Network Flow

In recent years a new area called Network Coding has evolved. Like many fun-
damental concepts, Network Coding is based on a simple mathematical model
of network flow and communication first explicitly stated in its simplicity in [3].
Recently, ideas related to Network Coding have been proposed in a number of dis-
tinct areas of Computer Science (e.g. broadcasting in wireless networks [25,?,23],
data security [4], distributed network storage [6,?] and wireless sensor networks



Problems in Network Coding and Error Correcting Codes 867

Fig. 1.

[15]). Network Coding has also a broad interface with various Mathematical
disciplines (error correcting codes [18,5,10], circuit complexity [17], information
theory [11], algebra [13,12] and graph theory).

The basic idea underlying Network Coding has been explained in numerous
papers e.g. [13,3,17,7].The idea can be illustrated by considering the “butterfly”
network in figure 1a.

The task is to send the message x from the upper left corner to the lower
right corner and to send the message y from the upper right corner to the lower
left corner. The messages x, y ∈ A are selected from some finite alphabet A.
Assume each information channel can carry at most one message at a time. If
the messages x and y are sent simultaneously there is a bottleneck in the middle
information channel. On the other hand if we, for example, send x ⊕ y ∈ A
through the middle channel, the messages x and y can be recovered at ‘output’
nodes at the bottom of the network.

The network in figure 1a can be represented as the network in figure 1b. In
this representation (which we will call the ‘circuit representation’) each node in
the network computes a function f : A × A → A of its inputs, and sends the
function value along each outgoing edge. Historically, it is interesting to note that
in this slightly different (but mathematically equivalent) form, the idea behind
Network Coding (i.e. the power of using non-trivial boolean functions rather than
“pushing bit”) was acknowledged already in the 70s (though never emphasized or
highlighted) in research papers in Circuit Complexity (see e.g. [22,20,16,21,2]).
It is also worth mentioning that in Complexity Theory many lower bounds are
proved under the assumption that the algorithm is conservative or can be treated
as such. Conservative means that the input elements of the algorithm are atomic
unchangeable elements that can be compared or copied but can not be used to
synthesize new elements during the course of the algorithm. From a perspective
of Circuit Complexity, Network Coding is an interesting theory of information
flows since it corresponds to unrestricted models of computation.

Information flow in networks falls naturally within a number of distinct
paradigms. Information flow can, for example, be treated in a fashion similar to
traffic of cars in a road system. In this view each message is treated as a packet
(e.g. a car) with a certain destination. Messages (cars!) cannot be copied, or
divided. This way of treating messages is almost universally adopted in today’s
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Fig. 2.

information networks (e.g. wireless communication, communication on the web,
communication within processors or communication between processors and ex-
ternal devices). Another, less used possibility, is to treat messages in some sense
as a liquid that can be divided and sent along different routes before they reach
their destination. This approach (like, for example, in vector routing [9]) allows
messages to be spread out and distributed over large parts of the network. An-
other and more radical approach is to treat messages as “waves”. Recall that
the signals carrying the messages are digital (discrete) and thus certainly do
not behave like waves. It is, however, possible to transmit and handle the digi-
tal (discrete) signals in a fashion where the messages (not the bits carrying the
messages) behave like waves subject to interference and super position. More
specifically, assume A is a (finite) alphabet of distinct (wave) signals that can be
sent through a channel. The superposition of (wave) signals w1, w2 ∈ A creates
a new (wave) signal w = w1 ⊕ w2 ∈ A. Thus mathematically, in the wave pic-
ture the set A of wave signals forms a (finite) commutative group with neutral
element 0 ∈ A representing the zero-signal.

The network in figure 2 illustrates the point that in specific network topologies
there can be quite a large advantage of treating messages as waves. The task of
the network is to send messages x, y and z from the source (input) nodes i1, i2
and i3 to the three output nodes o1, o2 and o3. The receiver (output) node o1
requires x, node o2 requires y and node o3 requires z. We assume that channels
are one way and that the messages are only sent downwards in the figure. All
crossings in the figure are ‘bridges’ and it is, for example, only possible to move
from i1 to o1 by moving through channel p.

If messages are treated as packets (cars) like in traditional routing, or if mes-
sages are treated as a liquid, there is no point in sending information through
l1, l2 or l3. All messages x, y and z must pass through the channel labelled with
p (for ‘public’). This clearly creates a bottleneck in channel p if we assume that
only one message can pass at a time.

If, however, messages are treated as waves we can send p(x, y, z) := x⊕ y⊕ z,
the superposition of the messages x, y and z, through channel p. And we can
send superpositions l1 := −(y⊕z), l2 := −(x⊕z) and l3 := −(x⊕y) through the
nodes with these labels. Node o1 can take the superposition of l1 and p(x, y, z)
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and then reconstruct the message x = −(y⊕ z)⊕ (x⊕ y⊕ z). Similarly, node o2
(or o3) can take the superposition of l2 (or l3) and p(x, y, z) and then reconstruct
the message y = −(x ⊕ z) ⊕ (x ⊕ y ⊕ z) (or z = −(x ⊕ y) ⊕ (x ⊕ y ⊕ z). This
shows that the wave approach allows us to eliminate the bottleneck in channel
p in figure 2. Notice also that the wave approach increases the overall network
performance (of the network in figure 1) by a factor 3. 3

In general the advantage of the wave approach (compared to any approach
that does not allow interference) can be as large as one could have possibly hoped
for. We will later notice that there exists information flow networks (with n
source nodes and n receiver nodes) for which the optimal throughput is n times
larger using the wave approach. Actually, there are even networks where the
success rate for each active channel using the wave approach are close (as close as
we wish) to n times the success rate for each active channel in a routing solution.
The wave approach usually requires more information channels to be involved
than traditional routing (or other methods that do not allow interference). Yet,
by allowing interference, the total network performance divided by number of
active information channels can for some network topologies be close to n times
higher than any approach that is unable to utilise interference.

Network Coding allows messages to be sent within the wave paradigm. In
fact superpositioning of signals (described above) represents an important type
of Network Coding we will refer to as Linear Network Coding (see also [14]). Al-
though Linear Network Coding represents a very important subclass of network
coding, in general network coding involves methods that go beyond linear net-
work coding. Certain network problems have no linear solutions, but require the
application of non-linear boolean functions [17,7]. Non-Linear Network Coding
has no obvious physical analogue. Rather general Network Coding represents a
paradigm of information flow based on a mathematical model where ‘everything
goes’ and where there are no a priory restrictions on how information is treated.
Thus in Network Coding packets might be copied, opened and mixed. And sets of
packets might be subject to highly complex non-linear boolean transformations.

2 Coherence: Utilising Apparently Useless Information

2.1 A. Guessing Game with Dice

While I was researching various flow problems related to Circuit Complexity it
became clear that a key problem is to characterize and formalism what pieces of
information are ”useful” and what pieces of information are genuinely ”useless” .
It became clear that this distinction can be very deceptive. A piece of information
that is useless in one context, can sometime be very valuable in a slightly different
context [17].
3 Notice that this increase of a factor 3 comes at a certain expense. In the routing ap-

proach only 7 channels are active (namely, (i1, p), (i2, p), (i3, p), (p, o1), (p, o2), (p, o3)
and channel p), while in the Network Coding solution all 19 channels are active. The
success rate 3

19
for each active channel is higher in the Network Coding solution than

in the ordinary solution 1
7
.
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To illustrate the problem, consider the following situation [19]: Assume that n
players each has a fair s-sided dice (each dice has its sides labelled as 1, 2, . . . , s).
Imagine that all players (simultaneously) throws their dice in such a manner
that no player knows the value of their own dice.

1. What is the probability that each of the n players is able to guess correctly
the value of their own dice?

2. Assume that each player knows the values of all other dice, but has no
information about the value of their own dice. What is the probability that
each of the n players correctly guesses the value of their own dice? (Hint: The
probability is NOT (1

s )
n- The players can do much better than uncoordinated

guessing!!)
3. Assume the ith player receives a value vi = vi(x1, x2, . . . , xi−1, xi+1, . . . , xn) ∈

{1, 2, . . . , s} that is allowed to depend on all dice values except the i’th player’s
own dice. What is the probability that each of the n players correctly manages
to guess the value of their own dice?

In question 1 the probability that each player is right is 1
s and thus with prob-

ability (1
s )
n all n players successfully manage to guess correctly their own dice’

value simultaneously. Maybe somewhat surprisingly in question 2, the answer
depends on the ‘protocol’ adopted by the players! An optimal protocol appears,
for example, if the players agree in advance to assume that the sum of all n dice’
values is divisible by s. This protocol ensures that all players simultaneously
‘guess’ the value of their own dice with probability 1

s .
Question 3, can be answered using a minor modification of the protocol just

discussed. Let vi be defined as the sum x1⊕x2⊕. . . ,⊕xi−1⊕xi+1⊕. . .⊕xn modulo
s. Each player then ‘guesses’ that xi = −vi modulo s. Again, the probability
that all n players simultaneously guess the correct value of their own dice is 1

s .

2.2 B. Playing the Guessing Game on a Graph

We will now define a generalisation of the dice guessing game that is (surpris-
ingly?) directly related to a certain type (the so called multiple-unicast type) of
information flow problems.

Definition
The Guessing Game (G, s) is a cooperative game defined as follows: As-
sume that we are given a directed graph G = (V,E) on a vertex set V =
{1, 2, . . . , n} representing n players. Each player v ∈ {1, 2, . . . , n} sends the
value of their dice ∈ {1, 2, . . . , s} to each player w ∈ {1, 2, . . . , n} with
(v, w) ∈ E. Or in other words each node w receives dice’ values from a
set Aw := {v ∈ V : (v, w) ∈ E}. Each player has to guess the value of their
own die. We want to calculate (assuming the players in advance have agreed
on an optimal protocol) the probability that all the players (nodes) simulta-
neously guess their dice values. Question 2 (in Section 1 (A)) corresponded
to the case where G is the complete graph on n nodes.
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Fig. 3.

Definition
A (cooperative) guessing strategy for the Guessing Game (G, s) is a set of
functions fω : {1, 2, . . . , s}Aw → {1, 2, . . . , s} with ω ∈ {1, 2, . . . , n}. Notice
that each player (node) ω is assigned exactly one function fω.

In figure 3, we consider six simple examples:
In (i) and (ii) corresponds to the dice guessing game we already considered

(with 3 and 5 players). The players have a guessing strategy that succeeds with
probability 1

s . In the guessing game based on (iii) (or in general the cyclic graph
on n points) an optimal protocol appears if each node ‘guesses’ that its own dice
value is the same as the value as it receives. This strategy succeeds if each of the
four dice has the same value i.e. with probability (1

s )
3 (or in general (1

s )
n−1).

Though this probability is low, it is s times higher than if the players just make
uncoordinated random guesses.

In (iv) the graph contains no cycles so the players cannot do any better than
just guessing i.e. the players can achieve probability at most (1

s )
4.

In (v) it can be shown that there are a number of distinct guessing strategies
that guarantee the players’ success with probability (1

s )
4 (one, optimal strategy

appears by dividing the graph into two disjoint cycles (triangles)).
Finally, in (vi) we consider a graph with 12 nodes (one for each hour on a

clock) and edges from (i, j) if the ’time’ from i to j is at most 5 hours. We will
show (and this will be fairly simple given the general methods we develop) that
the players in the Guessing Game (G, s) have an optimal guessing strategy that
ensures that the players with probability (1

s )
7 (i.e. with a factor s5 better than

pure uncoordinated guessing) all simultanously guess the value of their own dice.

Definition
A graph G = (V,E) has for s ∈ N guessing number k = k(G, s) if the players
in the Guessing Game (G, s) can choose a protocol that guarantees success
with probability (1

s )
|V |−k.

Thus the guessing number of a directed graph is a measure of how much better
than pure guessing the players can perform. If the players can achieve a factor
sk better than pure random uncoordinated guessing, the graph has guessing
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number k = k(G, s). Notice that a directed graph has a guessing number for
each s = 2, 3, 4, . . ..

For many directed graphs (though not all) the guessing number is independent
of s. The directed graphs in figure 3 have guessing numbers 4, 2, 1, 0, 2 and 5
(independently of s ≥ 2). From the definition there is no reason to believe that
the guessing number of a directed graph is in general an integer. Yet remarkably
many graphs have integer guessing numbers. Later we will show that there exist
directed graphs for which the guessing number k = k(G, s) (for alphabet of size
s ∈ N) of a graph is not an integer. We will show that there exist graphs where
the guessing number k(G, s) even fails to be an integer for each s ∈ {2, 3, 4, . . . , }.
Observation(A)

In the Guessing Game (G, s) the graph G allows the players to do better
than pure uncoordinated guessing if and only if G contains a cycle.

Observation(B)
A graph G = (V,E) contains a cycle if and only if its guessing number is
≥ 1. If a graph contains k disjoint cycles its guessing number ≥ k (for each
s ≥ 2). A graph is reflexive if and only it has guessing number |V |. Assume
that the set of nodes V in the graph G can be divided in r disjoint subsets
V1, V2, . . . , Vr of nodes such that the restriction of G to each subset Vj is a
clique. Then the graph G has guessing number ≥ |V | − r (for each s ≥ 2).

From Observation (A), we notice the curious fact that, the players have a “good”
strategy that ensures that they all succeed with higher probability than uncoor-
dinated random guessing if and only if the players have a “bad” strategy that
insures they never succeed.

Sometimes it is convenient to focus on certain more limited guessing strategies.

Definition Let B be a class of functions f : Ad → A for d = 1, 2, 3, . . ..
An important class appears if we let A denote a fixed algebraic structure
(e.g. a group, a ring or a vector space) of s = |A| elements, and let the
class B = LIN consist of all homomorphisms (linear maps) Ad → A for
d = 1, 2, 3, . . .. If all the functions fw belong to the class B we say the
players have chosen a guessing strategy in B. If B = LIN we say that the
players use a linear guessing strategy.

Definition A graph G = (V,E) has guessing number k = kB(G, s) with
respect to the functions in B if the players in the Guessing Game (G, s)
have a protocol with all guessing functions in B that guarantee success with
probability (1

s )
|V |−k. We say G has (special) linear guessing number klin =

klin(G, s) if the players have a linear guessing strategy that guarantee success
with probability ≥ (1

s )
|V |−k.

3 Network Coding and Guessing Games

In this section we show that mathematically there is a very close link between
Network Coding and the guessing games we just defined. We will show that each
information flow problem is equivalent to a problem about directed graphs.
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The translation between information networks and directed graphs is most
clean if we represent information networks such that we place all computations
(Network Codings) in the nodes of the network. As already indicated, we refer to
this representation as the Circuit representation. This representation is slightly
more economical (usually save a few nodes) than the standard representation
in Network Coding. The representation is more in line with circuit complexity,
where the task of the network in general is a computational task. Formally, each
source node is associated with a variable. Each node computes a function of
incoming edges signals. Each outgoing edge from a node transmits the same
signal (function value of node). Each receiver node is required to produce a
specific input variable.

In general given an information flow problem N (in the Circuit representa-
tion) we obtain a directed graph GN by identifying each source node with the
corresponding receiver node.

In figure 4 we see a few examples of simple information networks together
with their corresponding directed graphs.

Fig. 4.

The information network N in figure 4a (or figure 1b) is the usual ‘butterfly’
network (presented in circuit represention). If we identify the input node (source
node) x with the output node (receiver node) x, and identify input node (source
node) y with the output node (receiver node) y, we get the graph in figure 4b.

The information network in figure 4c does not have any obvious symmetries,
but when input and output nodes are identified we get the directed graph in
figure 4d that clearly contains a number of symmetries. The translation shows
that nodes x and u (as well as y and v) are equivalent points. The guessing
number of the graph in (b) as well as the graph in (d) can be shown to have the
value 2.

In general we let Cmultiple−unicast (the class of multiple-unicast directed infor-
mation networks) consist of information networks N for which for some n ∈ N ,
n messages m1,m2, . . . ,mn ∈ A (selected from some alphabet A) has to be sent
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from input (source) nodes i1, i2, . . . , in to output nodes o1, o2, . . . , on. Some-
what formally, to each source node ij is associated a variable xj and each node
w (except the source nodes) are assigned a function symbol fw representing a
function fw that is mapping all incoming signals a1, a2, . . . , akw to an element
a = f(a1, a2, . . . , akw) ∈ A. Each outgoing edge from a node transmits the same
signal (the function value a of the node). Each receiver node is required to pro-
duce a specific input variable.

For an information network N ∈ Cmultiple−unicast we associate a directed
graph GN that appears by identifying each source (input) node ij in N with its
corresponding receiver (output) node oj . If N has n input nodes, n output nodes
and m inner nodes (2n+m nodes in total) the graph GN has n+m nodes.

We are now ready to state the surprising link that shows that each information
flow problem is equivalent to a problem about directed graphs.

Theorem 1
An information Network flow problem N ∈ Cmultiple−unicast with n in-
put/output nodes has a solution over alphabet A with |A| = s elements
if and only if the graph GN has guessing number ≥ n.

The main point of the theorem is that it replaces the flow problem - a problem
that mathematically speaking involves slightly complicated concepts like set of
source nodes, set of receiver nodes as well as set of requirements (demands) that
specifies the destination of each input - with an equivalent problem that can
be expressed in pure graph theoretic terms (no special input or output nodes).
Actually we show the theorem in a slightly stronger form:

Theorem 2
The solutions (over alphabet A with |A| = s) of an information network flow
problem N ∈ Cmultiple−unicast with n input/output nodes are in one-to-one
correspondence with the guessing strategies (over alphabet A with |A| = s)
that ensure that the players in the guessing game played on GN have success
with probability (1

s )
|GN |−n (where |GN | is the number of nodes in GN ).

The following simple observation highlights (in a quite geometric fashion) the
difference between Network coding and traditional routing:

Observation(C)
An information flow network N ∈ C has through put k using ordinary
routing (i.e. pushing each message along a unique path) if and only the
graph GN contains k disjoint cycles.

Consider the three information flow problems in figure 5(i-iii). They are in cir-
cuit representation (i.e. all functions are placed in their nodes and each outgoing
edge from a node transmits the same function value). The three information
networks in 5(i)-(iii) are non-isomorphic and are clearly distinct. However if we
identify the sauce nodes and the receiver nodes in each of the networks we get
the same directed graph in figure 5 (iv).
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Fig. 5.

According to Theorem 2 there is a one-to-one correspondence between so-
lutions of each of the three information networks 5(i)-5(iii) and the successful
strategies in the Guessing Game (G, s). Thus, the set of solutions to each of
the three information networks 5(i)-5(iii) are in a natural one-to-one correspon-
dence. Before we prove Theorem 1 and Theorem 2, let us have a closer look at
the networks in figure 5. A (cooperative) strategy for the players in the guessing
game with the directed graph in figure 5 (iv) consists of 6 functions g1, g2, . . . , g6
such that:

aguess = g1(b, d)
bguess = g2(a, c, e)
cguess = g3(b, f)
dguess = g4(a, b)
eguess = g5(d, f)
fguess = g6(b, c)

For all players to guess their own message correctly we must have aguess = a i.e.
we must have a = g1(b, d). Thus assuming that we work under the conditional sit-
uation with aguess = a, we can substitute a with g1(b, d) leading to the equations:

bguess = g2(g1(b, d), c, e)
cguess = g3(b, f)
dguess = g4(g1(b, d), b)
eguess = g5(d, f)
fguess = g6(b, c)

Now pick any equation of the form xguess = h where x does not appear in the
expression h. We might for example assume c = g3(b, f) (i.e. the cguess = c).
Substituting c with g3(b, f) in the equations we get:
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bguess = g2(g1(b, d), g3(b, f), e)
dguess = g4(g1(b, d), b)
eguess = g5(d, f)
fguess = g6(b, g3(b, f)
This system of equations contains still one equation of the form xguess = h
where x does not appear in the expression h. Let e = g5(d, f) (assuming eguess =
g5(d, f)) and substitute this into the equations we get:
bguess = g2(g1(b, d), g3(b, f), g5(d, f))
dguess = g4(g1(b, d), b)
fguess = g6(b, g3(b, f))

For any fixed choice of functions g1, g2, g3, g4, g5 and g6 let 0 ≤ p ≤ 1 denote the
probability that a random choice of b, d and f satisfies the equations:
b = g2(g1(b, d), g3(b, f), g(d, f))
d = g4(g1(b, d), b)
f = g6(b, g3(b, f))

It is not hard to show that the probability that aguess = a, cguess = c and
eguess = e with probability (1

s )
3 (for a more general argument see the proof

of Theorem 2). Thus the conditional probability that the remaining players all
guess correctly their own dice value is p and the probability that all players are
correct is p(1

s )
3. Thus - in agreement with Theorem 1 - the guessing number of

the graph in figure 4 (iv) is 3 if and only if there exist functions g1, g2, . . . , g6
such that the equations hold for all b, d and f (i.e. hold with probability 1).

As it happens we can solve the equations by turning the alphabet A into a
commutative group (A,⊕) and the by letting g1(b, d) = b⊕d, g2(α, β, γ) = α#γ,
g3(b, f) = b ⊕ f , g4(α, β) = α # β, g5(d, f) = d and g6(α, β) = #α ⊕ β. Thus
the players have a (cooperative) guessing strategy that ensures that all players
simultaneously are able to guess their own message correctly with probability
(1
s )

3. One strategy is given by:
aguess = b⊕ d
bguess = a# e
cguess = b⊕ f
dguess = a# b
eguess = d
fguess = c# b
Figure 6 (i)-(iii) shows how this strategy naturally corresponds to network

codings in the three information flow problems in figure 5(i)-(iii). Figure 6 (iv)
shows the strategy as a guessing strategy.

4 Proof of Theorems

Before we prove Theorem 1 and Theorem 2 we need a few formal definitions
of information networks. As already pointed out, the translation between infor-
mation networks and directed graphs is most clean if we represent information
networks such that we place all computations (Network Codings) in the nodes
of the network. An information flow network N (in circuit representation) is an
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acyclic directed graph with all source nodes (input nodes) having in-degree 0
and all receiver nodes (output nodes) having outdegree 0. Each source node is
associated with a variable from a set Γvar of variables. In the receiver node there
is assigned a demand i.e. variable from Γvar . In each node w that is not a source,
there is assigned a function symbol fw. The function symbols in the network are
all distinct.

Messages are assumed to belong to an alphabet A. Sometimes we assume A
has additional structure (e.g. a group, a ring or a vector space). Each outgoing
edge from a node transmits the same signal (function value of node).

An actual information flow is given by letting each function symbol f represent
an actual function f̃ : Ad → A where d is the number of incoming edges to the
node that is associated the function symbol f . The information flow is a solution,
if the functions compose such that each demand always is met.

We let Cmultiple−unicast denote the class of information networks N for which
for some n ∈ N , n messages m1,m2, . . . ,mn ∈ A (selected from some alphabet
A) have to be sent from nodes i1, i2, . . . , in to output nodes o1, o2, . . . , on.

Let Cmultiple−unicast be an information network in this model. We define the
graph GN by identifying node i1 with o1, node i2 with o2, . . . and node ij with
oj in general for j = 1, 2, . . . , n.

Theorem 1 follows directly from Theorem 2. So to prove the theorems it
suffices to prove Theorem 2.

Proof of Theorem 2: Let N be an information network with input (source)
nodes i1, i2, . . . , in, output (receiver) nodes o1, o2, . . . , on and inner nodes n1,
n2, . . . , nm. The network N is acyclic so we can assume that we have ordered
the nodes as i1 < i2 < . . . < in < n1 < n2 < . . . < nm < o1 < o2 < . . . < on
such that any edge (i, j) in N has i < j in the ordering. Any selection of coding
functions (whether they form a solution or not) can then be written as:

z1 = f1(x1, x2, . . . , xn)
z2 = f2(x1, x2, . . . , xn, z1)
z3 = f3(x1, x2, . . . , xn, z1, z2)
............
zm = fm(x1, x2, . . . , xn, z1, z2, . . . , zm−1)
xo1 = g1(x1, x2, . . . , xn, z1, z2, . . . , zm)
xo2 = g2(x1, x2, . . . , xn, z1, z2, . . . , zm)
.............
xon = gn(x1, x2, . . . , xn, z1, z2, . . . , zm)

where xj is the variable denoting the value assigned to the input node ij, zj is
the variable denoting the value computed by the inner node nj and xoj is the
variable denoting the output value computed by the node oj for j = 1, 2, . . . , n
for a given choice of values of x1, x2, . . . , xn ∈ {1, 2, . . . , s}.

Next consider the corresponding graph GN we get by identifying nodes ir and
or for r = 1, 2, . . . , n. We consider the guessing strategy given by the functions
above i.e. the strategy given by:
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Fig. 6.

zguess1 = f1(xreal1 , xreal2 , . . . , xrealn )
zguess2 = f2(xreal1 , xreal2 , . . . , xrealn , zreal1 )
zguess3 = f3(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 )
.............
zguessm = fm(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 , . . . , zrealm−1)
xguess1 = g1(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 , . . . , zrealm )
xguess2 = g2(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 , . . . , zrealm )
............
xguessn = gn(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 , . . . , zrealm )

Conversely each guessing strategy for GN can be written on this form and can
thus be viewed as an attempt to solve the information flow problem N . To prove
Theorem 2 we show that the guessing strategy succeeds with probability (1

s )
m

if and only if the corresponding information flow functions solves the informa-
tion Network problem. This boils down to showing that the probability that all
inner nodes guess their own dice values correctly is (1

s )
m. To see this assume we

have shown this. Then the probability all players guess correctly is at most as
large as the probability all players corresponding to inner nodes n1, n2, . . . , nm
guess correctly. Thus all the players guess simultaneously their own die values
correctly with probability ≤ (1

s )
m. Equality holds if and only if the conditional

probability xguessj , j = 1, 2, . . . , n takes the correct value with probability 1. This
happens if and only if the functions f1, f2, . . . , fm, g1, . . . , gn form a solution for
the information flow problem. So to complete the proof of Theorem 2 it suffices
to show:

Lemma 3. For any set of functions f1, . . . , fm and g1, . . . , gn the probability
that players n1, n2, . . . , nm (i.e. players in nodes corresponding to inner nodes
in the information Network) guess their own die values correctly is (1

s )
m (i.e.

independent of the chosen guessing functions).
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Proof: We are asking for the probability zguessj = zrealj for j = 1, 2, . . . ,m where
zguess1 = f1(xreal1 , xreal2 , . . . , xrealn )
zguess2 = f2(xreal1 , xreal2 , . . . , xrealn , zreal1 )
zguess3 = f3(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 )
.............
zguessm = fm(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 , . . . , zrealm−1)
The number of choices of xreal1 , xreal2 , . . . , xrealn and zreal1 , zreal2 , . . . , zrealm is

sn+m. We want to count the number of “successful” choices for which zguessj =
zrealj for j = 1, 2, . . . ,m. That is the number of choices for which:
zreal1 = f1(xreal1 , xreal2 , . . . , xrealn )
zreal2 = f2(xreal1 , xreal2 , . . . , xrealn , zreal1 )
zreal3 = f3(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 )
.............
zrealm = fm(xreal1 , xreal2 , . . . , xrealn , zreal1 , zreal2 , . . . , zrealm−1)
But for each choice of xreal1 , xreal2 , . . . , xrealn there is exactly one choice of

zreal1 , zreal2 , . . . , zrealm . Thus the number of successful choices is sn. The probability
is number of successful choices

number of choices = sn

sn+m = 1
sm . ♣

4.1 A. Standard Representation

There are a few slightly different ways to represent flows in information net-
works. In the previous section we considered the Circuit representation. We call
the standard (and “correct”) way of representing information flows in Network
Coding the Standard representation. If we use the standard representation
we get slightly different versions of Theorem 1 and Theorem 2. The actual the-
orems can be stated in the same way (verbatim)! The Theorems are modified to
fit the standard representation in the way the graph GN is defined.

An information networkN is a directed acyclic multi-graph. Each source node
has indegree 0, while each receiver node has outdegree 0. Associated with each
source node is a variable from a set Γvar of variables. Each outgoing edge is
associated with a distinct function symbol with an argument for each incoming
edge. Each receiver node has a list of demands which is a subset of variables from
Γvar. In the receiver node there is assigned a function symbol for each demand.
All function symbols are distinct.

Messages are assumed to belong to an alphabet A. An actual flow (using
Network Coding) is given by letting each function symbol f represents an actual
function f̃ : Ad → A where d is the number of incoming edges to the node that
is associated with the function symbol f . The flow (that might utilise Network
Coding) is a solution if the functions compose such that each demand is given
by the functional expression of the involved terms.

We let Cmultiple−unicast denote the class of information networks N for which
for some n ∈ N , n messages m1,m2, . . . ,mn ∈ A (selected from some alphabet
A) has to be send from nodes i1, i2, . . . , in to output nodes o1, o2, . . . , on.

We convert a given information network N ∈ Cmultiple−unicast to a directed
graph GN as follows:
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Step 1: For each variable or function symbol assigned to an edge or a node
we introduce a node in the new graph GN .

Step 2: We identify nodes i1 with o1, i2 with o2, . . . and ij with oj in general
for j = 1, 2, . . . , n.

With this translation of N to GN Theorem 1 and Theorem 2 remain valid
(verbatim).

5 General Results for Information Networks

Theorem 1 and Theorem 2 only apply for information networks N ∈
Cmultiple−unicast . In this section we generalize the results so they essentially
cover all (!) instantaneous information networks.

Let N be an information network and let A be an (finite) alphabet with s
elements. For a selection of fixed network functions f̄ we define the networks N ’s
global success rate p(N, s, f̄) of a specific network coding flow as the probability
that all outputs produce the required outputs if all inputs are selected random-
ly with independent probability distribution. The maximal global success rate
p(N, s) of the information flow network N (over alphabet of size s) is defined
as the supremum of all global success rates p(N, s, f̄) that can be achieved by
any choice of coding functions f̄ . Since the set of functions f̄ (for a fixed finite
alphabet A) is finite p(N, s) is the maximal global success rate of p(N, s, f̄).

Fig. 7.
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Assume that N is an information network over an alphabet A with s ele-
ments. Assume that N has n source nodes (input nodes) and that r of these
are required by at least one receiver node (output node). Usually, n = r since
in most information networks each source message is required by at least one
receiver node.

Definition
We define the source transmission bandwidth k = k(N, s) of the information
network N (over alphabet of size s) as k(N, s) = logs(p(N, s)) + r.

The notion is motivated by the Theorem 4 below, and can be viewed as a
generalisation of the guessing number of a graph.

Notice, that a network has source transmission bandwidth k if all output
nodes simultaneously can calculate their required messages with probability sk

higher that what can be achieved by the “channel free” network. An information
network N that sends n distinct source messages (each message is required at
one or more receiver nodes), has source transmission bandwidth k(N, s) = n if
and only if it has is solvable (in the sense of network coding) over an alphabet
of size s.

For each directed graph G = (V,E) we want to define an information flow
problemNG = (W,F ) with |V | source nodes (input nodes) and |V | receiver nodes
(output nodes). Expressed slightly informally, we define NG by splitting each
node w ∈ V into two nodes winput and woutput (thus the vertex set W consists of
two copies of V ). For each edge (w, v) ∈ E we add an edge (winput, voutput) ∈ F .
Let NG = (W,F ) denote the flow problem that appears through this transfor-
mation where each output node voutput requires the message assigned to vinput.
Notice that the information network NG usually is very far from being solv-
able since most source (input) nodes have no path to its corresponding receiver
(output) node.

Observation
Let G be a directed graph. Then NG ∈ Cmultiple−unicast and G has guessing
number k = k(G, s) if and only if NG has source transmission bandwidth
k = k(NG, s).
For each p ∈ [0, 1] there is a one-to-one correspondence between guessing
strategies f̄ in the Guessing Game (G, s) that achieve success with proba-
bility p and information flows f̄ in NG that have global success rate p.

The Observation is too trivial to deserve to be called a theorem. It is however
quite interesting since it shows that the notion of source transmission bandwidth
generalizes the guessing number of a directed graph.

We now introduce a simple move we call “split”. Given an information network
N = (V,E) (with E being a multiset) the move “split” can be applied to any
inner node w ∈ V in N (a node is an inner node if it is not a source or a
receiver node). The move “split” copy the inner node w into two nodes winput
and woutput. In other words the move convert the vertex set V to the set V ′ = V ∪
{winput, woutput}\{w} containing all point in V but with two copies (winput and
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woutput) of w. For each outgoing edge (w, u) ∈ E from w we introduce an edge
(winput, u) ∈ E′ (with the same multiplicity as (w, u)). For each incoming edge
(u,w) ∈ V we introduce an edge (u,winput) ∈ E′ (with the same multiplicity as
(w, u)).

The information network N ′ = (V ′, E′) has as source (input) nodes all source
(input) nodes in V together with {winput}. The set of receiver (output) nodes
consists of the receiver (output) nodes in V together with {woutput}. We associate
a new variable z to the node winput and node woutput demands (requires) z. All
other nodes keep their demands.

In figure 7, we see how the split move can be applied. We say that the infor-
mation network N ′ appear from the information network N by a “reverse split
move”, if N appears from N ′ using a split move.

The split move always result in an information network that have no solution
(since there is no path from the source node winput to the receiver node woutput).

The next Theorem can be considered as a generalization of Theorem 1 and
Theorem 2.

Theorem 4
Let N and N ′ be two information networks that appear from each other by
a sequence of split and inverse split moves (in any order). The network N
and N ′ has the same source bandwidth (i.e. k(N, s) = k(N ′, s))

More specifically let N be an information flow network, let A be an
alphabet with |A| = s letters and assume f̄ is a selection of coding functions
over this alphabet. Assume N has source messages x1, x2, . . . , xr (they might
be transmitted from more than one input edge). Assume that the coding
functions have global success rate p = p(N, s, f̄) ∈ [0, 1]. Let N ′ be any
information network that appears from N by application of the split move.
Then N ′ with the coding functions f̄) has global success rate p(N ′, s, f̄) = p

s .
In general if N has global success rate p (over alphabet A) any network

N ′ that appears from N by application of r split moves and t reverse split
moves (in any order) has global success rate p× st−r.

Proof: The first part follows from the more detailed second part since each
application of the split rule increase the value of r by one and each application
of the inverse split rule decrease the value of r by one.

Assume that the information network N = (V,E) has global success rate
p = p(N, s, f̄) ∈ [0, 1] with respect to the coding functions f̄ . Let w ∈ V be
any inner node in N . Replace (split) w into two nodes winput and woutput as
already explained. The incoming coding function to node woutput is the same
function as the inner coding function to node w in the network N . Each outgoing
coding function of winput is the same as each outgoing function for node w. The
network N ′ has got a new input node. Let us calculate the probability p(N ′, s, f̄)
that all output nodes produce the correct outputs. The probability that node
woutput produce the correct output is exactly 1

s . Assume now woutput = winput.
The conditional probability (i.e. the probability given zoutput = zinput) that all
output nodes in the network N produce the correct output is p = p(N, s, f̄).
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But, then the probability all output nodes in N ′ produce the correct output is
exactly p

s .
The second part of the theorem follows from the first part. Assume f̄ is a se-

lection of coding functions such that p(N, s, f̄) = p(N, s) (the alphabet is finite so
there are only finitely many functions f̄ and thus there exists functions that achieve
the maximum value p(N, s)). We already showed that p(N ′, s, f̄) = p(N,s,̄)

s . We
claim that p(N ′, s) = p(N ′, s, f̄). Assume that p(N ′, s, ḡ) > p(N ′, s, f̄). But then
p(N, s, ḡ) = s × p(N ′, s, ḡ) > s × p(N ′, s, f̄) = p(N, s, f̄) which contradicts the
assumption that f̄ was an optimal coding function for the information networkN
(over alphabet of size s). ♣

6 Utilising Public Information

6.1 A. Another Game

Consider the directed graph in figure 8(i) (introduced in 4 (iv)). Each node has
to derive their own message. This is, of course, impossible and we know that
the best the players can hope for (if they use a suitable coordinated guessing
strategy) is that they are all correct on s3 distinct inputs (out of the s6 different
input). If the players have access to s3 public messages and these are carefully
chosen, it is possible for the players (through a cooperative strategy) to ensure
that each player can derive his/her own message.

Fig. 8.

If, for example, the values a# b# d ∈ A, c# b# f ∈ A as well as e# d ∈ A are
common knowledge (broadcast through public messages) each node can derive
its own message (since a = (a#b#d)⊕b⊕d, b = (e#d)#(a#b#d)⊕(a#e), c =
(c#b#f)⊕b⊕f , d = (a#b)⊕(a#b#d), e = (e#d)⊕d and f = (c#b)#(c#b#f)).

Another equivalent way of stating this is to consider the bipartite flow problem
in figure 8 (ii), with public channel of bandwidth 3. Notice that figure 8 (i) and
figure 8 (ii) are different representations of the problems that are mathematically
equivalent.
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Are the solutions (public messages a # b # d ∈ A, c # b # f ∈ A as well as
e # d ∈ A) in figure 8 (i) and figure 8 (ii) optimal? Is it possible to send fewer
than s3 message through the public channel (and still have all players being able
to deduce their own message)? From the analysis of the guessing game in figure
5 (iv) we know that the probability that the players in nodes a, c and e guess
their own messages is independent (for any guessing strategy) and thus nodes
a, c and e guess correctly their own message with probability (1

s )
3. We claim

that if node a, c and e in general are able to derive their own message they must
have access to at least s3 distinct messages in the public channel. To see this
assume that it were possible for the players in figure 8 (i) to deduce their own
messages from a public channel that sends < s3. The players could then all agree
to guess if the public channel is broadcasting a specific message m they agreed
on in advance. Since there are less than s3 public messages there is a message
m that is broadcast with probability > (1

s )
3). This contradicts the fact that the

players (especially the players in nodes a, b and c) cannot do better than (1
s )

3.
Thus the solutions in figure 8 (i) (and in figure 8 (ii)) are optimal.

Let G = (V,E) be a directed graph. Assume like before that each node is
being assigned a message x randomly chosen from a fixed finite alphabet A
containing s = |A| elements. Like in the guessing game each node transmits its
message (dice value) along all outgoing edges. In other words each node j knows
the messages (dice values) of exactly all nodes i with (i, j) ∈ E.

The task of the players is to deduce their own message. This is of course
impossible (unless the graph is reflexive) since in general the players have no
direct access to their own message (dice values). The task of the players is to
cooperate and agree on a protocol and a behaviour of a public channel that
ensure that all players are always able to derive their own messages.

Definition
Let G = (V,E) be a directed graph and let A denote an alphabet with s
letters. Let P be a finite set of public messages. Consider the following Public
Channel Game (G,A, P ). The game is played as follows. Each node j ∈ V is
assigned to a message xj ∈ A. A public message p = p(x1, x2, . . . , xn) ∈ P
(given by a function p : An → P ) is broadcast to all nodes. Each node j has
access to the message p ∈ P as well as xi for each i with (i, j) ∈ E. In the
game each player j needs to deduce the content of their own message xj .

Each player (node) v ∈ {1, 2, . . . , n} sends its message to each person
w ∈ {1, 2, . . . , n} with (v, w) ∈ E. Or in other words each node w receives
messages from a set Aw := {v ∈ V : (v, w) ∈ E}. The task is to design the
function p(x1, x2, . . . , xn) such that each player always (i.e. for any choice of
x1, x2, . . . , xn ∈ S) can deduce their own message. If this is possible, we say
that the Public Channel Game (G,A, P ) has a solution.

Definition
A directed graph G = (V,E) has (general) linear guessing number k = ks
if the Public Channel Game (G,A, P ) has solution for some A with |A| = s
and with P = s|V |−k.
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In the case of figure 3(iii) each player would be able to calculate his own
dice value if, for example, x1 ⊕ x4, x2 ⊕ x4 and x3 ⊕ x4 modulo s were known
public information. [To see this, notice that node 1 receives x4 from which it
can calculate x1 = (x1 ⊕ x4) # x4, node i = 2, 3 receives xi−1 from which it can
calculate xi = (xi ⊕ x4) # (xi−1 ⊕ x4) ⊕ xi−1. Finally, node 4 receives x3 from
which it can calculate x4 = (x3 ⊕ x4) # x3].

For any information network N we can apply the split move until all inner
nodes have been spilt. In this case N becomes a bipartite graph BN with no
inner nodes. Notice that BN is uniquely determined by N .

Fig. 9.

This example suggests that it is always possible to replace the guessing part
of guessing game, and instead let all players have access to a suitable public
channel of information. We will show (Corollary 10) that this is possible for
linear solutions (also sometimes called matrix linear) for the guessing game, but
it is never possible if only non-linear solutions exists. Notice, that this analysis
is only meaningful when the alphabet (i.e. the dice values) can be organized
as a vector space U (of dimension d) over a finite field F (with a number q of
elements being a prime power). The number |U | of element of U is given by
s := qd.

Theorem 5
Assume that the alphabet U is a vector space of dimension d over a finite field
F with q elements (i.e. q is a prime power). Then the following statements
are equivalent:

(1) The players have a linear guessing strategy in the Guessing Game
(G,U) that succeeds with probability ( 1

qd )k

(2) G has a special linear guessing number k = klin(G, qd).
(3) The Public Channel Game (G,U,Uk) has a solution (possible non-

linear).
(4) The Bipartite information flow problem BG associated to G has a

solution (over U and possible non-linear) that uses a public channel
P of bandwidth k.

(5) The Bipartite information flow problem associated to G has a linear
solution (over U) that uses a public channel of bandwidth k.

(6) The Public Channel Game (G,U,Uk) has a linear solution.
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From this we get:

Theorem 6
Assume that the alphabet U is a finite dimensional vector space over a
finite field F . The nodes in a directed graph G can calculate their messages
(selected from U) if they have access to a public channel of bandwidth ≤ k
if and only if the (special) linear guessing number of G is ≥ |V | − k.

Theorem 6 explain the terminology of the (special) linear guessing number. In
the case where the alphabet is a vectorspace the linear guessing number (in sense
of linear maps) agree with the (general) linear guessing number. The two notions
of linear guessing numbers agree when they are both defined. The general linear
guessing number is, however, defined for all s ∈ {2, 3, 4, . . . , }, while the special
linear guessing number only is defined when s is a prime power (since a finite
dimensional vector space always has a number of elements being a prime power).

6.2 B. Proof of Theorem 5

First notice that (1) and (2) are equivalent (by definition). We claim:

Lemma 7
(1) implies (3):

Proof: We are given a graph G = (V,E) and we consider the Guessing Game
(G,U,Uk), for U being a vector space of dimension d over a field F with q
elements (q being a prime power). The number k is given by (1). We assume
that the players have a linear guessing strategy, i.e. a strategy where all functions
fw : U rω → U are linear (i.e. given by a rωd ⊗ d matrix with entries in F ).
Furthermore we assume this linear guessing strategy makes it possible for the
players to guess correctly all their own dice values with probability ( 1

qd )k.
Consider Ũ := U |V |, the linear subspace of vectors (v1, v2, . . . , v|V |) ∈ U |V |

with vj ∈ U for j = 1, 2, . . . , |V |. Let W ⊆ Ũ denote the linear subspace of dice
values for which the players all successfully guess their own dice value (while
using the linear guessing strategy for which we assume that it exists). Since the
strategy is successful with probability (1

q )
dk and since the number of points in

Ũ is qd|V | the number of points in W is qd|V |−dk. Since W is a linear subspace
with qd|V |−kd points, its dimension d|V | − dk must be an integer (thus dk must
be an integer while k might not be an integer).

For each vector u ∈ Ũ we consider the linear “side” space u + W . Let
u1, u2, . . . , ul denote a maximal family of vectors with W,u1+W,u2+W, . . . , ul+
W all being disjoint. It follows that l = qdk − 1, i.e. that there are qdk disjoint
side spaces of W and that W ∪j (uj +W ) = U .

We can now convert this into a solution to the Public Channel Game (G,U,Uk).
We do this by broadcasting a public message as follows: Assume each node in V
has been assigned a value from U . The information of all dice values are contained
in a vector u ∈ Ũ . There exists exactly one index j ∈ {1, 2, . . . , l} such that u ∈
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uj+W . Broadcast the index j ∈ {0, 1, 2, . . . , qdk−1} by selecting a bijection from
{0, 1, . . . , qdk−1} toU . Now each node can calculate its own message by correcting
their guess (they could have played the Guessing Game) by the suitable projection
of uj.

This shows that the Public Channel Game (G,U,Uk) has a solution (possi-
ble non-linear) with the public message being selected from the set of public
messages Uk. ♣
In this construction, the public channel broadcasts different messages for each
index j ∈ {1, 2, . . . , l}. In general this map is not linear. We will show that any
non-linear strategy can be turned into a linear strategy.

Lemma 8
(4) implies (5)

Before we prove this implication we make a few general observations and defin-
itions. Assume the flow problem has a solution with the public channel broad-
casting

p1(x1, x2, . . . , xn), . . . , pw(x1, x2, . . . , xn).

Since pj : An → A and A is a field, each function pj can be expressed as a
polynomial pj ∈ A[x1, x2, . . . , xn]. Each output node oj receives p1, p2, . . . , pw ∈
A as well as xj1 , xj2 , . . . , xjv ∈ A. The task of output node oj is to calculate
xj ∈ A. For any q ∈ A[x1, x2, . . . , xn] let L(q) ∈ A[x1, x2, . . . , xn] denote the
sum of all monomials (with the original coefficients) of q that only contains one
variable (e.g. xj , x3, or x7

j). In other words L(q) consists of q where the constant
term, as well as all monomials containing more than one variable, have been
removed. If for example q = 5x1x3−7x1x2+3x1−5x2+1, then L(q) = 3x1−5x2.

We first consider the special case where the alphabet U is a one dimensional
vector space (i.e a finite field) rather than a general finite (dimensional) vector
space.

Lemma 9
A bipartite information flow problem B has a solution with public infor-
mation given by polynomials p1, p2, . . . , pw ∈ A[x1, x2, . . . , xn] then B has a
solution with public information given by linear expressions l1, l2, . . . , lw ∈
A[x1, x2, . . . , xn].

Remark: In general non-linear flows cannot be eliminated from information
networks. In a general network a non-linear solution might for example involve
that two nodes send messages (x + y) and (y + z) to a node r where their
product (x + y)(y + z) = xy + xz + yz + y2 = xy + xz + yz + y is being
calculated. Removing mixed monomials would lead to L(x + y) = x + y and
L(y + z) = y + z to be sent to node r where L((x + y)(y + z)) = y2 must be
calculated. Since it is not possible to derive y2 (or y) from x + y and y + z
the process of removing monomials with mixed variables fails in general. The
networks in [17] and [7] show that certain flow problems only have non-linear
solutions. For such networks any attempt of removing non-linear terms (not just
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using local linearisation) will fail. The point of the lemma is that the network
B together with any public channel is structured in such a fashion that allows
us to remove mixed terms and then replace the resulting function with linear
functions. Information networks in which only two messages are transmitted
provide another case where linearisation is always possible [8].

Proof of Lemma 9: We apply the operator L that removes all monomi-
als with two or more distinct variables. The public information then becomes
L(p1), L(p2), . . . , L(pw). These functions can be realized (since there are no re-
strictions on the public channel and all functions An → Aw can be calculated).
Using the same argument we can remove all mixed terms and insure that each
output node oj receives a function of its inputs (the input from input nodes as
well as from the public channel). This completes the proof of Lemma 9. ♣
In general, when A is a vector space the operator L removes all monomials that
contain variables associated to distinct inputs.

Thus it is easy to prove Theorem 5. We have shown (1) → (3) (Lemma 7) ,
as well as (4) → (5) (Lemma 8).

The implications (5) → (6) → (1) as well as (3) ↔ (4) are all almost trivial
and are left as easy exercises for the reader. This completes the proof of Theorem
5. Theorem 6 follows as an easy corollary.

7 Some Corollaries

In general the Guessing Game (G, s) might only have non-linear optimal guessing
strategies. When this happens G has linear guessing number klin that is strictly
smaller than G’s guessing number k. We have the following characterisation:

Corollary 10
Let G = (V,E) be a graph and let U be a finite vector space. The linear
guessing number klin of G over U is smaller or equal to the guessing number k
of G. Equality holds if and only if the Public Channel Game (G,U,U |V |−k))
is solvable.

We have seen that the problem of solving information network flow problems (of
class C) can be restated to that of calculating the guessing number of a graph.
The linear guessing number of a graph is an important concept:

Corollary 11
The information flow problem N ∈ C with n input/output nodes has a linear
solution (i.e. a solution within the “wave paradigm”) over an alphabet of size
s if and only if GN has its linear guessing number k(G, s) ≥ n (which happens
if and only if k(G, s) = n).

8 Algebraic Solution to the Case Where |A| = 2

Consider a directed graph G = (V,E). In this section we show that the linear
guessing number (for an alphabet of size 2) has an algebraic definition. Assume
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G has no edges (v, v) ∈ E for v ∈ V . We say G′ = (V,E′) is a subgraph of G if
E′ ⊆ E. The reflexive closure ref (G) of G′ = (V,E′) is the graph that appear if
we add all the edges (v, v) to the edge set E′.

Theorem 12
Let G be a directed graph. Assume that the alphabet A contains two ele-
ments. Then G has linear guessing number k = klin,2 (for alphabet of size
2) if and only if there exists a subgraph G′ of G such that the rank of the
incident matrix for ref (G′) = k.

Proof: We assume A = {0, 1}. Assume G has linear guessing number k. Ac-
cording the Theorem 5 G has linear guessing number k if and only if the Public
Channel Game (G, 2) has a linear solution S with a public channel of bandwidth
k. We say an edge (v1, v2) ∈ E in G is active (with respect to the solution S)
if the message in v1 affects the guessing function in v2. Let E′ ⊆ E consists of
all active edges in G. Let G′ = (V,E′) be the subgraph of G that consists of all
active edges in G.

Consider a node w ∈ V such that (v1, w), (v2, w), . . . , (vd, w) are all active in-
coming edges. The (linear) signal being send to node w is s = mv1 +mv2 + . . .+
mvd

i.e. the sum of all incoming signals, as well as the signals that are send from
the public channel. Next we assume that the rank of ref (G′) is k for someG′ ⊆ G.
Let l1(x1, x2, . . . , xn), l2(x1, x2, . . . , xn), . . . , lk(x1, x2, . . . , xn) denote the k lin-
early independent rows of ref (G′). Send these signals as public messages. Let w
be an arbitrary node. The node receives a signal mv1 + mv2 + . . . + mvr from
the channels in G′. The node w needs to derive mw so it suffice to show that the
node w can derive mv1 +mv2 + . . .+ mvd

+ xw from the public messages. But,
the row mv1 +mv2 + . . .+mvd

+mw appears in ref (G′) and thus it belong to the
span of the k vectors l1(x1, x2, . . . , xn), l2(x1, x2, . . . , xn), . . . , lk(x1, x2, . . . , xn)
that are send through the public channel. ♣
For a graph G let Ref(G) denote the reflexive closure of G. Let rank(G) denote
the rank over the field {0, 1} of the incident matrix of G.

Theorem 13
Assume the alphabet A = {0, 1} only contains two elements. Let G be a
graph. Then the Public Channel Game (G, {0, 1}, {0, 1}k) has a solution if
and only if

k ≥ minG′⊆Grank(Ref(G′))

9 More Games

Suppose N ∈ Cmultiple−unicasts is an information network where some nodes
have indegree > 2. For each node n with indegree d > 2 we can replace the
incoming d edges with a tree with d leaves and a root in n (see figure 11).

Theoretically this replacement restricts the power of the information network
since not all functions f : Ad → A can be written as a composition of d functions
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gj : A2 → A, with j = 1, 2, . . . , d. Let Sd denote the class of d-ary functions
f : Ad → A that can be written as a composition of d, 2-ary functions.

Given a directed graph G = (V,E) and assume that each node with indegree d
can only compute functions that belong to Sd. How does this affect the guessing
number of the graph? How does it affect the set of solutions?

The network in figure 2 corresponds to a type of games that can be described
as follows:

– Public Channel Game Variant(G, s): As before letG = (V,E) be a graph on a
vertex set V = {1, 2, . . . , n} of persons. The game is played by n players. Each
player is assigned a message selected from some alphabet {1, 2, . . . , s}. Each
person w ∈ {1, 2, . . . , n} receive the function value (a value in {1, 2, . . . , s})
from the set Aw = {v ∈ V : (v, w) ∈ E} ⊆ V. Each player also have access
to a public information channel p. How many messages should the public
channel p be able to broadcast for all players to be able to deduce there own
message? Problem 3 (in section I(A)) corresponded to the case where G is
the complete graph on n nodes.

As we already pointed out there exists graphs G for which the dice guess-
ing game only can achieve maximal probability, if the players uses non-linear
functions.

We will show (and this will follow as a corollary of Theorem 16) that:

Theorem 14
Assume that the public information is given by a function p : An → A. Then
the Public Channel Game Variant (Kn) played on the complete graphKn has
a solution if and only if there exists a commutative group (A,⊕) structure
on the alphabet A and there exists n permutations π1, π2, . . . , πn ∈ SA of
elements in A such that the public channel broadcast

p(x1, x2, . . . , xn) = π1x1 ⊕ π2x2 ⊕ . . .⊕ πnxn

Roughly, Theorem 14 states that the set of solutions consists of all the “obvious”
solutions (where p(x1, x2, . . . .xn) = x1 ⊕x2 ⊕ . . .⊕xnfor a commutative group),
together with all “encryptions” π : A → A of these.

10 On the Power of Network Coding

In this section we show that the advantage of (linear) Network Coding compared
to any method that does not allows “interference” is as high as one could possible
have hoped for. Consider the information networks N in figure 10. The networks
corresponds to the Guessing Game on the complete graph Kn.

Theorem 15
For each n there is a network N with n input nodes and n output nodes
such that the through-put is n times higher than any method that does not
allow interference.
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Fig. 10.

For any n ∈ N and for any ε > 0 there exists a network N(n, ε) such that
the through-put divided by the number of active channel using Network
Coding, is n − ε times as high as the maximal through-put divided by the
number of active channels using methods that does not allow interference.

If each inner node is required to have in-degree (and out-degree) ≥ 2 the
result remains valid.

Proof: For each n ≥ 2 (and each ε > 0 we base the construction on the network
in figure 10. Assume that the public channel consists of m channels in serial. In
any “solution” (operating at rate 1

n ) that does not allow mixture of datapackets
all messages must go through these m channels. Thus the number of active
channels is m+2. In the Network Coding solution (operating at rate 1) all n(n−
1)+(m+2) channels are active. We can choosem such that n×( (m+2)

n(n−1)+(m+2) ) >
n − ε. For this m the through-put divided by the number of active channel (in
the Network Coding solution) is n− ε times as high as the maximal through-put
divided by the number of active channels using methods that does not allow
interference.

Fig. 11.

The serial construction in this proof might be considered unacceptable. It
might be argued that the cost of using the serial channels ought to count as
1 rather than m. To overcome this criticism we can modify the serial channels
as indicated in figure 11 and select m such that each path through the public
channel still must involve ≥ m active channels (m chosen as before). ♣
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11 Analysis of Specific Networks

Consider the information network Nn sketched in figure 12. The network N(3)
is displayed in in figure 2.

The networks Nn corresponds to the Public Channel Game Variant (Kn, s)
played on the complete graph Kn.

Fig. 12.

Consider, again the information network N(3) in figure 2. The three output
nodes receive the messages l1(x2, x3) ∈ A, l2(x1, x3) ∈ A and l3(x1, x2) ∈ A.
Besides this, each output node has access to public message p = p(x1, x2, x3) ∈
A. We notice that a solution to the flow problem associated withN3 consists of six
functions l1, l2, l3, r1, r2, r3 : A×A → A as well as one function p : A×A×A → A
such that x1 = r1(p(x1, x2, x3), l1(x2, x3)), x2 = r2(p(x1, x2, x3), l2(x1, x3)) and
x3 = r3(p(x1, x2, x3), l3(x1, x2)).

The solution we already considered can be achieved (within the framework of
linear NetworkCoding) as follows: Let (A,⊕) be an Abelian group, let p(x1, x2, x3)
:= x1 ⊕ x2 ⊕ x3, let li(x, y) := x ⊕ y for i = 1, 2, 3 and let ri(x, y) := x # y for
i = 1, 2, 3. We leave to the reader to check that this defines a solution to the flow
problem associated with the network N3.

Actually, for each Abelian group (A,⊕) and for any three permutations π1, π2,
π3 : A → A the network has a solution with p(x1, x2, x3) := π1x1 ⊕ π2x2 ⊕ π3x3,
l1(x2, x3) := π2x2⊕π3x3, l2(x1, x3) := π1x1⊕π3x3 and l3(x1, x2) := π1x1⊕π2x2.
We will show that all solutions are essentially of this form. More generally let
Nn denote the network:

The network Nn has n input nodes. These transmit messages x1, x2, . . . , xn ∈
A. The messages x1, x2, . . . , xn are independent so we assume that the network
cannot exploit hidden coherence in the data. The network Nn has n internal
nodes l1, l2, . . . , ln. The node lj is connected to each input node except the node
that transmits message xj . The network has n output nodes that are required
to receive the messages x1, x2, . . . , xn−1 and xn (one message for each output
node). The node required to receive xj is connected to lj as well as to the public
channel p. The public channel broadcasts one message p = p(x1, x2, . . . , xn) ∈ A
to all output nodes. First we notice that:
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Observation
The network Nn has a solution over any (finite) alphabet A. Using routing
only one message can be transmitted at a time. Thus the through-put using
Network coding is n-times as large as the through-put using any type of
routing method that does not allow interference. This is optimal since any
network problem with n input nodes that is solvable using network coding
can be solved using routing if the bandwidth is increased by a factor n.

The next Theorem gives a complete classification of the set of solutions (all
utilising Network coding) to the network Nn.

Theorem 16
Consider the network flow problem Nn over a finite alphabet A. Assume
n ≥ 3. Let p : An → A be any function. The network flow problem Nn has a
solution with public information p if and only if for some group composition
⊕ on A that makes (A,⊕) an Abelian group, there exist n permutations
π1, π2, . . . , πn : A → A such that p(x1, x2, . . . , xn) = ⊕nj=1πjxj .

Proof: In general if Theorem 16 have been shown for Nr for some r ≥ 3 the
theorem is also valid for each Ns with s ≥ r. Thus to prove the theorem it
suffices to show that the theorem is valid for N3.

Let p : A3 → A be defined by p(x1, x2, x3). Assume that the network has a
solution when the public signal is given by p. The function p : A3 → A must be
‘latin’ (i.e. fa,b(z) := p(a, b, z), ga,c(y) := p(a, y, c) and hb,c(x) := p(x, b, c) for
each a, b, c ∈ A define bijections fa,b, ga,c, hb,c : A → A). Notice that p defines
a latin cube of order |A|. The functions l1.l2, l3 : A2 → A are also forced to be
latin i.e. they define three latin squares each of order |A|. In order to proceed
we need to prove a number of lemmas.

Lemma 17
Denote one element in A by 1. The network N3 has a solution for some
functions l1, l2, l3 : A2 → A if and only if the network N3 has a solution
when l1(x2, x3) := p(1, x2, x3), l2(x1, x3) := p(x1, 1, x3) and l3(x1, x2) =
p(x1, x2, 1).

Proof of Lemma 17: We introduce a new and interesting type of argument
that might be useful when reasoning about ‘latin’ network flow in general. For
each output node we draw a triangle with a coding function assigned to each
corner. The triangle corresponding to the output node that required output x1

has assigned p(x1, x2, x3), l1(x2, x3) and x1 to its corners. If p and l1 are func-
tions that produce a solution to the network flow problem, x1 ∈ A can uniquely
be calculated from p(x1, x2, x3) ∈ A and l1(x2, x3) ∈ A (i.e. there exists a (latin)
function f : A2 → A such that x1 = f(p(x1, x2, x3), l1(x2, x3))). Notice, that
any coding function assigned to one of the corners can be calculated uniquely
from the two other functions. More specifically l1(x2, x3) ∈ A is uniquely deter-
mined by x1 ∈ A and p(x1, x2, x3) ∈ A. And the value p(x1, x2, x3) is uniquely
determined by x1 and l1(x2, x3). We say that a triangle with a coding function
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assigned to each corner is ‘latin’ if each of the three coding functions can be
calculated from the two other functions. For any solution of the network flow
problem N3 each of the following three triangles are latin:

Fig. 13.

Letting x1 = 1 in triangle (i) we notice that p(1, x2, x3) can be calculat-
ed from l1(x2, x3) and conversely we notice that l1(x2, x3) can be calculated
from p(1, x2, x3). Thus we can replace the function l1(x2, x3) with the function
l1(x2, x3) = p(1, x2, x3). Similarly, by letting x2 = 1 in triangle (ii) and letting
x3 = 1 in triangle (iii) we obtain a solution with l2(x1, x3) = p(x1, 1, x3) and
l3(x1, x2) = p(x1, x2, 1). This completes the proof. ♣

Lemma 18
Assume that there is a solution to the flow problem N3 with public informa-
tion given by p : A3 → A. Then the latin function p(x1, x2, x3) determines
(uniquely) two latin functions (i.e two latin squares) l : A2 → A (l stands
for ‘left’) and r : A2 → A (r stands for ‘right’) defined by the two equations:

– p(1, l(x1, x2), x3) = p(x1, x2, x3)
– p(x1, r(x2, x3), 1) = p(x1, x2, x3)

Proof of Lemma 18: Certainly (since p is latin), there exist uniquely defined
functions l′, r′ : A3 → A such that p(1, l′(x1, x2, x3), x3) = p(x1, x2, x3) and
p(x1, r

′(x1, x2, x3), 1) = p(x1, x2, x3). To show Lemma 18 it suffices to show that
l′ is independent of x3 and that r′ is independent of x1. Consider the two latin
triangles:

Fig. 14.
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In each triangle (iv) and (v) each coding function is uniquely determined
by the two other coding functions in the triangle. Thus there exists f, g :
A2 → A such that p(x1, x2, x3)=f(p(x1, x2, 1), x3) and such that p(x1, x2, x3)=
g(x1, p(1, x2, x3)). Let l(x1, x2) = l′(x1, x2, 1) and let r(x2, x3) = r′(1, x2, x3) and
notice that p(x1, x2, 1) = p(1, l(x1, x2), 1) and p(1, x2, x3) = p(1, r(x2, x3), 1).
But then p(x1, x2, x3) = f(p(x1, x2, 1), x3) = f(p(1, l(x1.x2), 1), x3) = p(1,
l(x1, x2), x3) and p(x1, x2, x3) = g(x1, p(1, x2, x3)) = g(x1, p(1, r(x2, x3), 1) =
p(x1, r(x2, x3), 1) . Thus l and r satisfies the same equations that uniquely deter-
mined l′ and r′ and thus l′(x1, x2, x3) = l(x1, x2) and r′(x1, x2, x3) = r(x2, x3).
This completes the proof. ♣

Lemma 19
Assume that p : A3 → A has a solution and that p(x1, x2, x3) = p(1,
l(x1, x2), x3) and assume that p(x1, x2, x3) = p(x1, r(x2, x3), 1). Then the
functions l, r : A2 → A satisfy the equation r(l(x1, x2), x3) = l(x1, r(x2, x3)).

Proof: Since p is latin and p(x1, x2, x3) = p(1, r(l(x1, x2), x3), 1) = p(1,
l(x1, r(x2, x3)), 1). ♣
The next three lemma are straight forward to prove.

Lemma 20
Assume p(x1, x2, x3) allows a solution and that l(x1, x2) and r(x2, x3) are
defined such that p(1, l(x1, x2), x3) = p(x1, x2, x3) and p(x1, r(x2, x3), 1) =
p(x1, x2, x3). Then for each pair π1, π3 :A→A of permutations p′(x1, x2, x3) =
p(π1x1, x2, π3x3) allows a solution and l′(x1, x2)=l(π1x1, x2) and r′(x2, x3) =
r(x2, π3x3) satisfies the equations

p′(1, l′(x1, x2), x3) = p′(x1, x2, x3) and p′(x1, r
′(x2, x3), 1) = p′(x1, x2, x3).

Lemma 21
There exists permutations π1, π3 : A → A such that l(π1x1, 1) = x1 and such
that r(1, π3x3) = x3.

Lemma 22
If p(x1, x2, x3) is a solution, there is another solution p′(x1, x2, x3) = p(π1x1,
x2, π3x3) such that the two functions l′(x1, x2) and r′(x2, x3) that satis-
fy the equations p′(1, l′(x1, x2), x3) = p′(x1, x2, x3), p′(x1, r

′(x2, x3), 1) =
p′(x1, x2, x3) as well as l′(x1, 1) = x1 and r′(1, x3) = x3.

Without loss of generality (possibly after having replaced x1 and x3 by π1x1

and π3x3) we can assume that we are given a latin function p(x1, x2, x3) and
two latin functions l(x1, x2) and r(x2, x3) that satisfies l(x1, 1) = x1, r(1, x3) =
x3, and have l(x1, r(x2, x3)) = r(l(x1, x2), x3) for all x1, x2, x3 ∈ A. But, then
r(x1, x3) = r(l(x1, 1), x3) = l(x1, r(1, x3)) = l(x1, x3) and thus l = r. But then
l is transitive i.e. l(x1, l(x2, x3)) = l(l(x1, x2), x3). Furthermore since l(x, 1) = x
and l(1, x) = r(l, x) = x we notice that l defines a group operation on A. Thus
we have shown that for any function p(x1, x2, x3) that allows a solution to the



896 S. Riis and R. Ahlswede

network flow problem N3, there exist permutations π1, π3 : A → A such that if
we let p′(x1, x2, x3) = p(π1x1, x2, π3x3) then there is a group structure ∗ on A
such that p′(x1, x2, x3) = p′(1, x1 ∗ x2 ∗ x3, 1) for all x1, x2, x3. But then there
is a permutation π : A → A such that if we let p′′(x1, x2, x3) = π(p′(x1, x2, x3))
then p′′(1, b, 1) = b for all b ∈ A. Notice, that p′′(x1, x2, x3) = π(p′(x1, x2, x3)) =
π(p′(1, x1 ∗ x2 ∗ x3, 1)) = p′′(1, x1 ∗ x2 ∗ x3, 1) = x1 ∗ x2 ∗ x3. This shows:

Lemma 23
Let p : A3 → A be the public information in the network N3. Then, if there is
a solution to the network flow problemN3, there exists a group composition ∗
on A such that ‘essentially’ p(x1, x2, x3) = x1∗x2∗x3 (modulo the application
of suitable permutations to x1, x3 and p (or x2) ).

Lemma 24
Let (A, ∗) be a group and let p(x1, x2, x3) = x1 ∗ x2 ∗ x3. Then the flow
problem N3 has a solution if and only if (A, ∗) is a commutative group.

Proof: Assume that p(x1, x2, x3) = x1∗x2∗x3 (or just x1x2x3 for short) allows a
solution. Then we have the following ‘derivation’ from latin triangle with coding
functions p(a, b, c) = abc, p(a, 1, c) = ac and b.

Fig. 15.

Figure 15, represents the fact that b can be uniquely determined from abc
and ac. But, then given c−1bc and ac we can calculate abc = (ac)c−1bc and
thus we can determine b. Now ac can take any value (depending on a) and
thus this equation is useless in calculating b. This shows that b is uniquely
determined from c−1bc. The expression c−1bc must be independent of c and
thus c−1bc = 1−1b1 = b. But, then bc = cb for all a, b, c ∈ A which shows that
the group (A, ∗) must be a commutative group. The converse is rather obvious,
since if (A, ∗) is an ablean group and p(x1, x2, x3) = x1x2x3, we get a solution
by letting l1(x1, x2) = x1x2, l2(x1, x3) = x1x3 and l3(x1, x2) = x1x2. This
completes the proof of Lemma 19 which in turn clearly implies the theorem for
N3. This in turn easily implies the validity of Theorem 2 for general Nn with
n ≥ 3. ♣
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IX
On the Thinnest Coverings of Spheres
and Ellipsoids with Balls in Hamming

and Euclidean Spaces

I. Dumer�, M.S. Pinsker��, and V.V. Prelov���

Abstract. In this paper, we present some new results on the thinnest
coverings that can be obtained in Hamming or Euclidean spaces if spheres
and ellipsoids are covered with balls of some radius ε. In particular, we
tighten the bounds currently known for the ε-entropy of Hamming spheres
of an arbitrary radius r. New bounds for the ε-entropy of Hamming balls
are also derived. If both parameters ε and r are linear in dimension n, then
the upper bounds exceed the lower ones by an additive term of order log n.
We also present the uniform bounds valid for all values of ε and r.

In the second part of the paper, new sufficient conditions are obtained,
which allow one to verify the validity of the asymptotic formula for the
size of an ellipsoid in a Hamming space. Finally, we survey recent results
concerning coverings of ellipsoids in Hamming and Euclidean spaces.

1 Introduction

Let En be the Hamming space of binary vectors x = (x1, . . . , xn) of length n.
Given an integer ε, let Bn(y, ε) be the ball of radius ε centered at the point
y ∈ En, i.e.,

Bn(y, ε) := {x ∈ En | d(x, y) ≤ ε} ,
where d(x, y) is the Hamming distance between x and y, that is the number of
coordinate positions in which xi = yi. We say that a subset Mε(A) ⊆ En forms
an ε-covering of a set A ⊆ En if A belongs to the union of the balls Bn(y, ε)
centered at points y ∈Mε(A), i.e.,

A ⊆
⋃

y∈Mε(A)

Bn(y, ε).

The ε-entropy [1] Hε(A) of a set A is the logarithm of the size of its minimal
ε-covering:

Hε(A) := log min |Mε(A)|,
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where the minimum is taken over all ε-coverings Mε(A) and log denotes loga-
rithm base 2.

Given a vector v = (v1, . . . , vn), vi ∈ [0,∞), i = 1, . . . , n, the ellipsoid Env is
defined by the equality

Env :=

{
x ∈ En |

n∑
i=1

vixi ≤ 1

}
, (1)

where all operations are performed over real numbers. Note that the inequality∑n
i=1 vixi ≤ 1 is equivalent to the inequality

∑n
i=1 vix

2
i ≤ 1. This fact explains

the notion of ellipsoid for Env by analogy with that in the Euclidean space.
Below we study the asymptotic behavior (as n → ∞) of the ε-entropy of

an arbitrary ellipsoid Env and, in particular, the ε-entropy of a ball Bn(r) :=
Bn(0, r) and a sphere

Sn(r) := {x ∈ En | d(x, 0) = r} ,

where r is an integer.
The following notation will be used throughout the paper. Consider the binary

entropy function

h(t) := −t log t− (1 − t) log(1 − t), 0 ≤ t ≤ 1.

Then, given any integer n and real-valued vectors P = P (n) = (p1, . . . , pn) and
Q = Q(n) = (q1, . . . , qn) such that 0 ≤ pi ≤ 1, 0 ≤ qi ≤ 1, i = 1, . . . , n,
define the function

h(P,Q) :=
n∑
i=1

h(pi, qi) = h(P ) − h(Q),

where

h(pi, qi) := h(pi) − h(qi), h(P ) :=
n∑
i=1

h(pi), h(Q) :=
n∑
i=1

h(qi).

Here and below, we sometimes omit an argument n or a superscript n in our
notation of vectors, ellipsoids, balls, and spheres.

In this paper, we also consider an arbitrary ellipsoid Ea = Ena defined in the
n-dimensional Euclidean space Rn as

Ena :=

{
x = (x1, . . . , xn) ∈ Rn |

n∑
i=1

x2
i

a2
i

≤ 1,

}
(2)

where a = (a1, . . . , an) is a real-valued vector with n positive coordinates. We will
use the same notation Bn(y, ε) and Sn(r) for balls and spheres in the Euclid-
ean space Rn as the one used in the Hamming space En. The definitions of
Bn(y, ε), Sn(r) and the ε-entropy Hε(A) of a bounded set A ⊂ Rn in the
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Euclidean space are absolutely similar to those in the Hamming space. The on-
ly difference arises in the definition of the function d(x, y): now d(x, y) is the
Euclidean distance between real-valued vectors x and y. Also, in the Euclid-
ean space, the radii r, ε, and many other parameters can take arbitrary positive
values instead of integers used in the Hamming space. In both spaces we are
interested in the asymptotic ε-entropy of any ellipsoid Env or Ena

Note that ellipsoids in the Hamming spaces arise in various problems related to
combinatorics, decoding, and data compression. For example, ellipsoids in the
form of (1) can be considered as Boolean threshold functions. Also, ellipsoids
emerge in maximum likelihood decoding for binary memoryless channels. On
the other hand, the problem of coverings of spheres and ellipsoids in Euclidean
spaces often arises in vector quantizers.

In the next section, we better the bounds recently obtained for the ε-entropy
of spheres in the Hamming space. We also extend these results for balls and
derive new uniform bounds. In Section 3, we shortly survey a few results already
known for the size and the ε-entropy of ellipsoids in the Hamming space. There
we also derive some new sufficient conditions for the validity of the asymptotic
formula for the size of an ellipsoid. Section 4 is devoted to recent results obtained
for the ε-entropy of ellipsoids in Euclidean spaces.

2 Covering of Spheres and Balls in Hamming Spaces

Below we assume in this section that n, r, and ε are some positive integers such
that the ratios

ρ := r/n, σ := ε/n

satisfy condition
0 < σ < ρ ≤ 1/2.

Firstly, note that the whole space En can be considered as a special case of a ball
Bn(r) when r = n. It is shown (see, e.g., [2,3]) that the normalized ε-entropy
Hε(En) := Hε(En)/n satisfies equality

Hε(En) = 1 − h(σ) +O

(
logn
n

)
, n→ ∞,

for any fixed σ. Non-uniform lower and upper bounds on the ε-entropy of spheres
in the Hamming space are obtained in [4]. It is proven there that for any fixed ρ <
1/2 and σ there exist some constants c(ρ, σ) and C(ρ, σ), which are independent
of n but can depend on ρ and σ such that the normalized ε-entropy Hε(S(r))
satisfies the following inequalities:

h(ρ) − h(σ) +
c(ρ, σ)
n

≤ Hε(S(r)) ≤ h(ρ) − h(σ) +
3 logn

2n
+
C(ρ, σ)

n
.

The following theorem improves this bound and also gives the uniform (with
respect to parameters ρ and σ) lower and upper bounds on the ε-entropy of
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spheres in the Hamming space. Such bounds are of independent interest, and
can be used, for example, in deriving the upper bounds for the ε-entropy of
ellipsoids.

Theorem 1
1. For all n, r ≤ n/2, and ε < r, the normalized ε-entropy of an n-dimensional
sphere S(r) satisfies the following lower and upper bounds:

h(ρ) − h(σ) − log(2n)
2n

≤ Hε(S(r)) ≤ h(ρ) − h(σ) +
3 logn

2n
+

c

n
, (3)

where c is an absolute constant. Moreover, the lower bound in (3) can be im-
proved if σ or both σ and ρ are constants independent of n. Namely,

2. If σ is a constant, then there exists a constant c1(σ) such that

Hε(S(r)) ≥ h(ρ) − h(σ) +
c1(σ)
n

. (4)

3. If both ρ and σ are constants, then there exists a constant c2(ρ, σ) such that

Hε(S(r)) ≥ h(ρ) − h(σ) +
logn
2n

+
c2(ρ, σ)

n
. (5)

Proof. This theorem will be proven using Proposition 1 given in the sequel.
However, the lower bounds in (3) and (4) are almost trivial. Indeed, we first use
the following well-known inequalities (see, e.g., (10.16) and (10.20) in [5]):

(8nρ(1 − ρ))−1/22nh(ρ) ≤ |S(r)| ≤ (2πnρ(1 − ρ))−1/22nh(ρ) (6)

and
|B(ε)| ≤ 2nh(σ). (7)

Applying (6) and (7) we obtain the lower (packing) bound

Hε(S(r)) ≥ 1
n

log
|S(r)|
|B(ε)| ≥ h(ρ) − h(σ)−

log 8nρ(1 − ρ)
2n

≥ h(ρ) − h(σ) − log(2n)
2n

,

which gives the left inequality in (3). Similarly, note that for σ < 1/2, we have

|B(ε)|
|S(ε)| ≤

ε∑
i=0

(
σ

1 − σ

)i
≤ 1 − σ

1 − 2σ
, (8)

which follows from the inequality

|S(ε− 1)|/|S(ε)| ≤ σ/(1 − σ).
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Therefore, using (6) and (8), we obtain inequality (4):

Hε(S(r)) ≥ 1
n

log
|S(r)|
|B(ε)| =

1
n

log
|S(r)|
|S(ε)| −

1
n

log
|B(ε)|
|S(ε)|

≥ h(ρ) − h(σ) − log(2n)
2n

+
log(2πnσ(1 − σ))

2n
− 1
n

log
1 − σ

1 − 2σ
.

To proceed with the other bounds of Theorem 1, we shall extensively use the
following notation. Given any integer w ∈ [r − ε, r + ε], we consider a point
x ∈ S(w) and the subset

Ar(x, ε) := B(x, ε) ∩ S(r).

Given any y ∈ S(r), we also consider the set

Aw(y, ε) := B(y, ε) ∩ S(w).

Now we can prove that Hε(S(r)) can be tightly related to the function

Ω(r, ε) := max
w

|Ar(x, ε)|, x ∈ S(w). (9)

Namely, we shall prove that the ε-entropy of the sphere S(r) satisfies the bounds

1
n

log
|S(r)|
Ω(r, ε)

≤ Hε(S(r)) ≤ 1
n

log
|S(r)|
Ω(r, ε)

+
log(n ln 2)

n
+

log 2h(ρ)
n

. (10)

1. The lower bound in (10) is based on a standard packing argument. Here
we use the fact that each ball B(x, ε) can cover at most Ω(r, ε) points on S(r).

2. The upper bound is obtained using random coverings. Given a fixed integer
N, we choose the radius w, for which equality (9) holds. Then we perform N
trials choosing the centers x of an ε-covering independently and uniformly on
S(w). Then any point y ∈ S(r) is covered in one trial with the same probability

γ =
|Aw(y, ε)|
|S(w)| . (11)

Now we employ a straightforward argument (used by Bassalygo in 1965; see also
Lemma 6 in [4]) that states that for any x ∈ S(w) and any y ∈ S(r), the two
sets Ar(x, ε) and Aw(y, ε) cover the same fraction of spheres S(r) and S(w),
respectively. Therefore,

γ =
|Ar(x, ε)|
|S(r)| . (12)

Now note that any y ∈ S(r) is not covered in N trials with probability PN =
(1 − γ)N . Choosing

N =
1 + ln |S(r)|

γ
, (13)
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we obtain PN ≤ (e|S(r)|)−1. Therefore the whole sphere S(r) is covered in N
trials with a probability PN (S(r)) ≥ 1−PN · |S(r)| ≥ 1−e−1. In this case, there
exists an ε-covering of size N. Using (12), we obtain the upper bound

Hε(S(r)) ≤ logN
n

=
1
n

log
|S(r)|
Ω(r, ε)

+
1
n

log(1 + ln |S(r)|). (14)

Now the upper bound in (10) follows from (6).
Thus, we see that to prove Theorem 1 we need to derive rather tight lower

and upper bounds on the quantity Ω(r, ε). These bounds - derived in the sequel
in Proposition 1 - conclude the proof of Theorem 1. In fact, slightly more precise
calculations show that the universal constant c belongs to the interval (0, 2). �

Proposition 1
1. For all n, r ≤ n/2, and ε < r, the following lower and upper bounds hold:

nh(σ) − log 8n ≤ logΩ(r, ε) ≤ nh(σ). (15)

Moreover,
2. If σ is a constant, then there exists a constant c(σ) such that

logΩ(r, ε) ≤ nh(σ) − (logn)/2 + c(σ).

3. If ρ and σ are constants, then there exists a constant c(ρ, σ) such that

logΩ(r, ε) ≤ nh(σ) − logn+ c(ρ, σ).

Proposition 1 will be proven in the Appendix.
In the following theorem, we present the corresponding non-uniform and uni-

form lower and upper bounds for the ε-entropy of balls in the Hamming space.

Theorem 2
1. For all n, r ≤ n/2, and ε < r, the normalized ε-entropy of an n-dimensional
ball B(r) satisfies the following lower and upper bounds:

h(ρ) − h(σ) − log(2n)
2n

≤ Hε(B(r)) ≤ h(ρ) − h(σ) +
2 logn
n

+
C

n
, (16)

where C is an absolute constant. Moreover,
2. If σ is a constant, then there exists a constant C1(σ) such that

Hε(B(r)) ≥ h(ρ) − h(σ) +
C1(σ)
n

. (17)

3. If both ρ < 1/2 and σ are constants, then there exists a constant C2(ρ, σ)
such that

h(ρ) − h(σ) +
logn
2n

+
C2(ρ, σ)

n
≤ Hε(B(r)) ≤ h(ρ)− h(σ) +

3 logn
2n

+
C

n
. (18)
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Proof. Note first that the lower bounds in (16) - (18) immediately follow from
the corresponding lower bounds in (3) - (5) since S(r) ⊂ B(r) for all r.1

Before starting to prove the upper bounds in (16)–(18), note that for all r
and ε we have

Hε(B(r)) ≤ Hε(S(r)) + logn (19)

since B(r) =
⋃r
k=0 S(k) andHε(S(k)) ≤ Hε(S(r)) for all k = 0, . . . , r. Therefore,

to derive some upper bounds for Hε(B(r)) we can use (19) together with the
upper bounds in (3) and (4). By doing this, we obtain the upper bounds which
are worse than those in (16)–(18). The latter means that the trivial inequality
(19) does not allow us to prove the upper bounds in (16)–(18).

In order to prove these upper bounds, let us use the following modification
of the random choice method described in the proof of Theorem 1. Namely,
let an integer N be fixed. Then we choose N points x(1), . . . , x(N) of an ε-
covering for the ball B(r) randomly according to the following rule. In the i-
th trial, i = 1, . . . , N , independently of all other trials, we choose an integer
u, ε + 1 ≤ u ≤ r, at random with probability

p(u) =
|S(u)|

|B(r)| − |B(ε)| , ε + 1 ≤ u ≤ r.

Given u, the i-th point x(i) of the ε-covering is chosen randomly on the sphere
S(u′), where

u′ :=
⌊
u− ε

1 − 2σ

⌋
Similarly to the proof of Theorem 1 (see also formula (89) in the Appendix), here
we also use the fact that our choice of u′ maximizes the covering area Au(x, ε)
generated by the ball B(x, ε) with any center x ∈ S(u′), so that

|Au(x, ε)| = Ω(u, ε).

Now we estimate the probability γy that any fixed point y ∈ S(u) is covered by
a ball B(x(i), ε). First, note that similarly to equalities (11) and (12), for any
x ∈ S(u′) and y ∈ S(u) we have the equality∣∣∣Au′

(y, ε)
∣∣∣

|S(u′)| =
|Au(x, ε)|
|S(u)| .

Then we use inequality (15) for Ω(u, ε) and see that any point y ∈ S(u) is
covered by a ball B(x(i), ε) with probability

γy ≥ |S(u)|
|B(r)|−|B(ε)| ·

Ω(u,ε)
|S(u)|

≥ γr := 2nh(σ)−log 8n

|B(r)|−|B(ε)| . (20)

1 Note that the size of the covering is always bounded from below by |B(r)|/|B(ε)|.
This fact allows one to remove the term −(log n)/2n from the lower bound (16).
We omit the corresponding calculations.
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It is important that for any fixed point y ∈ B(r), the probability γy of its
covering in one trial is bounded from below in (20) by a quantity γr that does
not depend on y. The rest of the proof of the theorem almost coincides with
that of Theorem 1 and therefore we omit it here. The main difference arises from
the fact that now we use a bigger set B(r) in (20) instead of S(r) employed in
(12). Note also that now we take

N =
1
γr

(1 + ln |B(r)|),

instead of (13), but this change does not affect the asymptotics of Hε(B(r)).
Finally, we apply the inequalities

|B(r)| ≤ 1 − ρ

1 − 2ρ
|S(r)|

(cf. (8)) in the proof of (18) and

|B(r)| ≤ 2nh(ρ)

in the proof of (16) and (17). This completes the proof of Theorem 2. �
The main conclusion we derive from Theorems 1 and 2 is that for both spheres
and balls with fixed relative radii ρ and ε, the corresponding upper and lower
bounds differ only by an additive term of order logn. Note that this term is
related to our random-covering algorithm used for upper bounds. Thus, any
further tightening of the above bounds is only possible if there exist constructive
coverings that surpass their randomly chosen counterparts.

3 Covering of Ellipsoids in Hamming Spaces

3.1 The Size of Ellipsoids

Consider an ellipsoid Ev = Env defined in (1). The first interesting question is
the problem of finding the number of different ellipsoids in En. It was proven
long ago [6] that this number is upper bounded by 2n

2
. The problem had been

addressed in many publications for over 140 years until Zuev proved [7] that the
number of different ellipsoids is lower bounded by 2n

2(1−10/ lnn) thus solving the
problem up to the exponential order of 2n

2
.

Another important problem is to derive the size of any ellipsoid Ev. This
quantity |Ev| is necessary, for example, to write out the packing (Hamming)
bound for the ε-entropy of Ev. The main term of the asymptotics of log |Ev|
was found by Pinsker [8]. To state his result, let us consider the vector P ∗ =
P ∗(n) = (p∗1, . . . , p∗n) with components

p∗i = p∗i (n) :=
(
1 + 2λvi

)−1
, i = 1, . . . , n, (21)
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where parameter λ = λ(n) is defined by the equalities{∑n
i=1 vi

(
1 + 2λvi

)−1 = 1 if 1
2

∑n
i=1 vi > 1,

λ = 0 if 1
2

∑n
i=1 vi ≤ 1.

(22)

Let
Hn := h(P ∗(n)). (23)

Then the following statement holds.

Theorem 3. [8]. If

lim
n→∞

Hn
logn

= ∞, (24)

then
Hn(1 + o(1)) ≤ log |Ev| ≤ Hn, n → ∞, (25)

and, in particular,

log |Ev| = Hn(1 + o(1)), n → ∞. (26)

The proof of the upper bound in (25) given in [8]) (see Lemma 1 there) is
rather simple and short and therefore for reader’s convenience we reproduce it
here. Indeed, given the uniform distribution Pr(x) = 2−n, x ∈ En , we have

log |Ev| = log Pr(Ev) + n = log Pr

{
n∑
i=1

viXi ≤ 1

}
+ n, (27)

where Xi, i = 1, . . . , n, are independent binary random variables taking values

0, 1 with probabilities Pr(0) = Pr(1) = 1/2. It is clear that if
n∑
i=1

vi/2 > 1, then

Pr

{
n∑
i=1

viXi ≤ 1

}
= Pr

{
2
−λ

n∑
i=1

viXj

≥ 2−λ
}

≤ 2λE 2
−λ

n∑
i=1

viXi

= 2λ
n∏
i=1

E 2−λviXi = 2λ
n∏
i=1

1 + 2−λvi

2
. (28)

Therefore, formulas (27) and (28) imply

log |Ev| ≤ λ+
n∑
i=1

log
(
1 + 2−λvi

)
=

n∑
i=1

[
λvi

(
1 + 2λvi

)−1
+ log

(
1 + 2−λvi

)]
=

n∑
i=1

h(p∗i ) = h(P ∗) = Hn.
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For the case
n∑
i=1

vi/2 ≤ 1, we have λ = 0 and p∗i = 1/2, i = 1, . . . , n, and

therefore the right-hand side inequality in (25) is trivially fulfilled.
The proof of the lower bound in (25) is more involved. The idea is to construct

a sequence of sets An,u ⊆ Ev, n = 1, 2, . . . that are the direct products of balls
of a special radius u in the corresponding subspaces and then to evaluate the
asymptotic behavior of the size of An,u. For details of the proof we refer to [8].

Without loss of generality, below we will assume that the coefficients vi, i =
1, . . . , n, of an ellipsoid Ev form a non-increasing sequence, i.e.,

v1 ≥ v2 ≥ . . . ≥ vn. (29)

This can always be attained by renumbering the elements of the sequence {vi}.
Further, we will consider two different cases:

(i) the whole sequence {vi}∞i=1 is given, i.e., vi does not depend on n for any
fixed i = 1, 2, . . .;

(ii) ”scheme of series”: each vi = vi(n) can depend on n but for any given n
the elements vi(n), i = 1, . . . , n, satisfy condition (29).

The following statement, for the case (i), gives a simple necessary and sufficient
condition on coefficients {vi} under which the main condition (24) of Theorem
3 is fulfilled.

Proposition 2. Given a non-increasing sequence {vi}∞i=1, condition (24) holds
if and only if

lim
n→∞

vn = 0. (30)

Corollary 1. Given a non-increasing sequence {vi}∞i=1, Theorem 3 can be re-
formulated as follows: if lim

n→∞
vn = 0, then inequalities (25) and equality (26)

are valid.

Proof. It can easily be seen that

Hn = max
P

h(P ), (31)

where Hn is defined in (23) and the maximum in (31) is taken over all vectors
P = (p1, . . . , pn) such that

0 ≤ p1, . . . , pn ≤ 1/2,
n∑
i=1

vipi ≤ 1.

We will use equality (31) below.

1. Assume first that lim
n→∞

vn = 0, i.e., there exists a positive constant v such
that vn ≥ v > 0 for all n. Then we have

Hn = max
P

h(P ) ≤ max
P ′

h(P ′), (32)
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where the second maximum in (32) is taken over all vectors P ′ = (p′1, . . . , p
′
n)

such that

0 ≤ p′1, . . . , p
′
n ≤ 1/2,

n∑
i=1

vp′i ≤ 1.

It is clear that

max
P ′

h(P ′) = nh

(
1
nv

)
=

1
v
(logn)(1 + o(1)), n → ∞. (33)

Relations (32) and (33) show that condition (24) is not satisfied if lim
n→∞

vn = 0.

2. Assume now that lim
n→∞

vn = 0. Let k = k(n) = αn where α, 0 < α < 1, is

a fixed constant.2 Then we clearly have

Hn ≥ max
P̂ (k)

n∑
i=n−k+1

h(p̂i(k)) =

{
kh(1/(kvn−k+1)) if kvn−k+1 ≥ 2,
k if kvn−k+1 ≤ 2,

(34)

where the maximum in (34) is taken over all k-dimensional vectors P̂ (k) =
(p̂n−k+1(k), . . . , p̂n(k)) such that

0 ≤ p̂n−k+1(k), . . . , p̂n(k) ≤ 1/2,
n∑

i=n−k+1

vn−k+1p̂i(k) ≤ 1.

Let a rather large positive constant A > 2 be fixed. Consider first a subset N1

of integers n for which
kvn−k+1 ≤ A, n ∈ N1.

For such n ∈ N1, inequality (34) shows that

Hn ≥ kh(1/A) = αnh(1/A), (35)

and (24) holds. On the other hand, for n ∈ N2 for which

kvn−k+1 > A, n ∈ N2,

it follows from (34) that

Hn ≥ log(kvn−k+1)
vn−k+1

. (36)

Therefore, if

vn−k+1 ≤ 1
log k

, n ∈ N2,

then we have
Hn ≥ (logA · log k), n ∈ N2. (37)

2 More precisely, we should write k = �αn� instead of k = αn but this difference does
not affect further asymptotic relations.
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At the same time if
vn−k+1 ≥ 1

kc
, n ∈ N2,

where c, 0 < c < 1, is a constant, then we obtain from (36) that

Hn ≥ log k − log(1/vn−k+1)
vn−k+1

≥ (1 − c) log k
vn−k+1

, n ∈ N2. (38)

Hence, inequalities (37) and (38) imply that

Hn ≥ min
{

logA,
1 − c

vn−k+1

}
(log k), n ∈ N2. (39)

Finally, taking A → ∞ rather slowly, we conclude from (35) and (39) that

lim
n→∞

Hn
logn

= ∞.

Proposition 2 is proved. �
Consider now the general case - “scheme of series” - where each vi = vi(n) may
depend on n but for any given n the sequence is non-increasing. For such a
situation the following statement holds.

Proposition 3. Assume that for any given n the sequence vi = vi(n), i =
1, . . . , n, does not increase. Then

(a) If lim
n→∞

vn = 0, then condition (24) is not fulfilled.

(b) If there exists a sequence k = k(n) such that{
vn−k+1 → 0 as n → ∞,

lim inf
n→∞

log k
logn > 0,

then condition (24) does hold.

Proof. The proof of part (a) does not differ from that of Proposition 2. To prove
the second statement, note that in the proof of the direct part of Proposition 2 we
have only used the facts that lim

n→∞
(log k/ logn) > 0 for subsequence k = k(n) and

that vn−k+1 → 0 as n → ∞ (which in turn follows from condition (30) used in
Proposition 2). Now the two latter conditions are introduced in the formulation
of Proposition 3. Therefore, taking into account this observation, we can claim
that Proposition 3 holds. �
Remark 2. It easily follows from inequality (34) (which also holds for the scheme
of series) that if there exists a sequence k = k(n) such that

n∑
i=n−k+1

vi ≤ 2 and
k

logn
→ ∞ as n → ∞
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or

n∑
i=n−k+1

vi > 2 and

kh

(
1/

n∑
i=n−k+1

vi

)
logn

→ ∞ as n → ∞,

then condition (24) is fulfilled. In particular, this holds if

n∑
i=1

vi ≤ 2

or

n∑
i=1

vi > 2 and
kh

(
1/

n∑
i=1

vi

)
logn

→ ∞ as n → ∞.

Remark 3. It should be mentioned that using some results known from the theory
of limit theorems and, in particular, the theory of large deviations for the sums of
independent but not-identically distributed random variables, the asymptotics of
log |Ev| can be expressed in a different form. Moreover, in certain special cases,
the next terms of the asymptotics of log |Ev| can also be found [9].

3.2 The ε-Entropy of Ellipsoids

Below in this subsection, we will always assume, as was already mention earlier,
that the coefficients vi = vi(n), i = 1, . . . , n, do not increase for any given n
and, moreover, that ε = ε(n) is an integer such that 1 ≤ ε < n/2. Otherwise
(i.e., if ε ≥ n/2) the equality

Hε(Env ) = O(log n), n → ∞,

holds for arbitrary ellipsoids Env since Env ⊆ En and it is obvious that Hε(En) =
O(log n) (cf. also (2)).

Lower bound
Using relation (26) for the size of ellipsoid Ev and inequality (7) for the size of
the ball B(ε), we can easily write out the packing (Hamming) bound for the
ε-entropy Hε(Env ):

Hε(Env ) ≥ log+ |Ev|
|B(ε)| ≥ [Hn − nh(ε/n)]+ (1 + o(1)), n → ∞, (40)

if condition (24) holds. Here and throughout the rest of the paper we use no-
tation u+ := max{u, 0}. It is clear that, in general, this lower bound is not
asymptotically tight, and we will discuss this fact later.

Let
Ĥk = h(P̂ ∗(k)), k = 1, . . . , n, (41)
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where P̂ ∗(k) = (p̂∗n−k+1, . . . , p̂
∗
n) is defined similar to P ∗(n) (cf. (21) and (22)):

p̂∗i = p̂∗i (k) :=
(
1 + 2λ̂vi

)−1

, i = n− k + 1, . . . , n, (42)

and parameter λ̂ = λ̂(k) is defined by the equalities
∑n
i=n−k+1 vi

(
1 + 2λ̂vi

)−1

= 1 if 1
2

∑n
i=n−k+1 vi > 1,

λ̂ = 0 if 1
2

∑n
i=n−k+1 vi ≤ 1.

(43)

In particular, comparing relations (21)–(23) and (41)–(43), we observe that

λ̂(n) = λ(n), P̂ ∗(n)P ∗(n), Ĥn = Hn.

Now, define the quantity

Rn(ε) := max
{k: 2ε<k≤n}

[
Ĥk − kh(ε/k)

].
(44)

Then the following generalized packing (Hamming) bound holds ([4,10]).

Theorem 4. Let condition(24) be satisfied. Then

Hε(Env ) ≥ R+
n (ε) + o(Hn), n→ ∞. (45)

In particular, if 3

Rn(ε) 2 Hn, n → ∞, (46)

then
Hε(Env ) ≥ Rn(ε)(1 + o(1)), n → ∞. (47)

Proof. The proof of inequality (45) is very simple. Indeed, consider the projection
of ellipsoid Env into the subspace Êk spanned over the last k coordinates. Then
we obtain the sub-ellipsoid

Êkv :=

{
(xn−k+1, . . . , xn) |

n∑
i=n−k+1

vixi ≤ 1

}
.

Also, after such a projection the ball Bn(ε) becomes Bk(ε). Therefore,

Hε(Env ) ≥ max
2ε<k≤n

Hε(Êkv ) ≥ max
2ε<k≤n

log+ |Êkv |
|Bk(ε)| . (48)

(Note that we maximize over all k, 2ε < k ≤ n because for k ≤ 2ε we have only
trivial equality log+

(
|Êkv |/|Bk(ε)|

)
= O(log k) since |Êkv | ≤ 2k.)

3 Below the notation Rn � Hn, n → ∞, means that there exist some constants c1

and c2 such that the inequalities 0 < c1 ≤ Rn/Hn ≤ c2 < ∞ hold for all sufficiently
large n.
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Assume that the maximum in (44) is achieved with k0 =k0(n). If Ĥk0/ log k0→
∞ as n → ∞, then Theorem 3 and inequality (48) show that

Hε(Env ) ≥
[
Ĥk0 − k0h(ε/k0)

]+

+ o(Ĥk0)

from which (45) immediately follows. On the other hand, if Ĥk0/ log k0 ≤ C < ∞
for all k0 = k0(n), then

R+
n (ε) < Ĥk0 = o(Hn)

and therefore inequality (45) is reduced to the trivial inequality

Hε(Env ) ≥ o(Hn), n → ∞

which is always correct. �
As a remark to the lower bound (47), note that condition (46) holds if, for
example, there exists a constant β, 0 < β < 1, such that h(ε/n) ≤ β(Hn/n) for
all sufficiently large n.

Upper bound
Let us introduce the quantity

Kn(ε) := max
P

min
E

n∑
i=1

h+(pi, ei) = max
P

min
E

n∑
i=1

[h(pi) − h(ei)]
+
, (49)

where maxmin is taken over all vectors P = (p1, . . . , pn) and E = (e1, . . . , en)
such that {∑n

i=1 vipi ≤ 1, 0 ≤ pi ≤ 1/2, i = 1, . . . , n,∑n
i=1 ei ≤ ε, 0 ≤ ei ≤ 1/2, i = 1, . . . , n.

(50)

Theorem 5. [4]. The inequality

Hε(Env ) ≤ Kn(ε) +O(
√
n logn), n → ∞, (51)

holds for any ε ≥ 1.

Sketch of the proof. Here, we present only a sketch of the proof of the upper
bound. The full proof can be found in [4]. Also, now we will give a more detailed
proof of an inequality which is not obvious but has been omitted there.

Recall first that we continue to assume that coefficients vi, i = 1, . . . , n, do
not increase (see (46)). It immediately follows from this assumption that

Hε(Env ) ≤ Hε(Ẽnv ), (52)

where the ellipsoid Ẽnv is defined by the equality

Ẽnv =

x ∈ n | vs
s∑
i=1

xi + v2s

2s∑
i=s+1

xi + . . .+ vts

ts∑
i=(t−1)s+1

xi ≤ 1

 .
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Here we assume without loss of generality that s and t = n/s are some integers
which will be chosen later. We obviously have

Ẽnv =
⋃

q1,...,qk

t∏
i=1

Ss(sqi), (53)

where the union in (53) is taken over all numbers q1, . . . , qt such that 0 ≤ qi ≤
1, qis are integers, i = 1, . . . , t, and

∑t
i=1 sqivis ≤ 1.

Taking t =
√
n/ logn and using the uniform upper bound (3) for the ε-entropy

of spheres Ss(sqi), it is not difficult to derive from (53) that

Hε(Ẽnv ) ≤ max
Q

min
L

n∑
i=1

[h(qi) − h(li)]+ +O
(√

n logn
)
, n → ∞, (54)

where maxmin in (54) is taken over all vectors Q = (q1, . . . , qn) and L =
(l1 . . . , ln) such that

{
vs

∑s
i=1 qi + v2s

∑2s
i=s+1 qi + . . .+ vts

∑ts
i=(t−1)s+1 qi ≤ 1, for 0 ≤ qi ≤ 1/2, i = 1, . . . , n,∑n

i=1 li ≤ ε, for 0 ≤ li ≤ 1/2, i = 1, . . . , n.

(55)
For any given vectors Q and L satisfying (55), let P ′ = (p′1, . . . , p′n) and E ′ =
(e′1, . . . , e

′
n) be the vectors whose components are given by the equalities

p′i =

{
0 if i ∈ [1, s],
qi−s if i ∈ [s+ 1, n],

(56)

and

e′i =

{
0 if i ∈ [1, s],
li−s if i ∈ [s+ 1, n].

(57)

It is clear that for any such vectors Q,L, P ′ and E ′ the following relations hold
as n → ∞:
n∑
i=1

[h(qi)−h(li)]+−
n∑
i=1

[h(p′i)−h(e′i)]
+ =

ts∑
i=(t−1)s+1

[h(qi)−h(li)]+ ≤ s = O
(√

n logn
)
.

(58)
Finally, we claim that (52), (54) and (58) imply

Hε(Env ) ≤ Hε(Ẽnv ) ≤ max
P

min
E

n∑
i=1

[h(pi) − h(ei)]+ +O
(√

n logn
)
, n → ∞,

(59)
where maxmin in (59) is taken over all vectors P and E satisfying conditions
(50). Inequality (59) is equivalent to the desired upper bound (51). Below we
explain in more detail the proof of (59) because, as we already mentioned above,
it has been omitted in [4].
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To do this, assume now that vectors Q and L considered above are optimal,
i.e., max min in (54) is achieved on this pair of vectors. Therefore, to prove (59)
it is sufficient to show that

min
E

n∑
i=1

[h(p′i) − h(ei)]+ −
n∑
i=1

[h(qi) − h(li)]+ = O
(√

n logn
)
, n→ ∞, (60)

where minimum is taken over all vectors E satisfying the second-line conditions
in (50). Taking into account inequality (58), we see that (60) holds if

n∑
i=1

[h(êi) − h(e′i)]
+ = O

(√
n logn

)
, n → ∞, (61)

where Ê = (ê1, . . . , ên) is a vector for which the first sum in (60) achieves its
minimum.

It can easily be seen that the components of Ê satisfy the equality

êi = min{p′i, ν}, i = 1, . . . , n, (62)

where parameter ν is chosen in such a way that

min{p′i, ν} = ε. (63)

Similarly, L = (l1, . . . , ln) satisfies the equality

li = min{qi, µ}, i = 1, . . . , n, (64)

where the parameter ν is defined by the equation

min{qi, µ} = ε. (65)

It easily follows from (62)–(65) and relations (56) and (57) that

n∑
i=1

[h(êi) − h(e′i)]
+ ≤ (n−m) [h(µ+ µs/(n−m)) − h(µ)] , (66)

where the integer m can be found from the relations

qm ≤ µ < qm+1.

It is obvious that

(n−m) [h(µ+ µs/(n−m)) − h(µ)] ≤ c · s = O
(√

n logn
)
, n → ∞. (67)

Finally, we observe that inequalities (67) and (66) imply inequality (61) and
therefore the desired inequality (60) is proved. �
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Optimization problem
Comparing the lower and upper bounds in (45) (or (47)) and (51) we observe that
they have different forms. Therefore the first problem is to find a relationship
between the quantities Rn(ε) and Kn(ε) defined in (44) and (49), respectively.
In other words, we need to find max min of the right-hand side of (49). To our
surprise, this problem turned out to be rather involved; in particular, no explicit
expressions were found for it. The corresponding results obtained to date are
formulated below.

Note first that the following proposition holds.

Proposition 4. [10]. The inequality Kn(ε) > 0 holds if and only if

n∑
i=n−2ε+1

vi/2 < 1. (68)

The proof of this proposition is rather simple and can be found in [10]. Below
we will always assume that condition (68) is fulfilled (note that in [10], we did
not introduce this obvious assumption in the formulations of the statements).

The next theorem shows that Kn(ε) can differ from Rn(ε) by at most 1/2.

Theorem 6. [10]. The following inequalities hold:

Rn(ε) ≤ Kn(ε) < Rn(ε) + 1/2 (69)

provided that assumption (68) is fulfilled.

Thus, this theorem together with lower and upper bounds (47) and (51) leads
to the following consequence.

Corollary 2. If condition (46) is satisfied and

Hn√
n logn

→ ∞, n → ∞,

then
Hε(Env ) = Rn(ε)(1 + o(1)), n → ∞.

Note that the left inequality in (69) is rather trivial and easily follows from
the definitions of Rn(ε) and Kn(ε). But at the same time, the right inequality
in (69) is proven in the main theorem of paper [10] using rather convoluted
arguments. This theorem gives a solution to the optimization problem arising in
the definition of quantity Kn(ε). To formulate this theorem, we need to introduce
some new definitions. Namely, for any integer k ∈ [2ε, n] we use a real parameter
t ∈ [0, ε/(k + 1)] and define the quantities rt and εt by the equalities

rt = 1 − vn−kt, εt = ε− t.

Then we consider two k-dimensional vectors

P̂ ∗(k, t) = (p̂∗n−k+1(k, t), . . . , p̂
∗
n(k, t))
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and
Ê∗(k, t) = (ê∗n−k+1(k, t), . . . , ê

∗
n(k, t))

with components

p̂∗i (k, t) :=
(
1 + 2λ̂vi

)−1

, i = n− k + 1, . . . , n,

ê∗i (k, t) := εt/k, i = n− k + 1, . . . , n,

where the parameter λ̂ = λ̂(k, t) is defined by the equalities
∑n
i=n−k+1 vi

(
1 + 2λ̂vi

)−1

= rt, if 1
2

∑n
i=n−k+1 vi > rt,

λ̂ = 0, if 1
2

∑n
i=n−k+1 vi ≤ rt.

For the degenerate case where rt ≤ 0, we take p̂i(k, t) ≡ 0 for all i = n − k +
1, . . . , n. The main theorem from [10] can be formulated as follows.

Theorem 7. [10]. Quantity Kn(ε) satisfies the equality

Kn(ε) = max
k,t

[
h(P̂ ∗(k, t)) − h(Ê∗(k, t))

]
= max

k,t

[
n∑

i=n−k+1

h(p̂∗i (k, t)) − kh(εt/k)

]
,

(70)
where the maximum is taken over all k and t such that k ∈ [2ε, n] and 0 ≤
t < ε/(k + 1). Moreover, there exists a pair (k, t) such that the maxmin on the
right-hand side of (49) is obtained on the pair of vectors (P (k, t), E(k, t)) where

P (k, t) := (T (k, t), P̂ ∗(k, t)), E(k, t) := (T (k, t), Ê∗(k, t)), T (k, t) := (0n−k−1, t).

Thus, in general we do not know the optimal pair (k, t), i.e., the pair on which
the right-hand side of (70) achieves its maximum. But we can claim that the
function h(P̂ ∗(k, t)) − h(Ê∗(k, t)) can have at most one local maximum on the
half open interval t ∈ [0, ε/(k+ 1)) for any given k. The proof of this statement
can be found in [10]. On the other hand, the next proposition gives a sufficient
condition under which the maximum of the function above is achieved on the
pair (n, 0).

Proposition 5. [10]. If

p̂∗n−k(k, ε/(k + 1)) ≥ ε/k (71)

for all k = 2ε, . . . , n− 1, then

Kn(ε) = Rn(ε) = Hn − nh(ε/n).

Remark 4. In particular, this proposition gives a simple sufficient condition un-
der which the generalized lower packing bound for the ε-entropy of ellipsoids
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coincides with the classical one. In [11], it is shown that for a special class
ellipsoids Env whose coefficients vi, i = 1, . . . , n, can take only two possible val-
ues, sufficient condition (71) can be improved. Namely, it is proved in [11] that
there exists a threshold value ε0 (for which some formula is given) such that
Kn(ε) = Hn − nh(ε/n) if ε < ε0 and Kn(ε) > Hn − nh(ε/n) if ε > ε0. Some
explicit asymptotic expressions for the ε-entropy of such ellipsoids have also been
obtained in the above paper.

4 Covering of Ellipsoids in Euclidean Spaces

In this section, we consider the problem of finding the asymptotic size of an
optimal ε-covering (or ε-entropy) of arbitrary ellipsoids Ea = Ena . The latter
is represented in the form (2) in the n-dimensional Euclidean space Rn. The
problem of asymptotically optimal ε-coverings has been studied for long for
balls Bnr of an arbitrary radius r, which includes the important special case
of the whole space Rn. For the ball Bn(r), various bounds on the minimum
covering size are obtained in [12]. By changing the scale in Rn, one can always
replace any ε-covering of Bn(r) using the unit balls to cover a ball Bn(r/ε).
Therefore, the problem of coverings with balls of radius ε is often replaced in
the Euclidean spaces by using the unit balls instead. One particularly important
result is obtained by Rogers [12] who proved that for n ≥ 9, the thinnest unit
covering has size

|M1(Bn(r))| ≤
{
Cn(logn)rn, if r ≥ n,

Cn5/2rn, if r < n,

where C is an absolute constant (see also [13]). A related question is the covering
problem of the surface of a unit sphere in Rn with caps of a given half angle
θ. In [14], it was shown by using a random coding argument that the minimum
number of caps of half angle θ required to cover the unit Euclidean n-sphere
Sn(1) is exp[−n log sin θ + o(n)] as n → ∞.

In case Rn or a set A of infinite volume V (A) = ∞, any ε-covering has also
infinite size. Therefore, for a given sequence Mε = Mε(Rn) of ε-coverings for the
space Rn, it is customary to consider the lower density for such a sequence which
is defined as the asymptotic infimum of the average number of balls covering a
point in Bn(r):

δ(Mε(Rn)) := lim inf
r→∞

∑
y∈Mε

V (Bn(y, ε) ∩Bn(r))

V (Bn(r))
.

The main problem is to define the minimum density δ(Mε(Rn)) taken over all
ε-coverings. Here we refer to the monograph by Rogers [15], book [16], and a
survey [17], where one can also find an extensive bibliography on this subject.
Some results on optimal coverings of other sets can be found in [18] and [19].
Below we briefly describe some new results obtained in the recent paper [20] for
optimal coverings of ellipsoids in Euclidean spaces.
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4.1 Lower Bound

Given an ellipsoid Ena , define the quantity R = Rn(ε) as

Rn(ε) :=
n∑
i=1

log+ (ai/ε) =
∑
i : ai>ε

log(ai/ε). (72)

We begin with a lower bound on the ε-entropy of an ellipsoid Ena , which holds
for all dimensions n and vectors a.

Theorem 8. [18] (Generalized packing bound). For any ellipsoid Ena , its ε-
entropy satisfies inequality

Hε(Ena ) ≥ Rn(ε). (73)

Proof. The proof of this theorem is very simple and similar to that of Theorem
4 in the Hamming space. Indeed, consider the projection of an ellipsoid Ena
into the subspace Rk spanned over the last k coordinates. Then we obtain the
sub-ellipsoid

Êka :
{

(xn−k+1, . . . , xn) |
x2
n−k+1

a2
n−k+1

+ · · · + x2
n

a2
n

≤ 1
}
.

By dividing the volume of Êka by the volume of Bk(ε), we define the minimum
number of covering balls of radius ε in Rk. Thus, we obtain the bound

Hε(Ena ) ≥ max
1≤k≤n

log
V (Êka )

V (Bk(ε))
.

By applying the formulas known for volumes of balls and ellipsoids, we conclude
from the previous formula that

Hε(Ena ) ≥ max
1≤k≤n

n∑
i=n−k+1

log(ai/ε) =
n∑
i=1

log+ (ai/ε) ,

where the last equality simply reflects the fact that log(ai/ε) ≤ 0, if (ai/ε) ≤ 1.
�

4.2 Asymptotic Upper Bound

Below, we will assume that n ≥ 2, for the case n = 1 we obviously haveHε(E1
a) =

log	a/ε
. Also we will assume that parameters n, a and ε vary in such a way
that Rn(ε) → ∞. For example, n and ε can be fixed while components ai grow.
Therefore our asymptotic setting Rn(ε) → ∞ (or, briefly R → ∞) will also serve
as a limiting condition for all other conditions in the theorem below.
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Theorem 9. [18]. The ε-entropy of an ellipsoid Ena satisfies inequality

Hε(Ena ) ≤ Rn(ε)(1 + o(1)), R → ∞, (74)

provided that

log
[
max
i

{ai/ε)}
]

= o

(
R2

m logn

)
, R → ∞, (75)

where Rn(ε) is defined in (72) and m is the number of half-axes ai of length
greater than ε:

m = |{ i : ai > ε}|.

From the lower and upper bounds in (73) and (74) we immediately obtain the
following obvious corollary.

Corollary 3. The asymptotic equality

Hε(Ena ) = Rn(ε)(1 + o(1)), R → ∞,

holds provided condition (75) is fulfilled.

Remark 5. Note that condition (75) and Theorem 9 always hold if

lim
R→∞

R
m logn

= ∞,

due to the fact that log
[
max
i

{ai/ε}
]
≤ R by definition (72). In particular,

Theorem 9 holds if an or some other coefficients grow for fixed n and ε, in which
case R → ∞.

Theorem 9 is proved in [20]. The main idea of the proof is rather close to that of
the upper bound in the Hamming space. Namely, here we also divide the interval
of integers [1, n] into a number of subintervals and then cover an ellipsoidEna with
a finite number of subsets each of which is a direct product of the balls (of lesser
dimensions). Note however that - as opposed to the Hamming spaces - we need
to employ a quantization procedure (by continuity of the space Rn), which later
leads to some restrictions on the parameters that describe Euclidean ellipsoids.
Then, by using a slight generalization of the above Rogers result on the upper
bound on the size of the minimum covering of balls, we obtain a general upper
bound on the ε-entropy Hε(Ena ), which depends on the quantization parameters
and our partitioning of the interval [1, n]. Finally, we estimate the asymptotic
bound by optimizing both the quantization and partitioning parameters.
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Appendix

Proof of Proposition 1. Obviously, Ω(r, ε) ≤ 2nh(σ). To tighten the bounds on
Ω(r, ε), we also consider parameters

θ := r − w, s := �(ε− r + w)/2� , t := max{0,−θ}, (76)

in which case

θ + 2s =
{
ε, if w = (r − ε) (mod 2),
ε− 1, if w = (r − ε) (mod 2). (77)
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Next, define the subset

ar(x, ε) := S(x, θ + 2s) ∩ S(r).

Our proof of Proposition 1 includes a few steps, which are done in the following
lemmas.

Lemma 1. For any x ∈ S(w),

|ar(x, ε)| =
(
w

s

)(
n− w

θ + s

)
. (78)

1 ≤ |Ar(x, ε)|
|ar(x, ε)| ≤ 1 − ρ

1 − ρ− σ
. (79)

Proof. Given any x ∈ S(w), any point yx ∈ Ar(x, ε) can be obtained from x if
and only if we replace i ones and i + θ zeros in x, where i ≥ t and 2i+ θ ≤ ε.
Thus, we obtain ar(x, ε) by taking i = s, and Ar(x, ε) is obtained by taking all
i = t, ..., s = �(ε− θ)/2� . This proves (78) and also gives the size

|Ar(x, ε)| =
s∑
i=t

(
w

i

)(
n− w

θ + i

)
.

Note that ε < r ≤ n− r. Therefore for any i = t, ..., s:

i

w
≤ s

w
≤ (ε− θ)/2

r − θ
≤ σ

ρ+ σ
; (80)

θ + i

n− w
≤ θ + s

n− w
≤ (ε + θ)/2
n− r + θ

≤ σ

1 − ρ+ σ
. (81)

Note also that bounds (80) and (81) are also limited by 1/2. Therefore (80) and
(81) give

s∑
i=t

(
w

i

)(
n− w

θ + i

)
≤

(
w

s

) s∑
i=t

(
n− w

θ + i

)
. (82)

The latter sum in (82) is upper-bounded by the size of the ball B(θ+s) in En−w.
This is estimated by inequalities (8) and (81). Here we replace parameter σ in
(8) by (θ + s)/(n− w) and obtain inequality (79). �
Inequality (79) also shows that the sets Ar(x, ε) and ar(x, ε) differ in size only
by a multiplicative constant, if σ is bounded away from 1/2. Let

ar(w, ε) :=
(
w

s

)(
n− w

θ + s

)
, w ∈ [r − ε, r + ε],

be the size of a set ar(x, ε). Our goal is to derive the bounds on

Φ(r, ε) := max
w

log ar(w, ε).

According to (77), ar(x, ε) belongs either to the sphere S(x, ε − 1) or to the
bigger sphere S(x, ε). Therefore for all integers n, r ≤ n/2, and ε < r,

Φ(r, ε) ≤ nh(σ) − log(2πσ(1 − σ)n)/2 ≤ nh(σ) − log(σn)/2. (83)
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Below we will reduce the residual term − log(σn)/2 to − log(σn). To do so, we
use the following two lemmas.

Lemma 2. Φ(r, ε) is achieved only if

w = (r − ε) (mod 2), (84)
s = (ε + w − r)/2, (85)

in which case

Φ(r, ε) = max
w

log
(
w

s

)(
n− w

ε− s

)
. (86)

Proof. According to (76) and (77), for any w = (r − ε) (mod 2), the smaller
weight w − 1 keeps the same parameter s but increases θ by 1. Thus,

ar(w − 1, ε)
ar(w, ε)

=
(
w − 1
s

)(
n− w + 1
ε− s

)
/

{(
w

s

)(
n− w

ε− s− 1

)}
=
w − s

w
· n− w + 1

ε− s
≥ 1,

due to inequalities
ε− s

n− w + 1
< 1/2 < 1 − s

w
,

which in turn follow from (80) and (81). �
Later, we will consider the case s = 0 separately. For all other cases, we rewrite
(86) using (6), (80), and (81). This gives the upper bounds

Φ(r, ε) ≤ max
w

{g(w) − log(π2s(ε− s))/2} (87)

≤ max
w

{g(w) − (log 4 min{s, ε− s}ε)/2},

where

g(w) def= wh
( s
w

)
+ (n− w)h

(
ε− s

n− w

)
depends only on w for given n, r, and ε. To tighten bound (83), we use the
following straightforward statement.

Lemma 3. For any x ∈ (0, 1/2] and any λ ∈ [−x, x],

h(x+ λ) ≤
{
h(x) + λ log 1−x

x − λ2 log e
2x(1−x) , if λ ≤ 0,

h(x) + λ log 1−x
x , if λ ≥ 0.

(88)

Proof. For λ ≤ 0, we use the first three terms in Taylor’s expansion series of
h(x) :

h(x+ λ) = h(x) + λh′(x) + λ2h′′(y)/2, y ∈ [x+ λ, x].

Given λ ≤ 0, we see that h′′(y) = − log e/(y(1 − y)) achieves its maximum on
the interval [x + λ, x] if y = x. This gives the upper inequality (88). For λ ≥ 0,
we use that h′′(y) < 0 on the whole interval [0, 1]. �
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Remark. Since h′′(y) ≤ −4 log e for all y, the term −2λ2 log e can be added in
(88), when λ ≥ 0. However, we use bound (88), since further improvements do
not change its asymptotics.

Below in our bound (87), we use real parameters w and s = s(w) defined in (85).
We also use parameters

v :=
ρ− σ

1 − 2σ
n, (89)

λ1 :=
s

w
− σ, λ2 :=

ε− s

n− w
− σ. (90)

In this case the number s(v) satisfies equalities

s

v
=

ε− s

n− v
= σ.

From (90) we also see that

wλ1 = −(n− w)λ2. (91)

Below we show that Φ(r, ε) can in essence be upper-bounded by taking w = v,
given the following rather loose condition on ρ := r/n and σ := ε/n.

Lemma 4. Let n, r ≤ n/2, and ε < r satisfy condition

nσ(ρ− σ)(1 − 2σ) ≥ logn (92)

for all n large enough. Then for sufficiently large n,

Φ(r, ε) ≤ nh(σ) − log(nσ) − 1
2

log
ρ− σ

1 − 2σ
. (93)

Proof. Note that λ1 and λ2 have different signs according to (91). Below we
consider any weight w ≤ v, in which case λ1 ≤ 0 and λ2 ≥ 0 (the opposite
case w > v can be treated in a similar way). Then we can use the following
inequalities:

h
( s
w

)
≤ h(σ) + λ1 log

1 − σ

σ
− λ2

1 log e
2σ(1 − σ)

; (94)

h

(
ε− s

n− w

)
≤ h(σ) + λ2 log

1 − σ

σ
. (95)

Now we combine inequalities (94) and (95) with equality (91), thus excluding all
first-order terms:

g(w) ≤ nh(σ) − wλ2
1 log e

2σ(1 − σ)
. (96)

Now consider any w ∈ (r − ε, v]. (Recall that w = r − ε corresponds to the
boundary case s = 0 and will be considered later). Let c∗ = 1 − 2σ. Also, let
c = w/v, where c ∈ [c∗ + 1/v, 1]. We rewrite (85) and (90) as

s(w) = v(c− c∗)/2,
λ1 = −c∗(1 − c)/2c.
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In this case, we can combine (87) and (96) as

Φ(r, ε) ≤ Φc(r, ε),

where

Φc(r, ε) := nh(σ) − log(4σn)
2

− c2∗(1 − c)2

8cσ(1 − σ)
v log e− log v(c− c∗)

2

is a function of c. Direct verification shows that its derivative

∂Φc(r, ε)
∂c

=
c2∗v log e

8σ(1 − σ)
(c−2 − 1) − log e

2(c− c∗)

is positive for n → ∞ on some interval c ∈ [c∗ + 1/v, c′], where c′ → 1 provided
that condition (92) holds. Thus, we take w = v and s = s(v) and obtain the
upper bound:

Φ(r, ε) ≤ Φ1(r, ε) ≤ g(w) − (log 4s(v)ε)/2,

which in turn gives (93).
Finally, consider the boundary case s = 0. Then

ar(r − ε, ε) =
(
n− r + ε

ε

)
≤

(
n

ε

)
·
(

1 − r − ε

n

)ε
,

which gives the estimate

log ar(r − ε, ε) ≤ nh(σ) − nσ(ρ− σ).

Now we can directly verify that this estimate also satisfies our bound (93) given
condition (92), since nσ(ρ− σ) > logn. �
Our next goal is to obtain a lower bound on ar(w, ε). In fact, we show that
the lower bound derived below differs from (93) by an additive term of order
(logn)/2.

Lemma 5. For all n, r ≤ n/2, and ε < r,

Φ(r, ε) ≥

nh(σ) − 1
2 log(8n

√
2) + 1

2 log σ, if σ(ρ−σ)
1−2σ n < 1,

nh(σ) − log(8n
√

2) − 1
2 log ρ−σ

1−2σ , otherwise.
(97)

Thus, for all ρ and σ,
Φ(r, ε) ≥ nh(σ) − log 8n. (98)

Proof. We choose two different values of w and s to satisfy conditions (84).
Namely, let w1 := �v� = v−τ, where τ ∈ [0, 1) and w2 := w1 +1. Let s1 := s(w1)
and s2 := s(w2) be defined by (85). Obviously, one of the numbers wi, i = 1, 2,
satisfies conditions (84) and therefore can be used in conjunction with (86). Our
goal is to show that both numbers wi allow us to obtain the quantity ar(wi, ε)
that satisfies (97).
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Note that by definition of v in (89)

s1 =
ε+ w1 − r

2
=
ε + v − r

2
− τ

2
= σv − τ

2
,

in which case we have inequalities:

s1
w1

< σ,
s1 + 1
w1

> σ,
ε− s1
n− w1

> σ.

Now we estimate ar(w1, ε) using inequality(
w1

s1

)
=

(
w1

s1 + 1

)
·
(

s1 + 1
w1 − s1

)
> σ

(
w1

s1 + 1

)
,

and the lower bound from (6):

ar(w1, ε) ≥
(

w1

s1 + 1

)
·
(
n− w1

ε− s1

)
· σ (99)

≥ ((s1 + 1)(ε− s1))−1/2 · 2nh(σ) · σ/8
≥ (max(2σv, 2) · ε)−1/2 · 2nh(σ) · σ/8.

Here we employed trivial inequality

s1 + 1 < σv + 1 ≤ max(2σv, 2).

Next, we estimate ar(w2, ε) in a similar way. We use the quantity

s2 =
ε+ v − r

2
+

1 − τ

2
= σv +

1 − τ

2
,

which satisfies inequalities

s2
w2

> σ,
ε− s2
n− w2

< σ,
ε− s2 + 1
n− w2

> σ,

and gives the same estimates(
n− w2

ε− s2

)
>

(
n− w2

ε− s2 + 1

)
·
(
ε− s2 + 1
n− w2

)
> σ

(
n− w2

ε− s2 + 1

)
,

ar(w2, ε) ≥
(
w2

s2

)
·
(

n− w2

ε− s2 + 1

)
· σ

≥ (s2(ε− s2 + 1))−1/2 · 2nh(σ) · σ/8
≥ (max(2σv, 2) · ε)−1/2 · 2nh(σ) · σ/8.

Finally, we substitute v from (89) in (99) and obtain (97) for both pairs. To
replace (97) with (98), we use the fact that σ ∈ [1/n, 1/2) and ρ−σ ≤ (1−2σ)/2.

�

Now we see that Proposition 1 follows from bounds (79), (83), (93), and (97). �



Appendix: On Set Coverings in Cartesian

Product Spaces

R. Ahlswede

Abstract. Consider (X, E), where X is a finite set and E is a system of
subsets whose union equals X. For every natural number n ∈ N define the
cartesian products Xn =

∏n
1 X and En =

∏n
1 E . The following problem

is investigated: how many sets of En are needed to cover Xn? Let this
number be denoted by c(n). It is proved that for all n ∈ N

exp{C · n} ≤ c(n) ≤ exp{Cn + log n + log log |X|} + 1.

A formula for C is given. The result generalizes to the case where X and
E are not necessarily finite and also to the case of non–identical factors in
the product. As applications one obtains estimates on the minimal size
of an externally stable set in cartesian product graphs and also estimates
on the minimal number of cliques needed to cover such graphs.

1 A Covering Theorem

Let X be a non–empty set with finitely many elements and let E be a set of
non–empty subsets of X with the property

⋃
E∈E E = X . (We do not introduce

an index set for E in order to keep the notations simple). For n ∈ N, the set
of natural numbers, we define the cartesian product spaces Xn =

∏n
1 X and

En =
∏n

1 E . The elements of En can be viewed as subsets of Xn.
We say that E ′n ⊂ En covers Xn or is a covering of Xn, if Xn =

⋃
En∈E′

n
En.

We are interested in obtaining bounds on the numbers c(n) defined by

c(n) = min
E′

n covers Xn

|E ′n|, n ∈ N. (1)

Clearly, c(n1 + n2) ≤ c(n1) · c(n2) for n1, n2 ∈ N. Example 1 below shows
that equality does not hold in general. Denote by Q the set of all probability
distributions on the finite set E , denote by 1E(·) the indicator function of a set
E, and define K by

K = max
q∈Q

min
x∈X

∑
E∈E

1E(x)qE . (2)

Theorem 1. With C = logK−1 the following estimates hold:

a) c(n) ≥ exp{C · n}, n ∈ N.
b) c(n) ≤ exp{C · n+ logn+ log log |X |} + 1, n ∈ N.
c) limn→∞ 1

n log c(n) = C.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 926–937, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Appendix: On Set Coverings in Cartesian Product Spaces 927

Proof. c) is a consequence of a) and b). In order to show a) let us assume that
E∗n+1 covers Xn+1 and that |E∗n+1| = c(n+ 1).

Write an element En+1 of E∗n+1 as E1E2 . . . En+1 and denote by xXn+1 the set
of all those elements of Xn+1 which have x as their first component. Finally,
define a probability distribution q∗ on E by

q∗E =
∣∣{En+1 | En+1 ∈ E∗n+1, E

1 = E}
∣∣c−1(n + 1) for E ∈ E . (3)

In order to cover the set xXn+1 we need at least c(n) elements of E∗n+1. This
and the definition of q∗ yield

c(n + 1)
∑
E∈E

1E(x)q∗E ≥ c(n). (4)

Since 1 holds for all x ∈ X we obtain

c(n + 1) min
x∈X

∑
E∈E

1E(x)q∗E ≥ c(n) (5)

and therefore also

c(n+ 1)max
q∈Q

min
x∈X

∑
E∈E

1E(x)qE ≥ c(n). (6)

Inequality a) is an immediate consequence of 1.
We prove now b). Let r be an element of Q for which the maximum in 1 is

assumed. Denote by rn the probability distribution on En, which is defined by

rn(En) =
n∏
t=1

rEt, En = E1E2 . . . En ∈ En. (7)

Let N be a number to be specified later. Select now N elements E(1)
n , . . . , E

(N)
n

of En independently of each other according to the random experiment (En, rn).
If every xn ∈ Xn is covered by

{
E

(1)
n , . . . , E

(N)
n

}
with positive probability then

there exists a covering of Xn with N sets. Let xn = (x1, . . . , xn) be any element
of Xn. Define E(xn) by

E(xn) = {En|En ∈ En, xn ∈ En}. (8)

Clearly, E(xn) =
∏n

1{E|E ∈ E , xt ∈ E} and therefore

rn
(
E(xn)

)
=

n∏
t=1

(∑
E

1E(xt)rE

)
. (9)
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Recalling the definitions for r and K we see that
∑
E 1E(xt)rE ≥ K and that

rn
(
E(xn)

)
≥ Kn. (10)

This implies that xn is not contained in anyone of the N selected sets with
a probability smaller than (1 −Kn)N and therefore Xn is not covered by those
sets with a probability smaller than |X |n(1 −Kn)N . Thus there exist coverings
of cardinality N for all N satisfying

|X |n(1 −Kn)N < 1. (11)

Since (1 −Kn)N ≤ exp{−KnN} one can choose any N satisfying

exp{−KnN} ≤ exp{− log |X |n} or (equivalently) N ≥ exp{logK−1·n+logn+log log |X |}.

The proof is complete.

Probabilistic arguments like the one used here have been applied frequently in
solving combinatorial problems, especially in the work of Erdös and Renyi. The
cleverness of the proofs lies in the choice of the probability distribution assigned
to the combinatorial structures. The present product distribution has been used
for the first time by Shannon [2] in his proof of the coding theorem of Information
Theory. For the packing problem defined in section 5 the present approach will
not yield asymptotically optimal results.

Example 1
X = {0, 1, 2, 3, 4}, E =

{
{x, x+ 1} | x ∈ X

}
.

The addition is understood mod 5. Clearly, c(1) = 3. We list the elements
of X2 as follows:

00 22 02 20 43 14 34 41
01 23 03 30 44 24 40 42
10 32 12 21 04
11 33 13 31

The elements in every column are contained in a set which is an element of
E2. Therefore c(2) ≤ 8 < c(1)2. Since in the present case K−1 = 5

2 and since
c(2) ≥ c(1)K−1 = 15

2 > 7 we obtain that actually c(2) = 8. Moreover, since
limn→∞ 1

n log c(n) = log 5
2 there exists infinitely many n with c(2n) < c2(n).

2 Generalizations of the Covering Theorem

Let (Xt, Et)∞t=1 be a sequence of pairs, where Xt is an arbitrary non–empty set
and Et is an arbitrary system of non–empty subsets of Xt. For every n ∈ N set
Xn =

∏n
t=1 X

t, En =
∏n
t=1 Et, and define c(n) again as the smallest cardinality

of a covering of Xn. Define Qt, t ∈ N, as the set of all probability distributions
on Et which are concentrated on a finite subset of Et. Finally, set
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Kt = sup
qt∈Qt

inf
xt∈Xt

∑
Et∈Et

1Et(xt)qtEt and Ct = log(Kt)−1 for t ∈ N.

A. The case of identical factors
Let us assume that (Xt, Et) = (X, E) for t ∈ N. This implies that also Qt = Q,

Kt = K, and Ct = C for t ∈ N.

Corollary 1.
a) c(n) ≥ exp{C · n}, n ∈ N
b) For every δ > 0 there exists an nδ such that c(n) ≤ exp{C ·n+δn} for n ≥ nδ.
c) limn→∞ 1

n log c(n) = C.

Proof. If c(1) = ∞, then also c(n) = ∞ and a) is obviously true. b) holds in
this case, because K = 0. If c(1) < ∞, then also c(n) <∞. Replacing “max” by
“sup” and “min” by “inf” the proof for a) of the theorem carries over verbally
to the present situation. We prove now b). Choose r∗ such that

| logK−1 − log

(
inf
x∈X

∑
E∈E

1E(x)r∗E

)−1

| < δ

2
. (12)

Let E∗ be the finite support of r∗. We define an equivalence relation on X by

x ∼ x′ iff {E|E ∈ E∗, x ∈ E} = {E|E ∈ E∗, x′ ∈ E}. (13)

Thus we obtain at most 2|E
∗| many equivalence classes. Denote the set of equiv-

alence classes by X and let E be the subset of X obtained from E by replacing
it’s elements by their equivalence classes. Write E = {E|E ∈ E}, Xn =

∏n
1 X ,

and En =
∏n

1 E . A covering of Xn induces a covering of Xn with the same
cardinality. If follows from the theorem and from 2 that

c(n) ≤ exp
{
Cn+

δ

2
n + logn+ log log 2|E

∗|
}

+ 1. (14)

This implies b). c) is again a consequence of a) and b).

B. Non–identical factors

Corollary 2. Assume that maxt |Et| ≤ a < ∞. Then for all n ∈ N:
a) c(n) ≥ exp {

∑n
t=1 C

t}
b) c(n) ≤ exp {

∑n
t=1 C

t + logn+ log log 2a} + 1.

Proof. Introducing equivalence relations in every Xt as before in X we see that
it suffices to consider the case maxt |Xt| ≤ 2a. a) is proved as in case of identical
factors. We show now b). Since Et is finite there exists an rt for which Ct is
assumed. Replace the definition of rn given in 1 by

rn(En) =
r∏
t=1

rt(Et) for all En = E1 . . . En ∈ En. (15)
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By the argument which led to 1 we obtain now

|2a|n
(

1 −
n∏
t=1

Kt

)N
< 1 (16)

and therefore b).

The condition on the Et’s can actually be weakened to the following uniformity
condition:

For every δ > 0 there exists an mδ and rt’s with supports of cardinality
smaller then mδ such that

∣∣log(Kt)−1 − log

(
inf
xt∈Xt

∑
Et∈Et

1Et(xt)rtEt

)−1∣∣ ≤ δ. (17)

The upper bound on c(n) which one then obtains is of course only of a sharpness
as the one in b) of corollary 1.

Remark 1. One can assign weights to the elements of En and than ask for
coverings with minimal total weight. It may be of some interest to elaborate
conditions on the weight function under which the covering theorem still holds.
The weight function will of course enter the definition of K.

3 Hypergraphs: Duality

In this and later sections we consider only finite sets and products of finite sets,
even though the results obtained can easily be generalized along the lines of
section 2 to the infinite case. Thus we have the benefit of notational simplicity.

Let X =
{
x(i)|i = 1, . . . , a

}
be a non–empty finite set and let E =

(
E(j)|j =

1, . . . , b
)

be a family of subsets of X . The pair H = (X, E) is called a hypergraph
(see [3]), if

b⋃
j=1

E(j) = X and E(j) = ∅ for j = 1, . . . , b. (18)

The x(i)’s are called vertices and the E(j)’s are called edges. A hypergraph is
called simple, if E is a set of subsets of X . For the problems studied in this paper
we can limit ourselves without loss of generality to simple hypergraphs and we
shall refer to them shortly as hypergraphs. A hypergraph is a graph (without
isolated vertices), if |E(j)| ≤ 2 for j = 1, . . . , b. Interpreting E(1), . . . , E(b) as
points e(1), . . . , e(b) and x(1), . . . , x(a) as sets X(1), . . . , X(a), where

X(j) =
{
e(i)|i ≤ a, x(j) ∈ E(i)

}
(19)

one obtains the dual hypergraph H∗ = (E∗,X ∗). A hypergraph is characterized
by it’s incidence matrix A. The incidence matrix of H∗ is the conjugate of A. Let
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Ht = (Xt, Et), t ∈ N, be hypergraphs. For n ∈ N we define cartesian product
hypergraphs Hn =

∏n
t=1 H

t by

Hn = (Xn, En). (20)

The covering theorem can be interpreted as a statement about edge coverings
of cartesian product hypergraphs. We are looking now for the dual statement.
One easily verifies that

H∗n = (E∗n,X ∗n) =
n∏
t=1

(Ht)∗. (21)

This means that the dual of the product hypergraph is the product of the dual
hypergraphs. A set T ⊂ X is called a transversal (or support) in H = (X, E) if

T ∩ E = ∅ for all E ∈ E . (22)

Denote the smallest cardinality of transversals in Hn (resp. H∗n) by t(n) (resp.
t∗(n)). A transversal in Hn is a covering in H∗n, and vice versa. Denoting the
smallest cardinality of coverings in H∗n by c∗(n) we thus have

t(n) = c∗(n), t∗(n) = c(n), n ∈ N. (23)

Let now P be the set of all probability distributions on X and define K∗ by

K∗ = max
p∈P

min
E∈E

∑
x∈X

1E(x)px. (24)

K∗ plays the same role for H∗n as K does for Hn. The covering theorem implies

Corollary 3. With C∗ = logK∗−1 the following estimates hold for n ∈ N:

a) t(n) = c(n) ≥ exp{C∗ · n}
b) t(n) ≤ exp{C∗ · n+ log + log log |E|} + 1.

Of course the dual results to Corollaries 1, 2 also hold. There is generally no
simple relationship between K and K∗. By choosing E as

{
{x} | x ∈ X

}
∪ {X}

we obtain c(n) = 1, t(n) = |X |n, and therefore K∗ < K in this case. K >
K∗ occurs for the dual problem. It may be interesting (and not too hard) to
characterize hypergraphs for which K∗ = K. We show now that K (resp. K∗)
can be expressed as a function of P (resp. Q).

Lemma 1.
a) K=maxq∈Q minx∈X

∑
E∈E 1E(x)qE=minp∈P maxE∈E

∑
x∈X 1E(x)px= K,

b) K∗ = maxp∈P minE∈E
∑
x∈X 1E(x)px = minq∈Q maxx∈X

∑
E∈E 1E(x)qE .
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Proof. We have to show a) only since b) follows by dualization. P and Q are
convex and compact in the supremum norm topology. The function f(p, q) =∑
x∈X

∑
E∈E 1E(x)pxqE is linear and continuous in both variables p and q.

Therefore von Neumann’s Minimax Theorem ([4]) is applicable and yields

max
q

min
p

∑
x

∑
E

1E(x)pxqE = min
p

max
q

∑
x

∑
E

1E(x)pxqE = M, say. (25)

Write K as maxq minδx0

∑
x

∑
E 1E(x)δ(x, x0)qE , where δx0 is the probability

distribution concentrated on x0 and δ(·, ·) is Kronecker’s symbol. We see that
K ≥ M and similarly that M ≥ K. For all p and q we have

max
E

∑
x

1E(x)px ≥
∑
E

qE
∑
x

1E(x)px =
∑
x

px
∑
E

1E(x)qE ≥ min
x

∑
E

1E(x)qE .

(26)

This implies K ≥ K and thus K = K. In studying infinite hypergraphs one
could make use of more general Minimax Theorems, which have been proved by
Kakutani, Wald, Nikaido, and others.

4 Applications to Graphs

Let G = (X,U) be a non–oriented graph without multiple edges. Define Γx by

Γx =
{
y|y ∈ X, (x, y) ∈ U

}
, x ∈ X. (27)

Γx is the set of vertices connected with x by an edge. The graph G is completely
described by X and Γ and we therefore also write G = (X,Γ ). Given a sequence
of graphs (Gt)∞t=1 then we define for every n ∈ N the cartesian product graphs
Gn = (Xn, Γn) =

∏n
t=1 G

t by

Xn =
n∏
t=1

Xt, Γnxn =
n∏
t=1

Γ txt (28)

for all xn = (x1, . . . , xn) ∈ Xn. (This product has also been called the cardinal
product in the literature). Two vertices xn = (x1, . . . , xn) and yn = (y1, . . . , yn)
of Gn are connected by an edge if and only if they are connected component–
wise. In the sequel we shall show that the covering theorem leads to estimates
for some fundamental graphic parameters in case of product graphs.

A. The coefficient of external stability
Given a graph G = (X,Γ ), a set S, S ⊂ X , is said to be externally stable if

Γx ∩ S = ∅ for all x ∈ Sc (29)

or (equivalently) if ⋃
x∈S

(
Γx ∪ {x}

)
= X. (30)



Appendix: On Set Coverings in Cartesian Product Spaces 933

The coefficient of external stability s(G) of a graph G is defined by

s(G) = min
S ext. stable

|S|. (31)

Finally, denote by Q(X,Γ ) the set of all probability distributions on
{Γy|y ∈ X}.
Corollary 4. Let G = (X,Γ ) be a finite graph with all loops included, that is

x ∈ Γx for all x ∈ X. With C = log
(

maxq∈Q(X,Γ ) minx∈X
∑
y∈X 1Γy(x)qΓy

)−1

and s(n) = s (
∏n

1 G) the following estimates hold for n ∈ N:

a) s(n) ≥ exp{Cn}
b) s(n) ≤ exp{Cn+ logn + log log |X |} + 1.

Proof. Since x ∈ Γx by assumption we also have that xn ∈ Γnxn =
∏n
t=1 Γx

t.
According to 4 Sn ⊂ Xn is externally stable if and only if

⋃
xn∈Sn

Γnxn = Xn.
Consider the hypergraph H = (X, E), where E = {Γx|x ∈ X}, and it’s product
Hn = (Xn, En). An externally stable set Sn corresponds to a covering of Xn by
edges of Hn, and vice versa. The corollary follows therefore from the covering
theorem.

B. Clique coverings
We recall that a clique in G is simply a complete subgraph of G. A clique is
maximal if it is not properly contained in another clique.

Lemma 2. Given Gn =
∏n

1 G, where G is a graph with an edge set containing
all loops. The maximal cliques Mn in Gn are exactly those cliques which can be
written as Mn =

∏n
t=1 M

t, where the M t’s are maximal cliques in G.

Proof. Products of maximal cliques are a maximal clique in the product graph.
It remains to show the converse. Define
Bt =

{
xt | ∃yn = (y1, . . . , yt, . . . , yn) ∈Mn with yt = xt

}
; t = 1, 2, . . . , n.

The Bt’s are cliques and therefore Bn =
∏n
t=1 B

t is a clique in Gn containing
Mn. Since Mn is maximal we have that Mn = Bn and also that the Bt’s are
maximal. The system of cliques

{
M

(i)
n | i = 1, . . . ,m

}
covers Gn if

⋃m
i=1 M

(i)
n =

Xn. We denote by m(n) the smallest number of cliques needed to cover Gn.
Define M as the set of all maximal cliques in G and define Q(M) as set of all
probability distributions on M.

Corollary 5. Let G be a finite graph with all loops in the edge set.
With L = log

(
maxq∈Q(M) minx∈X

∑
M∈M 1M (x)qM

)−1 the following estimates
hold for n ∈ N:

a) m(n) ≥ exp{Ln}
b) m(n) ≤ exp{Ln+ logn + log log |X |} + 1.

Proof. It follows from Lemma 2 that clique coverings for Gn are simply edge
coverings of the hypergraph Hn =

∏n
1 H , where H = (X,M). The corollary is

a consequence of the covering theorem.
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Remark 2. A clique covering of Gn can be interpreted as a colouring of the
dual graph Gcn. This graph can be written as

∏n
1 Gc, where the product is to be

understood as follows: two vertices xn = (x1, . . . , xn), yn = (y1, . . . , yn) ∈ Xn
are joined by an edge if for at least one t, 1 ≤ t ≤ n, xt and yt are joined.
Thus the corollary 5 gives estimates for minimal colorings of *–product graphs.
The result of the present section generalize of course to the case of non–identical
factor and also to the so called strong product.

5 A Packing Problem and It’s Equivalence to a Problem
by Shannon

A. The problem
Instead of asking how many edges are needed to cover the set of all vertices of
the hypergraph Hn = (Xn, En) one may ask how many non–intersecting edges
can one pack into Xn. Formally, E ′n ⊂ En is called a packing in Hn if En∩E′n = ∅
for all En′E′n ∈ E ′n. Define the maximal packing number π(n) by

π(n) = max
E′

n is packing in Hn

|E ′n|, n ∈ N. (32)

Using the argument which led to 1 one obtains

π(n + 1) ≤ π(n)

(
min
q∈Q

max
n

∑
E∈E

1E(x)qE

)−1

. (33)

The inequality goes in the other direction and the roles of “max” and “min” are
exchanged, because we are dealing with packings rather than with coverings. We
know from Lemma 1 that minq∈Qmaxx

∑
E∈E 1E(x)qE = K∗. Since obviously

π(n) ≤ t(n) inequality 5 becomes trivial. Equality does not hold in general.

Example 2
X = {0, 1, 2}, E(j) = {j, j + 1} for j = 0, 1, 2. The addition is understood

mod 3. In this case K∗ = 2
3 and therefore t(n) ≥

(
3
2

)n. However, π(n) = 1 for
all n ∈ N.

B. The dual problem. Independent sets of vertices
The packing problem for the dual hypergraph means the following for the original
hypergraph: How many vertices can we select from X such that no two of them
are contained in an edge? We are simply asking for the largest cardinality of a
strongly independent set of vertices. We recall that I ⊂ X is called a strongly
independent set if and only if

|I ∩ E| ≤ 1 for all E ∈ E . (34)

W ⊂ X is called a weakly independent set if and only if

|W ∩ E| < |E| for all E ∈ E . (35)
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One easily verifies that a strongly independent set is also weakly independent
provided that |E| ≥ 2 for all E ∈ E . (Loops are excluded.) If H = H(G)
is the hypergraph of a graph G without loops, then the two concepts are the
same. A weakly independent set for H(G) is simply an internally stable set for
G = (X,Γ ), and conversely. V ⊂ X is said to be an internally stable set of G if
V ∩ ΓV = ∅. This implies that no element of V has a loop. We would like to
call a set J ⊂ X with no 2 vertices joined by an edge a Shannon stable or briefly
S–stable set of a graph, because this concept has been used by Shannon in [1]
and because the difference between the two notions of stability seems not to have
been emphasized enough in the literature even though it is significant for product
graphs. In an S–stable set elements with loops are permitted. An internally stable
set is S–stable. The converse is not necessarily true. T ⊂ X is a transversal in
G if every edge has at least one vertex in T . The complement of an internally
stable set in G is a transversal in G, and vice versa. The same relationship holds
for weakly independent sets and transversals in hypergraphs. Let v(Gn) be the
coefficient of internal stability of Gn, that is, the largest cardinality which can
be obtained by an internally stable set in Gn and let t(Gn) be the smallest
cardinality for a transversal in Gn. We have

t(Gn) = |X |n − v(Gn), n ∈ N. (36)

Denoting by w(Gn) the largest cardinality of a weakly independent set in Hn
and writing t(Hn) = t(n) we also obtain

t(Hn) = |X |n − w(Hn), n ∈ N. (37)

Our estimates for t(Hn) (see section 3) can be translated into estimates for
w(Hn). However, those hypergraph results have no implications for t(Gn) and
v(Gn). This is due to the fact that H(Gn) =

∏n
1 H(G) in general. Actually,

v(Gn) is not a very interesting function of n. If G = (X,U) is such that U
contains all loops then also Gn contains all loops and v(Gn) = 0 for all n ∈ N.
If there exists an element x ∈ X without a loop, then xXn−1 is internally stable
in Gn and therefore limn→∞ 1

n log v(Gn) = log |X |. This is also true in this case
for j(Gn), the largest cardinality of an S–stable set in Gn. Similarly one can
show that w(Hn) ≡ 0 if H contains all loops and limn→∞ 1

n logw(Hn) = log |X |
otherwise. In summarizing our discussion we can say that the following problems
are unsolved:

1. 1.) The transversal–problem for graphs not containing all loops in the edge
set

(
t(Gn)

)
.

2. 2.) The S–stability–problem for graphs with all loops in the edge set
(
j(Gn)

)
.

3. 3.) The strong independence–problem for hypergraphs
(
i(Hn)

)
.

4. 4.) The packing problem for hypergraphs
(
π(n)

)
.

A solution of 3.) for all hypergraphs is equivalent to a solution of 4.) for all
hypergraphs, because the problems are dual to each other. Moreover, we notice
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that 2.) is a special case of 3.). Suppose that G is a graph with all loops in the
edge set and that H(G) is the hypergraph associated with G, then an S–stable
set in Gn is a strongly independent set in H(G)n, and conversely. We show that
4.) is a special case of 2.) and therefore that all three problems are equivalent.
Let H = (X, E) be a hypergraph. Define a graph G(H) as follows:

Choose E as set of vertices and join E,E′ ∈ E by an edge if and only if
E ∩ E′ = ∅. G(H) is a graph with all loops in the edge set and the packings of
Hn are in one to one correspondence to the S–stable sets of G(H)n.

C. Shannon’s zero error capacity
Problem 2.) is due to Shannon [1]. It is a graph theoretic formulation of the
information theoretic problem of determining the maximal number of messages
which can be transmitted over a memoryless noisy channel with error probability
zero. limn→∞ 1

n log j(Gn) was called in [1] the zero error capacity Co, say. Using
our standard argument (see 1 and 5 one can show that for G = (X,U), where
U contains all loops,

j(Gn+1) ≤ j(Gn)

(
min
p∈P

max
E∈U

∑
x∈X

1E(x)px

)−1

. (38)

This implies that

Co ≤ log

(
min
p∈P

max
E∈U

∑
x∈X

1E(x)px

)−1

. (39)

It has been shown in [6] that for bipartite graphs j(Gn) =
(
j(G)

)n for all n ∈ N
and hence that Co = log j(G) in this case. The proof uses the marriage theorem.
The simplest non–bipartite graph for which Co is unknown is the pentagon
graph. It was shown in [1] that in this case

1
2

log 5 ≤ Co ≤ log
5
2
. (40)

The lower bound is an immediate consequence of the equation j(G2) = 5. The
upper bound follows also from 5. No improvement has been made until now on
any of those bounds. We have been able to prove that

j(G3) = 10, j(G4) = 25, j(G5) = 50, and j(G6) = 125. (41)

We conjecture that

j(G2n) = 5n, j(G2n+1) = 2.5n for all n ∈ N, (42)

but so far we have no proof for n > 6. 5 would imply Co = 1
2 log 5. The result

announced in 5 and results which go beyond this (including colouring problems)
will appear elsewhere. We would like to mention that we came to the covering
problem by trying to understand the results of [5] from a purely combinatorial
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point of view. Those results can be understood as statements about “packings
with small overlapping and an additional weight assignment”. It seems to us that
the methods of [5] allow refinements which may be helpful for the construction
of minimal coverings. We expect that the covering theorem has applications in
Approximation Theory, in particular for problems involving ε–entropy (see [7]).

It might also be of some interest to compare our estimates with known results
(see [8]) on coverings with convex sets in higher dimensional spaces.
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Testing Sets for 1-Perfect Code

S.V. Avgustinovich and A. Yu. Vasil’eva

This paper continues the research of [1,2]. In [1] it was shown that a 1-perfect
code is uniquely determined by its vertices at the middle levels of hypercube and
in [2] the concerned formula was obtained. Now we prove that the vertices at
the r-th level, r ≤ (n − 1)/2, of such a code of length n uniquely determine all
code vertices at the lower levels.

1. Main result. We denote n-dimensional vector space over GF (2) by En and
call it a hypercube. We consider Hamming metric in En, i. e. the distance ρ(x,y)
between vertices x and y of hypercube is equal to the number of positions in
which the vertices differ. Hamming weight wt(x) of vertex x is equal to the
number of nonzero positions of x. Denote by Sr(x) (Br(x)) a sphere (a ball)
of radius r with the center x. The sphere Sr(0) = Wr centered in the all-zero
vertex 0 is called a r-th level of hypercube.

A ϑ-centered function f : En → R is a function such that the sum of its values
in a ball of the radius 1 is equal to ϑ. A perfect binary single-error-correcting
code C (briefly a 1-perfect code) of length n is a subset of En such that the set
{B1(x) | x ∈ C} is a partition of En. The characteristic function of a 1-perfect
code is 1-centered.

Let Φ be a family of real functions over En and A,B ⊆ En. We call A a
B-testing set for the family Φ if for any f, g ∈ Φ the following condition holds:
if f(x) = g(x) for any x ∈ A then f(x) = g(x).
in other words if one knows the values of an arbitrary function f ∈ Φ over A
then one can find all values of f over the set B. Let Φϑ be the family of all
ϑ-centered functions over En. The main result and an easy consequence are

Theorem 1. Let ϑ be real, v ∈ En and r ≤ (n − 1)/2. Then the Sr(v) is the
Br(v)-testing set for the family Φϑ.

The next Theorem can be easily derived from the previous Theorem.

Theorem 2. Let v ∈ En and r ≤ (n − 1)/2. The set of vertices of a 1-perfect
code of weight less than r is uniquely determined by the set of all code vertices
of weight r.

2. Local spectra. A k-dimensional face γ of the hypercube is the set of all
vertices with fixed n − k coordinates. Fix a vertex x ∈ γ. The local spectrum
of a function f : En → R in the face γ with respect to the vertex x is the
(k + 1)-dimensional vector

l(x) = (l0(x), l1(x), . . . , lk(x)), where li(x) =
∑

y∈γ, ρ(x,y)=i

f(y).

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 938–940, 2006.
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We can consider the partial ordering in En: x / y if xi ≤ yi, i = 1, . . . , n,
where x = (x1, . . . , xn) and y = (y1, . . . , yn). For a vertex x of hypercube we
denote

γx = {y ∈ En | y / x}, γ⊥x = {y ∈ En | y 3 x}.

Pares of faces like this are called orthogonal. Note that dim γx = wt(x)
and dim γ⊥x = n − wt(x). Denote by l(x) = (l0(x), . . . , lwt(x)(x)) the local
spectrum of a function f in the face γx with respect to x and by l⊥(x) =
(l⊥0 (x), . . . , l⊥n−wt(x)(x)) the local spectrum of a function f in the face γ⊥x with
respect to the vertex x.

The local spectra of a perfect code in two orthogonal faces with respect to
their common vertex were proved [5] to be in the tight interdependence. More
generally, it holds

Theorem 3. Let f be a 0-centered function, x ∈ Wi, i ≤ (n− 1)/2. Then for
any j, 0 ≤ j ≤ n− i, it holds

l⊥j (x) =
∑
q+r=j

(−1)qpirlq(x), where pi2t = −pi2t+1 = (−1)t
(

(n− 1)/2 − i
t

)
.

The proof of this theorem repeats almost literally the proof of its special case
concerned perfect codes [5]. Now we are ready to prove Theorem 1 in the the
case ϑ = 0.

3. Proof of Theorem 1. Let ϑ = 0 and f be an arbitrary 0-centered function
over En. Without loss of generality we consider v = 0. We will prove that
the r-th level of hypercube is the Dr-testing set for 0-centered functions, where
Dr = W0

⋃
W1

⋃
. . .

⋃
Wr. We will show by induction on i that r-th level Wr of

hypercube is Wi-testing set for 0-centered functions.
The base of induction: i = 0. Analogously with the case of 1-perfect codes

[3,4] it can be obtained that ∑
a∈En, wt(a)=r

f(a) = p0
rf(0)

Thus f(0) is uniquely determined by the values of the function f over Wr.
The step of induction. Suppose that Wr is proved to be the Di−1-testing set

for 0-centered functions. Let x ∈ Wi, i = 1, . . . , r−1. From Theorem 3 we have:

l⊥r−i(x)=

r−i∑
q=0

(−1)qpi
r−i−qlq(x), f(x) = l0(x)=

1

pr−i

(
l⊥r−i(x) −

r−i∑
q=1

(−1)qpi
r−i−qlq(x)

)
.

Here pr−i is nonzero and l⊥r−i(x) =
∑

a x, wt(a)=r f(a), lq(x) =∑
y!x, wt(y)=i−q f(y).
By induction supposition the last sum is uniquely determined by the values

of f over the r-th level. Hence f(x) is also uniquely determined by the values of
f over the r-th level and Wr is the Di-testing set. Theorem 1 is proved.
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On Partitions of a Rectangle into Rectangles

with Restricted Number of Cross Sections

R. Ahlswede and A.A. Yudin�

Abstract. Consider partitions of a rectangle into rectangles with re-
stricted number of cross sections. The problem has an information the-
oretic flavor (in the spirit of [3]): richness of two dimensional pictures
under 1–dimensional restrictions of from local information to global in-
formation.

We present two approaches to upper bound the cardinality of such
partitions: a combinatorial recursion and harmonic analysis.

1 The Problem

Given a partition of a rectangle into rectangles, such that any line parallel to a
side of the initial rectangle intersects at most n rectangles of the partition. The
task is to estimate the maximal number of rectangles of the partition. We make
now our concept of partition precise and consider a more general problem.

Definition 1. We say that a family of rectangles S gives a partition of the
rectangle F , if ⋃

A∈S
A = F (1.1)

and for ∀A,B ∈ S, A = B the intersection of A and B contains at most boundary
points.

Definition 2. We say that the partition SF has the property (m,n), if any line
parallel to the base of the rectangle F intersects at most m rectangles of the
partition, and perpendicular to the base — at most n rectangles.

The problem is to find

f(m,n) = sup card(SF ) = sup |SF |, (1.2)

where the supremum is taken over all partitions SF with property (m,n).
It is evident that f(m,n) = f(n,m). In case m = n one readily sees that

f(n, n) ≥ 2 f(n− 1, n− 1) + 2 ≥ 2n for n ≥ 2. (1.3)

It seems natural to conjecture that the first inequality is actually an equality.
By successively improving our methods we derive here a decreasing sequence of
upper bounds on f(m,n) and finally come close to the conjectured bound.
� Recently we learnt that a paper on such problems appeared already in 1993: D.J.

Kleitman “Partitioning a rectangle into many sub-rectangles so that a line can meet
only a few”, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Volume 9, 95-107, 1993.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 941–954, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 A Crude Estimate

Let us look at

A

B

Fig. 1.

We associate with the partition SF a graph GS . Every A ∈ SF corresponds to
a vertex of GS . For all A,B ∈ SF , A = B, there is an edge that connects them,
iff A and B have common boundary, different from a point.

A A

B
B

�

Fig. 2.

A A

B

�

Fig. 3.

Now we state some properties of the graph GS .

1) We establish an upper bound for degrees of the vertices of this graph.
A vertex A is incident to as many edges as the number of rectangles which

have a common boundary with the rectangle A. It is evident that along any
horizontal side there are at most m of such rectangles, and along any vertical
side there are at most n of them, and thus around the rectangle A there are
at most 2(m+ n) rectangles.

We have, therefore that for every vertex v ∈ GS

deg v ≤ 2(m+ n). (2.1)

2) Now we find an upper bound for the diameter of the graph GS .
Given 2 vertices A and B (see Figure 4), let the vertex X correspond to

the rectangle that contains the point of intersection of the lines 1 and 2,
A ∈ 1 and 1‖αδ, B ∈ 2 and 2‖γδ.
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� �

�

A

B

l
1

l
2

Fig. 4.

By definition, 1 intersects at most m rectangles of the partition, and 2
intersects at most n rectangles, hence the vertices A and X are connected
by at most m edges, and X and B by at most n edges.

Therefore the diameter d(GS) ≤ m+ n. Thus we have

1) ∀v ∈ GS deg v ≤ 2(m+ n)
2) d(GS) ≤ m+ n.

By inequality (1) on page 171 of [1]

f(m,n) ≤ 1 + 2(m+ n)
(2(m+ n) − 1)m+n − 1

2(m+ n) − 2
≤
(
2(m+ n)

)m+n+1
. (2.2)

3 A Sharper Estimate

Choose on the side αβ a rectangle P with the biggest height h.

Fig. 5.

Then partition the rectangle αβγδ by line α1β1 in two rectangles P1 on the
left side and P2 on the right side of α1β1.
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 �

� ��

a a1

b b1

Fig. 6.

Adjust the rectangle P1 by throwing away the rectangle P , and joining to-
gether the resulting two ones in the following way:

We get a new rectangle P ∗1 .
Now we find the parameters (m′, n′) of the rectangles P ∗1 and P2.
For P ∗1 it is evident that m′ ≤ m and n′ ≤ n − 1. For P2 it is evident that

m′ ≤ m− 1, n′ ≤ n.
Thus we get

f(m,n) ≤ 1 + f(m,n− 1) + f(m− 1, n). (3.1)

By adding 1 to both sides of this inequality and denoting f(m,n) + 1 by
g(m,n), we get

g(m,n) ≤ g(m,n− 1) + g(m− 1, n). (3.2)

By induction on m+ n we prove that

g(m,n) ≤
(
m+ n

n

)
. (3.3)

Indeed,

g(n, 1) = g(1, n) = n+ 1 ≤
(

1 + n

n

)
and finally by (3.2) and the induction hypothesis

g(m,n) ≤
(
m+ n− 1
n− 1

)
+
(
m+ n− 1

n

)
=
(
m+ n

n

)
.

In the case m = n we get

f(n, n) ≤
(

2n
n

)
− 1 ∼ c

4n√
n
. (3.4)

4 A Still Sharper Estimate

The beginning is the same as in Section 3. Let us examine the estimate there
more carefully.
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Fig. 7.

Let a horizontal line 1 intersect m rectangles of the rectangle P1. Then there
exists a rectangle H of the partition from the side γδ reaching the line 2. The
parameters of rectangles P1 and P2, after the reconstruction satisfy

m′(P ∗1 ) ≤ m and n′(P ∗1 ) ≤ n− 1

m′(P ∗2 ) ≤ m− s and n′(P ∗2 ) ≤ n− 1.

So in this case the following inequality holds

f(m,n) ≤ f(m,n− 1) + f(m− 1, n− 1) + 1.

Again, by adding 1 to both sides of this inequality and denoting f(m,n) + 1
by g(m,n), we obtain

g(m,n) ≤ g(m,n− 1) + g(m− 1, n− 1). (4.1)

Thus if there exists a line 1, which intersects m rectangles of the rectangle
P1, then the inequality (4.1) holds.

Assume now that there is no such a line 1, then the parameters m′ and n′

for P ∗1 and P ∗2 are

m′(P ∗1 ) ≤ m− 1 and n′(P ∗1 ) ≤ n− 1,

m′(P ∗2 ) ≤ m− 1 and n′(P ∗2 ) ≤ n.

Thus the following inequality holds

g(m,n) ≤ g(m− 1, n− 1) + g(m− 1, n). (4.2)

Combining (4.1) and (4.2) we get the following inequalities

g(m,n) ≤
{
g(m− 1, n− 1) + g(m− 1, n)
g(m,n− 1) + g(m− 1, n− 1)

(4.3)

We search for an estimate of the form

g(m,n) ≤ c λ(m+n), (4.4)

where the constants c and λ are not known yet. We will determine them later.
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We get the estimate by induction. First let us determine λ. We have

g(m,n) ≤ max
{
g(m− 1, n− 1) + g(m− 1, n), g(m,n− 1) + g(m− 1, n− 1)

}
≤ max

{
cλm+n−2 + cλm+n−1, cλm+n−1 + cλm+n−2

}
≤ c(λm+n−2 + λm+n−1) = cλm+n

(
1
λ2

+
1
λ

)
.

To be able to perform induction we need

1
λ2

+
1
λ
≤ 1,

from which after calculations we find that we can set λ0 =
√

5+1
2 .

The constant c in (4.4) is determined from the initial step of the induction:

g(1, n) = n + 1 ≤ c

(√
5 + 1
2

)n+1

, and thus c = sup
n

n+ 1(√
5+1
2

)n2 ≤ 1.

Then we get

g(m,n) ≤
(√

5 + 1
2

)m+n

. (4.5)

In the case m = n this implies

f(n, n) ≤
(√

5 + 1
2

)2n

− 1 < (1, 62)2n, (4.6)

which is of course better than 4n
√
n

in (3.4), but much worse than the expected 2n.

5 The Best Estimate Found so far by the Method of
Recursion

First we give some concepts.

Fig. 8.
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Again, given a rectangle F and a partition S of it, we call a sequence of
rectangles P1, P2, . . . , Pk (Pi = Pj , i = j) a chain from the side (αβ) to the side
(γδ) if any line ‖(αβ) which intersects F , intersects at least one of P1, . . . , Pk.

Example: P1, P2, P3 is a chain, G1, G2, G3, G4, G5, G6 is a chain.
We call a chain minimal if the number of rectangles in it is minimal. A minimal
chain is extremal, if the sum of the lengths along the side (αδ) of the rectangles
of this chain is maximal (that is among all minimal chains we take the chain of
maximum length).

It is straightforward to see that extremal chains exist.

F



Fig. 9.

Indeed, as  intersects no more than m rectangles of S, which evidently form
a chain, there are chains. Since the cardinality of S is a finite number, there
is a chain with minimal number of elements, that is a minimal chain. Now the
existence of extremal chains is evident, as the number of all chains, and so of
minimal ones, is finite.

We classify now a partition S of the rectangle F by the cardinality of its
horizontal and vertical minimal chains.

We begin the consideration with the chains of cardinality ≥ 2. Note that if
there is a chain of cardinality one, then the partition S has the form

or

Fig. 10.

and this case is trivial to handle.
First we prove the following result.

Theorem 1. Let a partition S with parameters m,n of a rectangle F have an
extremal chain of cardinality ≥ 5. Then

|S| ≤ 2f(m− 3, n− 1) + f(m− 2, n) + 2.
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Proof

Fig. 11.

Without loss of generality let the rectangles P1, P2, P3, P4 and P5 form an
extremal chain. Partition the rectangle F into three rectangles R�, R0, Rr (as in
Figure 11).

We estimate the parameters m′, n′ for the rectangles R�, R0, Rr. As after the
adjustment the rectangle P1 will be thrown away, we have

n′ for R� ≤ n− 1. (5.1)

Now notice that P3, P4, P5 cannot intersect R�. Indeed, assume that P3∩R� =
∅. Then P1, P3, P4, P5 form a chain of cardinality 4, which is a contradiction,
since the chain P1, P2, P3, P4, P5 is extremal. Similarly P4 ∩R� = R� ∩ P5 = ∅.

Now we show that any line 1 intersects at most m−3 rectangles of the parti-
tion S, which belong to rectangle R�. Assume to the opposite that 1 intersects
not less than m− 2 rectangles of R�. Denote by Q1 the right most one of them.
As there are no more than m rectangles lying on 1, there are at most 2 of them
that do not intersect R�. Denote them by Q2 and Q3. Again we come to a con-
tradiction, since P1, Q1, Q2, Q3 form a chain, while P1, P2, P3, P4, P5 is extremal.
Thus we showed that

m′ for R� ≤ m− 3. (5.2)
Similarly for Rr

m′ ≤ m− 3 and n′ ≤ n− 1. (5.3)
For R0 evidently

m′ ≤ m− 2 and n′ ≤ n. (5.4)
Combining (5.1), (5.2), (5.3) and (5.4) we get the claim of Theorem 1.

Corollary. If any partition S with parameters m and n has an extremal chain
of cardinality ≥ 5, then

f(m,n) ≤ 2
m+n

2 .

Indeed, if the condition is fulfilled, then by Theorem 1

g(m,n) ≤ 2g(m− 3, n− 1) + g(m− 2, n),

where g(m,n) = f(m,n) + 1. Assuming, that the following estimate

g(m,n) ≤ c · λ
m+n

2
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is correct for proper c and λ, we get that

g(m,n) ≤ 2cλ
m+n

2 ·λ−2 + cλ
m+n

2 ·λ−1 = cλ
m+n

2

(
2
λ2

+
1
λ

)
= c2

m+n
2 , for λ = 2.

As f(1, n) = n, the constant c can be found from the condition

1 ≤ n ≤ c · 2
n+1
2 for all n ∈ N.

It is evident that we can take c = 1.
From now on only partitions with extremal chains of cardinality ≤ 4 will be

considered.
First we consider partitions S with chains of length 2.

p1

p2

R�R0

Fig. 12.

Now we find all possible collections of parameter values for rectangles
R�, R0, Rr.

R� Rr R0 Inequality Solutions ≤
√

2

N m′, n′ m′, n′ m′, n′

1 m − 1, n − 3 m − 1, n − 3 m, n − 2 2
λ4 + 1

λ2 ≤ 1 yes

2 m − 1, n − 2 m − 1, n − 3 m, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

3 m − 1, n − 3 m − 1, n − 2 m − 1, n − 2 2
λ3 + 1

λ4 ≤ 1 yes

4 m − 1, n − 2 m − 1, n − 2 m − 2, n − 2 2
λ3 + 1

λ4 ≤ 1 yes

5 m − 1, n − 3 m − 1, n − 2 m, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

6 m − 1, n − 2 m − 1, n − 2 m − 1, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

7 m − 1, n − 3 m − 1, n − 2 m − 1, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

8 m − 1, n − 2 m − 1, n − 1 m − 2, n − 3 1
λ2 + 1

λ3 + 1
λ5 ≤ 1 no

9 m − 1, n − 2 m − 1, n − 3 m, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

10 m − 1, n − 1 m − 1, n − 3 m − 1, n − 3 1
λ2 + 2

λ4 ≤ 1 yes

11 m − 1, n − 2 m − 1, n − 2 m − 1, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

12 m − 1, n − 1 m − 1, n − 2 m − 2, n − 3 1
λ2 + 1

λ3 + 1
λ5 ≤ 1 no

13 m − 1, n − 2 m − 1, n − 2 m, n − 4 2
λ3 + 1

λ4 ≤ 1 yes

14 m − 1, n − 1 m − 1, n − 2 m − 1, n − 4 1
λ2 + 1

λ3 + 1
λ5 ≤ 1 no

15 m − 1, n − 2 m − 1, n − 1 m − 1, n − 4 1
λ3 + 1

λ2 + 1
λ5 ≤ 1 no

16 m − 1, n − 1 m − 1, n − 1 m − 2, n − 4 2
λ2 + 1

λ6 ≤ 1 no

Here a few words about the table. The general procedure of finding an upper
bound for f(m,n) is the same as earlier: for each row of the values we get a
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recursion for g(m,n) = f(m,n) + 1. Then we search for an upper bound of the
form g(m,n) ≤ c · λm+n with constants c and λ to be specified. The inequalities
in the 5-th column of the table guarantee that we can perform induction to prove
the upper bound. So, their solutions can be specified as appropriate values for
λ. The last column shows that in all cases (except those with entry “no”, which
are discussed below) one obtains the upper bound by setting λ =

√
2. The value

of c can be taken to be equal 1.
As it can be seen from the table we get only two inequalities that give solutions

>
√

2, namely
1
λ2

+
1
λ3

+
1
λ5

≤ 1 and
2
λ2

+
1
λ6

≤ 1.

But in these cases we can put λ = 1.5.
Now consider the case, when the partition S has an extremal chain of length

≥ 3.
As there are just a few cases, we discuss them all. The following 4 cases are

possible.

p1 R�

R0

m-21 1

p1 R�

R0

m-2

m-2

p2

1 1

a) b)

m-2 1 1

p1

m-2

p2

m-2

p1

m-2

p2

c) d)

Fig. 13.

In Figures a, b, c, d a rectangle with number x inside means that a line
intersecting it would intersect exactly x rectangles of partition S.

According to the four cases we obtain respectively:

a) g(m,n) ≤ g(m− 1, n− 1) + g(m− 1, n− 1) + g(m− 2, n− 2)
b) g(m,n) ≤ g(m− 2, n− 1) + g(m− 1, n− 1) + g(m− 2, n− 1)
c) g(m,n) ≤ g(m− 1, n− 1) + g(m− 2, n− 1) + g(m− 2, n− 1)
d) g(m,n) ≤ g(m− 2, n− 1) + g(m− 2, n− 1) + g(m− 2, n− 1)
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The calculations show that the worst case is a). We get the inequality 2
λ2 + 1

λ4 ≤
1 with solution λ =

√√
2 + 1.

Thus we proved

Theorem 2. For all m,n ≥ 1 we have f(m,n) ≤ (
√

2 + 1)
m+n

2 . Thus f(n, n) ≤
(2.414)n.

Remark 1. As it follows from Theorem 1, it is enough to examine partitions
with extremal chains of cardinality ≤ 4

2. So far we studied configurations only for chains in one dimension.
One can also consider pairs of chains. In that more general setting, the study of

the following cases (see Figure 14) would yield sharper upper bounds for f(m,n).

γ(�2) \ γ(�1) 2 3 4

2 (2,2) (2,3) (2,4)

3 (3,3) (3,4)

4 (4,4)

Let γ1 and γ2 be chains of cardinalities �(γ1) and �(γ2) resp.

Fig. 14.

Such an analysis, even for the case (2,2), is rather complicated.

6 Harmonic Analysis

Given a partition S of a rectangle F .

Fig. 15.
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We identify the opposite sides of the rectangle, so that F becomes a torus and
consider our problem on the torus F .

We have a partition S of the torus into rectangles such that any coordinate
circle on F intersects S in the following way:

Each γx intersects at most m rectangles and each γy at most n rectangles of
the partition.

The problem is to estimate the number of rectangles in partition S, that is
|S|.

Without loss of generality we may assume that ABCD is a square with sides
of length 1.

Let Ly(ε) be a strip of width ε on the torus that is parallel to axis OX ,

�

or

Fig. 16.

where y is the OY coordinate of the center of that strip. Let

Φε(y) =
∑

P∈S and P∩Ly(ε) �=∅

1,

that is Φε(y) is equal to the number of rectangles of the partition S, which have
nonempty intersection with Ly(ε).

Write the Fourier series for Φε(y):

Φε(y) = c0 +
∑
m:m �=0

cm (m, y).

By the identity of Parseval we get∫ 1

0

Φ2
ε(y)dy = c20 +

∑
m:m �=0

c2m and thus
∫ 1

0

Φ2
ε(y)dy ≥ c20.

Now find c0:

c0 =

∫ 1

0

 ∑
P∈S and P∩Ly(ε)�=∅

1

 dy =
∑
P∈S

∫
{y:P∩Ly(ε)�=∅}

dy =
∑
P∈S

(µ(P )+2ε) =
∑
P∈S

µ(P )+2ε|S|,
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where µ(P ) is the length of the side of P parallel to axis OY . Let us now look at
the integral

∫ 1

0
Φε(y)dy from another point of view. Φε(y) is equal to the number

of rectangles of the partition, which intersect the boundary of the strip Ly(ε),
evidently if there are no rectangles that are completely contained in Ly(ε).

�� p �� �D

Fig. 17.

As the partition S has the property (m,n), we can estimate Φε(y) ≤ 2m, if
we don’t take into consideration the rectangles, for which µ(P ) < ε.

By restricting ourselves to the set of rectangles S(ε) = {P ∈ S : µ(P ) > ε},
we obtain ∑

P∈S(ε)

µ(P ) + 2ε|S(ε)|

 · c0 ≤ c2
0 ≤

∫ 1

0

Φ2
ε(y)dy ≤ max

y
Φε(y)

∫ 1

0

Φε(y)dy ≤ 2m · c0

and hence ∑
P∈S(ε)

µ(P ) + 2ε|S(ε)| ≤ 2m.

Therefore

2ε|S(ε)| ≤ 2m−
∑

P∈S(ε)

µ(P ) implying |S(ε)| ≤ m

ε
.

Thus we proved that the number of rectangles of the partition S with height
≥ ε does not exceed m

ε . Dealing similarly with the other dimension, we get that
the number of rectangles of the partition S with length ≥ ε does not exceed n

ε .
In summary

Theorem 3. The number of rectangles of partition S with exception of those,
both sides of which have length less than ε, does not exceed

m

ε
+
n

ε
=
m+ n

ε
.

Corollary. Given a square Kn on checked paper with the length of side 2n,
which is partitioned into rectangles (that consist of entire checks), so that any
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line parallel to a side of the square intersects at most n rectangles, then the
number of rectangles of the partition is ≤ 2n · 2n.
Proof: Apply to Kn homothety with coefficient 2−n, and take in the previous
claim

ε = 2−n.

Then we get that the number of rectangles of the partition which have at least
one dimension not less than ε = 2−n (and in the given case they all do satisfy
this condition) is

f(n, n) ≤ n+ n

2−n
= 2n · 2N .

Recall that the lower bound for f(n, n), which is conjectured to be tight, is 2n.

Remark: The main difficulty for the analytic approach to this problem is the
tight interlacing of combinatorial and metrical — old structures of the partition.

It seems, that if there are “small” rectangles in the structure of the partition,
then the partition can be adjusted so that these small rectangles are removed,
while preserving the combinatorial structure. But we don’t know yet how to do
it.
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On Attractive and Friendly Sets in Sequence

Spaces

R. Ahlswede and L. Khachatrian

Abstract. To a large extent the present work is far from being conclu-
sive, instead, new directions of research in combinatorial extremal theory
are started. Also questions concerning generalizations are immediately
noticeable.

The incentive came from problems in several fields such as Algebra,
Geometry, Probability, Information and Complexity Theory. Like several
basic combinatorial problems they may play a role in other fields. For
scenarios of interplay we refer also to [9].

1 Introduction: New Problems and Results

A. A New Isoperimetric Problem: Boundaries with Intensity k,
a Counterexample to Keane’s Conjecture

For X = {0, 1} let d be the Hamming distance in Xn =
n∏
1
X and let the pair

Hn = (Xn, d) be the Hamming space.

S(xn) =
{
yn ∈ Xn : d(xn, yn) = 1

}
(1.1)

is the sphere of radius 1 with center xn ∈ Xn.
For any set V ⊂ Xn we define

Γ (V ) =
{
yn ∈ Xn : d(xn, yn) ≤ 1 for some xn ∈ V

}
(1.2)

and
B(V ) = Γ (V ) � V (1.3)

as the (outer) boundary of V. Harper [4] considered

b(n,N) = min
V⊂Xn,|V |=N

|B(V )| (1.4)

and established his well–known Isoperimetric Theorem (in graphic language also
called “Vertex Isoperimetric Theorem”).

Notice that the points in B(V ) have distance 1 with at least one point of V .
Our generalisation to a boundary of intensity k is

Bk(V ) =
{
yn ∈ Xn � V, |S(yn) ∩ V | ≥ k

}
. (1.5)

Obviously B1(V ) = B(V ).

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 955–970, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Problem 1: Determine

bk(n,N) � min
V⊂Xn:|V |=N

|Bk(V )| (1.6)

and the structure of optimal V .
We have not yet solved it, but we introduced related problems 1–4 and solved

problem 2 “ratewise” and problem 3, 4 exactly.
However, we made progress on a problem related to problem 1. For an upset

U we consider Bk(Xn � U) = Uk �
{
x ∈ U : |S(x) ∩ (Xn � U)| ≥ k

}
.

M. Keane [Oral communication] defined in the eighties the function

f(n, k) � max
{
|Uk| : U upset in Xn

}
2−n

and conjectured that

lim
k→∞

(
sup
n
f(k, n)

)
= 0.

Observation: For k ≥ n
2

f(k, n) =
(
n

k

)
2−n.

Indeed, by the AZ–identity [5] for any A ⊂ 2[n]

∑
X⊂[n]

WA(X)
|X |

(
n
|X|

) ≡ 1,

where

WA(X) =

∣∣∣∣∣ ⋂
X⊃A∈A

A

∣∣∣∣∣ ,
and therefore ∑

|X|≥k
WU (X) ≤ max

�≥k≥n
2



(
n



)
= k

(
n

k

)
or

2n f(k, n) ≤ 1
k

∑
|X|≥k

WU (X) ≤
(
n

k

)
.

This looks reassuring, however, Keane’s conjecture is false.

Example 1
[n] = Ω1

.
∪Ω2 ∪ · · · ∪Ωm, |Ωi| = x,m =

n

x
.

A =
{
A ∈ 2[n] : ∃i, s.t. Ωi ⊂ A

}
= U

{
Ω1, . . . , Ωn

x

}
,

Ux = {B ∈ A : ∃i, s.t. Ωi ⊂ B and Ωj ⊂ B for all j = i},
and

|Ux| =
n

x
· (2x − 1)

n
x−1 = g(x, n), say.
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max
n

g(x, n) is assumed at n = x · 2x − x
1+x log 2 .

Hence, we may assume n = n(x) = x · (2x − 1). For this n we consider

g(x, n)
2n

=
(2x − 1)2

x−1

2x(2x−1)
=

(
2x − 1

2x

)2x−1

=
1(

1 + 1
2x−1

)2x−1

and therefore lim
x→∞

g(x,n)
2n = lim

x→∞

(
1 + 1

2x−1

)−(2x−1)

= e−1. �

B. The Smallest Rich World Problem

Consider
Ik(V ) = {yn ∈ V : |S(yn) ∩ V | ≥ k} (1.7)

and

Problem 2: Determine

rk(n) = min
φ �=V=Ik(V )
V⊂Xn

|V |
(

= min
V⊂Xn, φ �=V, |Ik(V )|=|V |

|V |
)
. (1.8)

We call an optimal V k–friendly set (or k–best world). We report now the much
more general Problem 7 in [6], which was solved “ratewise” in [7].

For ϕ : X × X → R, X a finite set, define

α = min
x,y∈X

ϕ(x, y), β = max
x,y∈X

ϕ(x, y), (1.9)

and the sum–type function ϕn : Xn×Xn → R, where ϕn(xn, yn) =
n∑
t=1

ϕ(xt, yt)

for xn = (x1, . . . , x2) and yn = (y1, . . . , y2).
Now for any closed interval �L ⊂ [α, β], any positive real number ρ, and any

positive integer n call a set S ⊂ Xn with the property∣∣∣∣{yn ∈ S :
1
n
ϕn(xn, yn) ∈ �L

}∣∣∣∣ ≥ 2nρ for all xn ∈ S (1.10)

(n, �L, ρ)–good and denote by N(n, �L, ρ) the smallest cardinality of (n, �L, ρ)–good
sets.

For the set
{
yn ∈ S : 1

nϕn(x
n, yn) ∈ �L

}
we also write B(xn, �L, S). In the case

α = 0 and �L = [0, β] it is the intersection of S with a ball with center xn and
ϕ–radius β.

Inequality (1.10) says that every point in S has 2nρ points in S in its neigh-
bourhood. In this sense S is a “rich world”. The definition of N(n, �L, ρ) catches
the goal to make the “world small”.

One readily can show that lim
n→∞

1
n logN(n, �L, ρ) exists, becauseN(n1+n2, �L, ρ)

≥ N(n1, �L, ρ) · N(n2, �L, ρ). We denote the limit by σ(�L, ρ). Its characterisation
requires a few concepts.
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Let (U,X, Y ) be a triple of RV’s with values in U×X ×X . We say that (X,Y )
is a matching through U , if for conditional entropies

H(X |U) = H(Y |U) and H(Y |XU) = H(X |Y U). (1.11)

Finally, we set
Q(�L, ρ) =

{
(X,U) : for some Y (X,Y ) is matched through U,Eϕ(X,Y ) ∈ �L,

and H(Y |XU) ≥ ρ
}
. (1.12)

Theorem AC. [7]
σ(�L, ρ) = min

(X,U)∈Q(�L,ρ)
H(X |U).

Actually, we can bound the cardinality of U by |X |2 + 4.
Furthermore, we can limit the distributions PXY to those with equal marginals.

Remark: Problem 2 relates to the case X = {0, 1}, �L = [k, n] and ϕn as Ham-
ming distance.

C. k–Attractive Sets
In another direction we consider

Ṽk = {yn ∈ Xn :| S(yn) ∩ V | ≥ k}. (1.13)

Clearly,
Ṽk = Bk(V )

.
∪ Ik(V ). (1.14)

Analogous to Problem 1 is

Problem 3: Determine

ak(n) � min
φ �=V :|V |≤|Ṽk|

V⊂Xn

|V | (1.15)

and the structure of solutions.
An optimal V is called k–attractive set. We call a V with |V | ≤ |Ṽk| a k–

admissible set.

Example 2: Define for k > 1

X k+ =
{
xk = (x1, . . . , xk) ∈ X k :

k∑
t=1

xt ≡ 0 mod 2
}

and
X k− = X k � X k+.

Notice that for V = X k+ ∗ (0, 0, . . . , 0) ⊂ Xn we have Ṽk = X k− ∗ (0, 0, . . . , 0)
and that V is k–admissible.

Moreover, let us write

Zk+ = X k+ ∗ (0, 0, . . . , 0), Zk− = X k− ∗ (0, 0, . . . , 0) ⊂ Xn (1.16)
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and observe that for any π ∈ Σn, the symmetric group acting on {1, 2, . . . , n},
also π Zk+ is k–admissible.

Furthermore, for any yn ∈ GF (2)n also Zk+ + yn is k–admissible. Quite sur-
prisingly, these sets lead to all k–attractive sets.

Theorem 1. For k ≥ 2 the k–attractive subsets of Xn are of the form (π Zk+)+
yn. In particular for a k–attractive subset V of Xn

|V | = |Ṽk| = 2k−1.

For 1–attractive sets
|V | = 1, |Ṽ1| = n.

D. k–Pairs
We prove Theorem 1 by deriving it from the solution of the somewhat more
general Problem 4:

For A,B ⊂ Xn we call (A,B) a k–pair, if∑
xn∈B

|A ∩ S(xn)| ≥ k|B|. (1.17)

It is admissible, if |A| ≤ |B|, and it is optimal, if

|A| = min
(A′,B′)admissible k–pair

|A′|.

Determine all optimal k–pairs.

Theorem 2. For k ≥ 2 the optimal k–pairs are of the form

(π Zk+ + yn, π Zk− + yn).

The implication of Theorem 1 is readily established.
Clearly, if V is k–admissible, then (V, Ṽk) is an admissible k–pair. The class

of (V, Ṽk) corresponding to attractive V ’s constitute a subclass of the class of
optimal k–pairs. By Theorem 2 and Example 1 these classes are actually equal.

E. Results for Lopsided Sets in Combinatorial Language
Lopsided sets where introduced in [10] in the study of convex sets. There are
several equivalent definitions [11]. We use here the terminology of set theory.

Let S ⊂ 2[n], S∗ = 2[n] � S. The set S is called lopsided, if for all A ∈ 2[n]

either there exists a B ⊂ [n] �A such that for all C ⊂ A B ∪ C ∈ C
or there exists a B′ ⊂ A such that for all C′ ⊂ [n] �A B′ ∪ C′ ∈ S∗.
When Levon told me that Andreas Dress asked him to prove Theorem 3 below,

which is considered basic for lopsided sets, I told him that he could and should
do it in one afternoon, because this might be helpful for his career.

He followed the suggestion, but his simple proof earned him no benefits.
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Theorem 3. For a set C ⊂ 2[n] define

�L(C) � {Y ⊂ [n] : {Y ∩ C : C ∈ C} = 2Y }.

Then
|C| ≤ |�L(C)|. (1.18)

Obviously �L(C) is a downset for every C ⊂ 2[n] and if C is a downset, then
�L(C) = C. So for downsets there is equality in (1.18).

Recall now the standard push-down operation:
given C ⊂ 2[n] and x ∈ [n] for A ∈ C

T (A, x) =

{
A� {x}, if x ∈ A and A � {x} /∈ C
A otherwise

(1.19)

T (C, x) = {T (A, x) : A ∈ C}. (1.20)

Now readily verify

|T (C, x)| = |C| and �L(T (C, x)) ⊂ �L(C). (1.21)

After finitely many, say m, push–down operations T (C, x1), T ((C, x1), x2), . . .
we get a downset D and by (1.21) |D| = |C| and D = �L(D) ⊂ �L(C), which proves
Theorem 3.

We are going now for equality characterization in (1.18). We already now equality
for downsets.

Symmetrically, if C is an upset, then �L(C) = C̄ = {[n] �C : C ∈ C} and again
there is equality.

Defining push–up operation U analogously to the push–down operation T ,
then by symmetry

|U(C, x)| = |C| and �L(U(C, x)) ⊂ �L(C). (1.22)

We say now that a set A ⊂ 2[n] is accessable for C ⊂ 2[n], if starting from C one
can obtain A by consecutively applying finitely many push–down and push–up
operations. (For example T (C, x1),U(T (C, x1), x2), T (U(T (C, x1), x2), x3), . . . .

By (1.21), (1.22) |A| = |C|, if A is an accessable set for C.

Theorem 4. Let D1, . . . ,Dm ⊂ 2[n] be the downsets accessable for a set C ⊂ 2[n],
then

m⋃
i=1

Di = �L(C). (1.23)

In particular |�L(C)| = |C| if and only if there exists a unique downset accessable
for C.

This result holds, because by (1.21), (1.22) any downset D accessible for C sat-

isfies D ⊂ �L(C) and thus
m⋃
i=1

Di ⊂ �L(C). Further, for any S ∈ �L(C) we get from
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C by down pushing in all x ∈ S̄ downset DS with S ∈ DS and thus equality in
(1.23).

Moreover, if there is exactly one Di, then |�L(C)| = |Di| = |C| and, conversely
the equation |�L(C)| = |C| implies that m = 1, because the union of two or more

sets of cardinality |C| each, would imply
∣∣∣∣ m⋃
i=1

Di
∣∣∣∣ > |C|.

However, in order to understand the structure of C′ with equality in (1.18) it is
important to notice that accessibility is not commutative: if D is accessable
for C, then C needs not be accessable for D.

Example 3: Let n = 3, C = {φ, {1}, {2, 3}, {3}}, then �L(C) = {φ, {1}, {2}, {3}}
and |�L(C)| = |C| = 4. However, C is not accessable for downsets and upsets as
can be checked.

2 Main Auxiliary Old and New Results for the Proof of
Theorem 2

We make essentially use of Harper’s Edge Isoperimetric Theorem ([1], correct
proofs in [2] – [3]). For C ⊂ Xn define

Ø(C) =
{
(xn, yn) : xn ∈ C, yn ∈ Xn � C, d(xn, yn) = 1

}
. (2.1)

For a number M define

ω(M) = min
C⊂Xn,|C|=M

|Ø(C)|. (2.2)

Theorem (Edge Isoperimetry). The minimum in (2.2) is assumed for a
generalized cylinder.

We recall the definition of a generalized cylinder.
Every positive integer M can uniquely be written in a binary expansion

M = 2n1 + 2n2 + · · · + 2ns , n1 > n2 > · · · > ns ≥ 0. (2.3)

Let us use the picture in (2.4) for the set Xm, then we can present

Z(M) = Xn1 × {0}n−n1

.
∪ Xn2 × {0}n−n2 × {1} × {0}n−n1−1

...

as union of the disjoint sets
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n1 000 . . . 0
n2 000100 . . . 0
n3 00100100 . . . 0
n4 0010100100 . . . 0
...

(2.4)

Instead of minimizing the number out(C) = |Ø(C)| of outgoing “edges” we can
equivalently maximize the number int(C) = |I(C)| of internal “edges”, because
all vertices have degree n and thus

out(C) + int(C) = n|C|.
We refer then to the dual form of this optimisation problem.

Define
i(M) = max

C:|C|=M
int(C). (2.5)

For the proof of our Uniqueness Theorem below we need

Lemma 1. For M < 2k necessarily

i(M) < k · M
2
.

Proof: We can calculate i(M) from Theorem H1 using the representation (2.4).
Indeed

i(M) = n1 2n1−1 + n2 2n2−1 + n3 2n3−1 + · · · + ns 2ns−1

+ 2n2 + 2 · 2n3 + · · · + (ns − 1)2ns . (2.6)

For M < 2k necessarily

k ≥ n1 + 1 ≥ n2 + 2 ≥ n3 + 3 ≥ . . . . (2.7)

We have to show that k M > 2 i(M) or that

k(2n1 + 2n2 + · · · + 2ns) > n1 2n1 + n2 2n2 + · · · + ns 2ns

+ 1 · 2 · 2n2 + 2 · 2 · 2n3 + 3 · 2 · 2n4 + . . .

or that

(k−n1)·2n1 +(k−n2)2n2 +· · ·+(k−ns)2ns > 1·(2·2n2)+2(2·2n3)+· · ·+. (2.8)

Now, by (2.7) (k − ni) ≥ i and the RHS in (2.8) does not exceed the LHS
even if we ignore the term (k − ns)2ns , which is positive. Thus (2.8) holds and
the Lemma is proved.

Uniqueness Theorem. Generalized cylinders are up to permutations π ∈ Σn
and additions with xn in GF (2)n the only solutions in Theorem H2 (at least for
M = 2k).

Proof for the case M = 2k: Let C ⊂ Xn be optimal. Then

int(C) = i(M) = k · 2k−1. (2.9)
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Consider

C1 =
{
(x2, . . . , xn) :(1, x2, . . . , xn) ∈ C

}
, C0 =

{
(x2, . . . , xn) :(0, x2, . . . , xn)∈C

}
.

(2.10)
We proceed by induction on n.
We have to show that either C1 = ∅ or C0 = ∅ or that C1 = C0.

Case |C1| = |C0|:
Consider

int(C) = int(C1) + int(C0) + |C1 ∩ C0| ≤ 2i(2k−1) + |C1 ∩ C0|
≤ 2(k − 1)2k−2 + |C1 ∩ C0| = (k − 1)2k−1 + |C1 ∩C0| = k · 2k−1.

(2.11)

Since int(C) = k · 2k−1, necessarily |C1 ∩ C0| = 2k−1 and thus C1 = C0.

Case |C1| > |C0|:
Here |C1| = 2k−1 + 2�2 + . . . , 2 > 0, and |C0| = 2k − |C1|.

Subcase 2k > |C1| = 2k−1 + 2k−2 + . . . :
Here |C0| ≤ 2k−3 + · · · < 2k−2.

By Lemma 1 int(C1) < k |C1|
2 and int(C0) ≤ (k − 2) |C0|

2 .
Therefore by (2.11)

int(C) < k
|C1|
2

+ (k − 2)
|C0|
2

+ |C0| = k
|C|
2

= k · 2k−1,

which contradicts (2.9).

Subcase 2k > |C1| = 2k−1 + 0 + . . . :
Here |C0| = 2k−2 + · · · < 2k−1.
The estimate of int(C1) is more tricky. We use the representation (2.4) for C1

and obtain

int(C1) ≤ (k − 1)2k−2 + (|C1| − 2k−1) + i(|C1| − 2k−1). (2.12)

Since by Lemma 1 i(|C1|−2k−1) < (k−2) |C1|−2k−1

2 and int(C0) < (k−1) |C0|
2 ,

we have

int(C)< (k−1)

(
2k−2+

|C0|
2

)
+k

|C1| − 2k−1

2
= k

|C0|+|C1|
2

−
[
|C0|
2

−(k − 1)2k−2+k
2k−1

2

]

in contradiction to int(C) = k · 2k−1, because the term in brackets is positive.
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3 Further Auxiliary Results

We use again the dual form and apply it to C = A ∪B.

Lemma 2. For an admissible k–pair (A,B) we have

|A ∪B| ≥ 2k. (3.1)

Proof: Let e(A,B) be the number of edges between A and B. Then by our
assumptions

int(C) ≥ e(A,B) ≥ k|B|.

Since also |B| ≥ |A|, therefore also

int(C) ≥ k
|C|
2
. (3.2)

We assume now that (3.1) does not hold and derive a contradiction. If now
M = |C| < 2k, then by (3.2)

i(M) ≥ int(C) ≥ k
M

2
. (3.3)

Next we use this result to derive a lower bound on |A|.
Lemma 3. For an admissible k–pair (A,B) necessarily

|A| ≥ 2k−1.

Proof: For an admissible k–pair (A,B) label the elements in B as b1 . . . br such
that

|A ∩ S(bi)| ≤ |A ∩ S(bi+1)| for i = 1, . . . , r − 1

and define for j = |B| − |A|

B′ = B − {b1, . . . , bj}.

Notice that (A,B′) is an admissible k–pair with |A| = |B′| and thus |A| ≥
|A∪B′

2 . Since by Lemma 2 |A ∪B′| ≥ 2k, the result follows.

Lemma 4. For an optimal k–pair (A,B) necessarily
(a) |A| = |B| = 2k−1

(b) A ∩B = ∅.

Proof: We know from Lemma 3 that (Zk+, Z
k
−) is a minimal k–pair and thus

|A| = 2k−1.
Suppose that |B| = 2k−1 + b, b > 0.
Then by the procedure described in the proof of Lemma 2 we can get a

minimal k–pair (A,B′) with |B′| = 2k−1 + 1.
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By assumption

int(A ∪B′) ≥
∑
b∈B′

|A ∩ S(b)| ≥ k|B′| ≥ k · 2k−1 + k. (3.4)

However, since |A ∪B′| ≤ 2k + 1 we have

int(A ∪B′) ≤ i(2k + 1) = k · 2k−1 + 1. (3.5)

Now (3.5) contradicts (3.4) for k ≥ 2. (b) follows with Lemma 2.

Remark: For k = 1
(
{00 . . .0}, {xn :

∑n
t=1 xt = 1}

)
is an optimal 1–pair and

(a) does not hold!

4 Proof of Theorem 2

We know already that for an optimal k–pair (A,B) necessarily A ∩ B = ∅,
|A| = |B| = 2k−1. Since also int(A ∪ B) ≥ k|B| = k2k−1 and by Theorem H1

int(A ∪B) ≤ i(2k) = k · 2k−1, we conclude that

int(A
.
∪B) = k · 2k−1. (4.1)

By the Uniqueness Theorem A∪B is a cylinder Z and w.l.o.g. Z = k 00 . . .0.
Since every element in Z has degree k and |B|k = 2k−1 · k, necessarily

|A ∩ S(b)| = k for all b ∈ B. (4.2)

Now (4.1) and (4.2) imply

e(A,B) = int(A ∪B), (4.3)

that is, all edges are between the sets (or no edges are in A or in B). Clearly

|B ∩ S(a)| = k for all a ∈ A. (4.4)

Finally, we can assume w.l.o.g. that 00 . . . 0 ∈ B. Then no singleton can be in
B and by (4.2) the first k of the n singletons must be in A.

By the degree condition (4.4) then all doubletons with 1’s in {1, 2, . . . , k}
must be in B, next all tripletons with 1’s in {1, 2, . . . , k} must be in A, etc. This
completes the proof.

Problem 4: How do the results generalize fromX = {0, 1} toX = {0, . . . , α−1}?

5 Further Observations

On large boundaries of intensity k.
We adapt the convention: x = xn.
Recall the definition of Ṽk in (1.13). For 1 ≤ k ≤ n and 0 ≤ N ≤ 2n we define

now
γ(n,N, k) = max

|V |=N
|Ṽk|. (5.1)
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Fact I: γ is not decreasing in N . Unlike Theorem 1 it is here very difficult to
obtain exact results. We discuss therefore some special cases of the function γ.

Case k = 1: For not too large N it is clearly optimal to choose V as a 1–error
correcting code, that is,

min
x,y∈V

d(x, y) ≥ 3. (5.2)

Here |Ṽ | = n|V | and this is optimal.

Case k ≥ 2: The situation is now quite different, because the points in V should
be not too far apart

Fact II: The points in A(V ) =
{
x ∈ V : d

(
V � {x}, x

)
≥ 2

}
don’t contribute

to Ṽk for k ≥ 2. We can therefore assume that A(V ) = ∅.

Fact III: Let us associate with V the graph G2 = G2(V ) = (V, E), where

E =
{
{x, y} : x, y ∈ V and d(x, y) = 2

}
.

We can assume that G2(V ) is connected, because x ∈ X can have distance 1
only with vertices in the same connected component.

Case k = 2: By induction on n one gets

Lemma 5. If G2(V ) is connected and |V | ≥ 2, then |V | ≤ |Ṽ2|.
We derive now a lower bound on α(n,N, k) for smaller k.

Lemma 6. For k ≤ logN + 1

α(n,N, k) = Ω

(
N · logN
k − 1

)
.

Proof: Being concerned only about the order of growth we make the simpli-
fying assumption

k − 1| logN.

Recall the definition of X k+ in Section 3 and choose C = logN
k−1 of its copies

X k+�, 1 ≤  ≤ L, and define W k = X k+1 × · · · × X k+L × {0} × · · · × {0} ⊂ Xn,
where the factor {0} occurs exactly n− L · k times.

Clearly, |W k| = 2(k−1)L = N and for V = W k we have

Ṽk = {x⊕ ej : x ∈ W k, 1 ≤ j ≤ kL},

where ej has a 1 in the j–th position and 0 otherwise.
Hence |Ṽk| = |W k|kLk = NL, because X k+� + ei = X k+� + , for k(− 1) + 1 ≤

i, j ≤ k.

On a dual form of the vertex isoperimetric theorem in the Hamming
space (Xn, d).
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(A,B) with A,B ⊂ Xn is an (n, d)–pair, if

dH(a, b) ≥ d for a ∈ A, b ∈ B.

It was shown in [AK] that

max
{
|A||B| : (A,B) is (n, d)–pair

}
is assumed for (A,B) =

{
ant Xn : w(an) ≤ 

}
,
{
bn ∈ Xn : w(bn) ≥ d+ 

}
with a

suitable .
Here we show that  =

⌈
n−d

2

⌉
.

Lemma 7. For every n ∈ N, 0 ≤ d ≤ n, and 0 ≤  ≤ n the values fn,d() =(
�∑
i=0

(
n
i

))(
n∑

i=d+�

(
n
i

))
satisfy

fn,d

(⌈
n− d

2

⌉)
≥ fn,d().

Proof: By symmetry it suffices to show that fn,d() ≤ fn,d(+1), if n ≥ 2+1+d,
that is, (

�∑
i=0

(
n

i

))(
n∑

i=d+�

(
n

i

))
≤

(
�∑
i=0

(
n

i

))(
n∑

i=d+�+1

(
n

i

))

iff (
�∑
i=0

(
n

i

))(
n

d+ 

)
≤

(
n

+ 1

)(
n∑

i=d+�+1

(
n

i

))
. (5.3)

We prove inequality (5.3), by induction on n for all , d with n ≥ 2+ 1 + d.
For n = 2, that is,  = 0, (5.3) obviously holds. Therefore we assume (5.3) to

be true for n′ < n. We consider first the cases  = 0, and n = 2+ 1 + d.

a) d = 1: (
�∑
i=0

(
n

i

))(
n

+ 1

)
≤

(
n

+ 1

)(
n∑

i=�+2

(
n

i

))
.

b)  = 0:(
n

0

)(
n

d

)
=

(
n

d

)
≤

(
n

1

)(
n∑

i=d+1

(
n

i

))
= n

(
n

d+ 1

)
+

n∑
i=d+2

(
n

i

)
.

Since
(
n
d

)
≤ n

(
n
d+1

)
(∗) holds for  = 0.
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c) n = 2+ 1 + d implies(
�∑
i=0

(
n

i

))(
n

d+ 

)
=

(
�∑
i=0

(
n

i

))(
n

+ 1

)
=

(
n∑

i=d+�+1

(
n

i

))(
n

+ 1

)
.

Let now  ≥ 1, d ≥ 2, n ≥ 2+ d+ 2:

(
�∑
i=0

(
n

i

))(
n

d+ 

)
=

(
�∑
i=0

(
n− 1
i

)
+
�−1∑
i=0

(
n− 1
i

))((
n− 1
d+ 

)
+
(

n− 1
d+ − 1

))

=

(
�∑
i=0

(
n− 1
i

))(
n− 1
d+ 

)
+

(
�∑
i=0

(
n− 1
i

))(
n− 1

d+ − 1

)
+

(
�−1∑
i=0

(
n− 1
i

))(
n− 1
d+ 

)

+

(
�−1∑
i=0

(
n− 1
i

))(
n− 1

d+ − 1

)

≤
(
n− 1
+ 1

)(
n−1∑

i=d+�+1

(
n− 1
i

))
+
(
n− 1
+ 1

)(
n−1∑
i=d+�

(
n− 1
i

))
+
(
n− 1


)(
n−1∑

i=d+�+1

(
n− 1
i

))

+
(
n− 1


) n−1∑
i=d+�

(
n− 1
i

)

=
((

n− 1
+ 1

)
+
(
n− 1


))(
n−1∑

i=d+�+1

(
n− 1
i

)
+

n−1∑
i=d+�

(
n− 1
i

))
=

(
n

+ 1

)(
n∑

i=d+�+1

(
n− 1
i

))
.

Remark: The result must be known and also have a simpler proof!

6 Concluding Conjectures

On k–pairs
We consider

α(n,N, k) = max
{
|B| : A,B ⊂ Xn, |A| ≤ N, (A,B) is k–pair

}
.

Conjectures
The following constructions give the “asymptotic” value of α(n,N, k):

a.) If N =
(
m
k−1

)
and 2(k − 1) < m ≤ n, then A =

(
[m]
k−1

)
×

(
[n−m]

0

)
, B =(

[m]
k

)
×
(
[n−m]

0

)
α(n,N, k) = N · m−k+1

k m = 2k = n?
b.) If N =

(
k
j

)
+
(
k
j−2

)
with 2 ≤ j ≤ k

2 , then α(n,N, k) ∼ N j
k−j+1 .

Use B =
(

[k]
j−1

)
×
(
[n−k]

0

)
, A =

((
[k]
j

)
∪
(

[k]
j−2

))
×
(
[n−k]

0

)
.
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On edge isoperimetry
For A ⊂ Xn define EA =

{
(x, y) : x, y ∈ A, x⊕ y = ei for some i

}
, where

ei = (0, 0, . . . , 1, 0, . . . , 0), with “1” in component i. Then

f2(N) = max
A⊂Xn

|A|=N

|EA|f2(2k) = k · 2k by Harper and f2(N) ≤ N logN. (6.1)

Define now Er(A) =

{
(x1, x2, . . . , xr) : xi ∈ A,

r⊕
j=1

xj = ei for some i

}
and

fr(N) = max
A⊂Xn

|A|=N

|Er(A)|.

We can write Er(A) =
.⋃

x∈A
Bx, where

Bx =

(x, x2, . . . , xr) :
r⊕
j=2

xj = ei ⊕ x

 and

|Bx| =

∣∣∣∣∣∣
(x2, . . . , xr) :

r⊕
j=2

xj = ei


∣∣∣∣∣∣ ≤ fr−1.

Consequently fr(2k) = (2k)r−1 · k (Harper’s cylinder).

Conjecture

fr(N) ≤ Nfr−1(N) ≤ · · · ≤ N r−2f2(N) ≤ N r−1 logN.
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Remarks on an Edge Isoperimetric Problem

C. Bey

Abstract. Among all collections of a given number of k-element subsets
of an n-element groundset find a collection which maximizes the number
of pairs of subsets which intersect in k − 1 elements.

This problem was solved for k = 2 by Ahlswede and Katona, and is
open for k > 2.

We survey some linear algebra approaches which yield to estimations
for the maximum number of pairs, and we present another short proof
of the Ahlswede-Katona result.

1 Introduction

Let G = (V , E) be a simple graph. Given a subset M of the vertex set V , we
put BG(M) := {{u, v} ∈ E : u ∈ M, v /∈ M}, the edge-boundary of M, and
IG(M) := {{u, v} ∈ E : u, v ∈ M}, the set of inner edges spanned by M. Two
edge isoperimetric problems (EIP’s) for G are the determination of the numbers
BG(m) := min{|BG(M)| : M ⊆ V , |M| = m} and IG(m) := max{|IG(M)| :
M ⊆ V , |M| = m}. If G is regular with degree d, then both problems are
equivalent since 2IG(M) +BG(M) = d|M| holds for every M ⊆ V . We refer to
[6] for a survey on edge isoperimetric problems on graphs.

Here we consider the Johnson graph G = J(n, k). Let [n] denote the set
{1, 2, . . . , n} and Vnk the set of all k-element subsets of [n]. The graph J(n, k)
has vertex set Vnk , and edge set {{A,B} : |A ∩ B| = k − 1}. Thus, looking at
incidence vectors, J(n, k) is the graph whose vertices are the {0, 1}-sequences
of length n and weight k, and whose edges are those pairs of sequences with
Hamming distance 2. The Johnson graph J(n, k) is an adjacency relation of the
Johnson scheme, which is the natural setting for studying constant weight codes
(cf. [10]).

Note that J(n, k) is regular with degree k(n− k).
We write Bn,k(m) for BJ(n,k)(m) and B(M) resp. I(M) for BJ(n,k)(M) resp.

IG(n,k)(M).
The EIP of the graph J(n, 2) was solved by Ahlswede and Katona in [3].

Solutions for the case k = 2 also appeared in [1,7] and [16]. In order to state the
result, we need the following definition.

Let m =
(
d
2

)
+ t with 0 ≤ t < d. The quasi-complete graph Cmn on n vertices

is obtained from the complete graph on d vertices by adding a vertex of degree
t and n − 1 − d isolated vertices. The quasi-star Smn is the complement of the

graph C
(n
2)−m
n .

Theorem 1 ([3]). For every 0 ≤ m ≤
(
n
2

)
the minimum boundary Bn,2(m) is

attained for the quasi-complete graph Cmn or for the quasi-star Smn .

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 971–978, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The EIP for J(n, k) with k > 2 is open. The papers [12] and [2] study continuous
versions of the EIP, whose solutions yield the numbers Bn,k(m) for certain values
of m. A natural conjecture on the structure of optimal solutions for the EIP is
also disproved in [2].

This note contains a survey on some estimations for the EIP based on eigen-
values, as well as a short and new proof for Theorem 1.

2 Estimations Via Eigenvalues

Given a set M ⊆ Vnk of vertices of J(n, k) and a set P ⊆ [n] we denote by

d(P ) = dM(P ) = |{M ⊆ M : P ⊆ M}|

the degree of P in M. If p ∈ [n] we write also d(p) for d({p}).
Obviously,∑

P∈Vn
k−1

d(P )2 = 2|I(M)| + k|M| = k(n− k + 1)|M| − |B(M)| . (1)

Thus, determining the maximum sum of squares of degrees dM(P ), P ∈ Vnk−1,
over all subsets M ⊆ Vnk of a given size is equivalent to the EIP.

In [9], de Caen proves the following inequality for the case k = 2: Given
M ⊆ Vn2 , ∑

P∈Vn
1

d(P )2 ≤ 2
n− 1

|M|2 + (n− 2)|M|. (2)

Of course, this inequality can be checked using Theorem 1, but the calculations
are somewhat involved. De Caen’s inequality was generalized to arbitrary k in
[5]: For every 0 ≤ p ≤ n and M ⊆ Vnk we have

∑
P∈Vn

p

d(P )2 ≤
(
k
p

)(
k−1
p

)(
n−1
p

) |M|2 +
(
k − 1
p− 1

)(
n− p− 1
k − p

)
|M| . (3)

Equality holds in (3) for 0 < p < k < n if and only if M = ∅ or M = Vnk or M
is a star or a complement of a star, or n = k + 1 and M ⊆ Vk+1

k is arbitrary.
Here a star is the set of all k-element subsets which contain a fixed element from
[n], and the complement of M is Vnk \M.

The proofs of the above estimations in [9,5] utilize a positive semidefinite
matrix in the Bose-Mesner-algebra of the Johnson scheme (cf. [10]). This matrix
is essentially the p-element versus k-element subsets incidence matrix multiplied
with it transposed. A more transparent proof, using this matrix, can be given
using the following theorem. Recall that a semiregular graph is a bipartite graph
such that the degrees of the vertices are constant on each bipartition.
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Theorem 2. Let G = (V , E) be a connected semiregular graph with bipartition
V = V0 ∪ V1 and degrees d0, d1. Let µ2 be the second largest eigenvalue of the
adjacency matrix of G. For M ⊆ V1 and v ∈ V0 put

d(v) = |{v1 ∈ M : {v, v1} ∈ E}| .

Then ∑
v∈V0

d(v)2 ≤
(
d0d1 − (µ2)2

|V1|

)
|M|2 + (µ2)2|M| .

Proof: Let A be the adjacency matrix of G. We have

A =
(

0 W
W� 0

)
,

where W is the |V0| ×|V1|-matrix describing adjacency between the bipartitions
V0 and V1. It is known that the nonzero eigenvalues of A are exactly the (posi-
tive and negative) square roots of the nonzero eigenvalues of W�W , with equal
multiplicities correspondingly. We denote the eigenvalues of the latter matrix
by µ2

1, µ
2
2, . . . , with µ1 > µ2 > · · · ≥ 0. Since G is biregular and connect-

ed, the largest eigenvalue is µ2
1 = d0d1, and the corresponding eigenspace is

one-dimensional and generated by the all one vector which we denote by j. In
particular, µ2 is indeed the second largest eigenvalue.

Now let ϕ be the characteristic row vector of M (of length V1), and ϕ =
ϕ1 +ϕ2 + . . . be the orthogonal decomposition of ϕ according to the eigenspaces
of W�W . Note that |M| = ϕ�j = ϕ�1 j, thus ϕ1 is the constant vector with
entry |M|/|V1|, and ϕ�1 ϕ1 = |M|2/|V1|. Now we have∑
v∈V0

d(v)2 = (Wϕ)�Wϕ = µ2
1ϕ
�
1 ϕ1 +

∑
i≥2

µ2
iϕ
�
i ϕi

≤ d0d1ϕ
�
1 ϕ1 + µ2

2(|M| − ϕ�1 ϕ1) =
(
d0d1 − µ2

2

|V1|

)
|M|2 + µ2

2|M| .

Inequality (3) now follows from Theorem 2. The computation of the corre-
sponding eigenvalue µ2 (cf. [5]) uses the known eigenvalues of the Johnson scheme
(cf. [10]).

Using (1) and (3) with p = k − 1 we get the following estimation for the EIP
of the graph J(n, k):

Bn,k(m) ≥ n(
n
k

) m((
n

k

)
−m

)
. (4)

Equality holds for 0 < m <
(
n
k

)
if and only if m =

(
n−1
k−1

)
or m =

(
n−1
k

)
or

n = k + 1.
This recalls a general edge isoperimetric inequality using Laplace eigenvalues

due to Alon and Milman:
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Theorem 3 ([4]). Let G = (V , E) be a simple graph, and λ2 be the second
smallest Laplace eigenvalue of G. Then, for every 0 ≤ m ≤ |V|,

BG(m) ≥ λ2

|V| m (|V| −m) .

Recall that the Laplace eigenvalues of a graph G are the eigenvalues of the
difference of the degree matrix and the adjacency matrix of G, where the degree
matrix is the diagonal matrix having the degrees of G on its diagonal. For regular
graphs the Laplace eigenvalues are the differences of the degree and the adjacency
eigenvalues.

The second smallest Laplace eigenvalue of the Johnson graph J(n, k) is n.
This is again an easy computation using the eigenvalues of the Johnson scheme.
Thus, inequality (4) and hence also (3) follow from Theorem 3. In fact, it is also
easy to deduce Theorem 2 from Theorem 3 (at least if the bipartite graph in
Theorem 2 is strongly regular when viewed from the bipartition V1).

We continue with an estimation for the EIP in the case k = 2. Our Theorem
2 can be considered as a bipartite version of the following result.

Theorem 4 ([13]). Let G = (V ,M) be a graph and µ1 be the largest eigenvalue
of the adjacency matrix of G. For v ∈ V let d(v) = dM(v) be the degree of v.
Then ∑

v∈V
d(v)2 ≤ (µ1)2|V| .

If G is connected then equality holds if and only if G is regular or semiregular.

In order to apply this theorem one needs bounds on the largest eigenvalue of a
graph. Many such bounds have been established, and we refer to [8] for a survey.

For example, a result by Schwenk [19] and Hong [14] says that the largest
eigenvalue µ1 of a connected graph G = (V ,M) satisfies

µ1 ≤
√

2|M| − |V| + 1 .

This bound together with Theorem 4 however yields a weaker estimation for the
k = 2 case of the EIP than inequality (2). A best possible upper bound on the
largest eigenvalue (called index) of a graph in terms of the number of edges was
obtained by Rowlinson [17]:

Theorem 5 ([17]). Among all graphs with n vertices and m edges exactly the
quasi-complete graph Cmn has largest index.

Note that this result together with the Theorem 4 comes close to the optimum
of the EIP of J(n, 2) in half of all cases (but does not yield to sharp estimations
for all quasi-complete graphs due to the equality characterization in Theorem
4). Indeed, the two previous theorems yield a better estimation for the EIP of
J(n, 2) than inequality (2). It seems worthwhile to study analogues of Theorem
5 for hypergraphs in order to improve the estimation (4).
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3 A Short Proof for the Case k = 2

Recall the majorization (or dominance) order for sequences: If d = (d1, . . . , dn)
and e = (e1, . . . , en) are real vectors we say that d is majorized by e if for all j =
1, . . . , n the sum of the largest j entries of d is not larger than the corresponding
sum for e, and if equality holds for j = n. Equivalently, d is majorized by e if d
can be obtained from e by a sequence of alterations each of which replaces two
entries di, dj with di < dj by di + x, dj − x with 0 ≤ 2x ≤ dj − di.

We look for graphs with a fixed number of vertices and a fixed number of
edges which maximize the sum of squares of degrees. For this it is sufficient
to look among graphs having a degree sequence which is not majorized by any
other degree sequence. Indeed, this follows by elementary means or by noting
that the sum of squares of degrees is a symmetric and convex function of the
degrees. A characterization of such degree sequences is known, and gives in fact
a characterization of all degree sequences of graphs:

Given an integer vector d = (d1, . . . , dn) with nonincreasing entries (i.e. a
partition of d1 + · · ·+ dn), the number r := max{i : di ≥ i} is called the rank of
d. Further, the sequence d′ = (d′1, . . . , d

′
n−1, . . . ) with d′i = |{j : dj ≥ i}| is called

the conjugate sequence (or partition).

Theorem 6 (Ruch, Gutman [18]). Let d = (d1, . . . , dn) be a rank r sequence
of nonincreasing nonnegative integers. Then d is a degree sequence of a graph
with n vertices and m edges if and only if 2m = d1 + · · · + dn and

d1 + · · · + di + i ≤ d′1 + · · · + d′i holds for all 1 ≤ i ≤ r. (5)

Degree sequences of graphs which satisfy equality in (5) for all i = 0, . . . , r are
called threshold sequences, the corresponding graphs are called threshold graphs.
These graphs were introduced in a different manner in [11] and have many char-
acterizations. For example, threshold graphs are exactly those graphs whose
degree sequences are not realized by any other nonisomorphic graph. Also, the
threshold sequences and their permutations are exactly the extreme points of
the convex hull of all degree sequences of graphs on a fixed number of vertices.
We refer to [15] for more details.

Theorem 6 says that a partition d = (d1, . . . , dn) is the degree sequence of a
graph on n vertices if and only if d is majorized by a threshold sequence.

Our proof of the Ahlswede-Katona theorem will proceed by some easy opera-
tions on the diagrams of a threshold sequences. Recall that the (Young) diagram
of a sequence (d1, . . . , dn) of nonincreasing integers is the array of d1 + · · · + dn
boxes having n left-justified rows with row i containing di boxes, i = 1 . . . , n.
The square of a rank r partition d is the square consisting of the r2 boxes in the
left upper corner of the diagram of d. We will identify sequences of nonincreasing
integers with their diagrams. Figure 1 shows the degree sequences of a quasi-star
and a quasi-complete graph. Both types of graphs are threshold graphs. Note
also that a rank r diagram of a quasi-star has n − 1 boxes in each of its first
r − 1 rows, and a rank r diagram of a quasi-complete graph has at most r + 1
columns.
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Fig. 1. Diagrams of S18
9 and C18

9

	

...

Fig. 2. Moving a box

A simple calculation shows that
∑
i d
′2
i =

∑
i d

2
i +

∑
i di holds for all threshold

sequences (d1, . . . , dn). Maximizing
∑
i d

2
i over all threshold sequences with fixed∑

i di is thus equivalent to maximizing
∑
i d
′2
i . Let us place for each threshold

sequence d the weight i+ j − 1 in the box of row i and column j of the diagram
of d. Then our maximization is equivalent to finding a threshold sequence which
has largest sum of weights among all threshold sequences with a fixed number
2m = d1 + · · · + dn of boxes.

Let us now turn to the proof of Theorem 1. We proceed by induction on the
number m of edges. Suppose that G is an optimal threshold graph with m edges
and nonincreasing degree sequence (d1, . . . , dn). We may assume that d1 = n−1.
Indeed, in the other case the complement G of G has a vertex of degree n − 1,
and is optimal among all graphs with

(
n
2

)
−m edges (since the edge boundaries

of G and its complement are equal). But if we can show that G can be taken
to be a quasi-star or a quasi-complete graph, then G can be so too. The graph
obtained from G by removing a vertex of degree d1 = n− 1 is an optimal graph
with m−(n−1) edges. By induction, we can assume that it is either a quasi-star
or a quasi-complete graph. In the first case G itself is a quasi-star and we are
done. Thus assume that the second case occurs. We will show how to transfer
the diagram d of G’s degree sequence into one of the diagrams of the quasi-star
or the quasi-complete graph while maintaining the sum of weights. Since d is
threshold, the boxes to the right of d’s square have a mirror counterpart below
the square. In the following, when we perform operations with the boxes lying
to right of the square of a threshold diagram, we always assume that the same
(transposed) operations are done with the boxes below the square, such that the
resulting diagram will be again a threshold one.

Let r be the rank of d, and let 1 + s be the number of boxes in the (r+ 1)-th
column of d. We may assume that r ≥ 3 and n− 1 − r ≥ 2, since otherwise d is
the diagram of a quasi-star resp. quasi-complete graph. We consider two cases.
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First, let r ≥ n− 1− r. If 1+ s ≥ n− 1− r, then moving the last box of the first
row to the first empty place in the (r+ 1)-th column (and doing the transposed
operation below the square) will yield a threshold sequence with a larger sum of
weights, contradicting the optimality of G (see Figure 2).

...

−→
...

�

Fig. 3. Flipping and Moving a box

Thus 1 + s < n − 1 − r. But then we flip the hook consisting of the s + 1
boxes in the (r + 1)-th column and the last n − 1 − r boxes in the first row to
obtain a threshold diagram d′ with n− 1− r boxes in the (r+1)-th column and
r + s+ 1 boxes in the first row, while maintaining the sum of weights. If s ≥ 1,
then, as above, moving the last box from the first row of d′ to the (r + 1)-th
column yields a contradiction. Thus we have s = 0. But then d′ is the diagram
of a quasi-complete graph, and we are done with the case r ≥ n − 1 − r. Let
r < n − 1 − r. Then we flip the last s boxes of the (r + 1)-th column and the
second up to r-th box of the r-th column to obtain a threshold sequence d′′

with 2r − 2 boxes in the second row and r − 1 + s boxes in the third row, while
maintaining the sum of weights (see Figure 3).

If 0 < s < r − 1, then moving in the diagram d′′ the last box of the third
row to the first empty place of the second row increases the sum of weights,
contradicting the optimality of G. If s = r − 1 (≥ 2), then moving the last
two boxes of the third row to the first two empty places of the second row will
increase the sum weights. Thus we have again s = 0. If r ≥ 4, then d′′ has rank
r−1, and moving the box in row and column r−1 to the first empty place of the
second row will increase the sum of weights. Thus we have r = 3. But then d′′

is the diagram of a quasi-star, and we are also done with the case r < n− 1− r.
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Appendix: On Edge–Isoperimetric Theorems for

Uniform Hypergraphs

R. Ahlswede and N. Cai

1 Introduction

Denote by Ω = {1, . . . , n} an n–element set. For all A,B ∈
(
Ω
k

)
, the k–element

subsets of Ω, define the relation ∼ as follows:
A ∼ B iff A and B have a common shadow, i.e. there is a C ∈

(
Ω
k−1

)
with C ⊂ A

and C ⊂ B. For fixed integer α, our goal is to find a family A of k–subsets with
size α, having as many as possible ∼ –relations for all pairs of its elements. For
k = 2 this was achieved by Ahlswede and Katona [2] many years ago. However,

it is surprisingly difficult for k ≥ 3, in particular there is no complete solution
even for k = 3. Perhaps, the reason is the complicated behaviour for “bad α” so
that the most natural and reasonable conjecture, which will be described in the
last section and was mentioned already in [2], is false. Actually, our problem can

also be viewed as a kind of isoperimetric problem in the sense of Bollobás and
Leader ([4], see also [6]). They gave two versions. Partition the vertex set V of
a graph G = (V,E) into 2 parts A and Ac such that for fixed α |A| = α and

I. The subgraph induced by A has maximal number of edges
or

II. The number of edges connecting vertices from A and Ac is as small as
possible.

When G is regular, the two versions are equivalent. In our case we define G =
(V,E) by V =

(
Ω
k

)
and E =

{
{A,B} ⊂ V : A = B and A ∼ B

}
. Thus the original

problem is an edge–isoperimetric problem for a certain regular graph. In order

to solve our problem, in Section 2 we reduce it to another kind of problem, which
we call “sum of ranks problem”: For a lattice with a rank function find a downset
of given size with maximal sum of the ranks of its elements. Similar questions
were studied in [3], [6], and [8]. In Section 3, we go over to a continuous version

of the problem and solve it for k = 3 and “good α”. Some of the auxiliary
results and ideas there extend also to general k. A related but much simpler

result concerning a moment problem is presented in Section 4.

2 From Edge–Isoperimetric to Sum of Ranks Problem

In this section we reduce the edge–isoperimetric problem to the sum of ranks
problem. Denote by L(n, k) = (Sn,k,≤) the lattice defined by

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 979–1005, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Sn,k =
{
(x1, . . . , xk) : 1 ≤ x1 < x2 · · · < xk ≤ n, xi ∈ Z+

}
and (x1, . . . , xk) ≤ (x′1, . . . , x′k) ⇔ xi ≤ x′i(1 ≤ i ≤ k). For xk ∈ Sn,k, the rank

of xk is defined as |xk| =
∑k
i=1 xi and for W ⊂ Sn,k, let ||W || =

∑
xk∈W |xk|.

In addition we let A = {x1, . . . , xk} ∈
(
Ω
k

)
, with elements labelled in increasing

order, correspond to xk = Φ(A) � (x1, . . . , xk) ∈ Sn,k, and, similarly, A ⊂
(
Ω
k

)
to Φ(A) =

{
Φ(A) : A ∈ A

}
. Moreover, for A ⊂

(
Ω
k

)
we introduce

P(A) =
{
(A,B) ∈ A2 : A ∼ B

}
.

Using for A ∈ A and 1 ≤ i < j ≤ n the following “pushing to the left” or
so–called switching operator Oi,j , which is frequently employed in combinatorial
extremal theory:

Oi,j(A) = (A � {j}) ∪ {i} if (A � {j}) ∪ {i} /∈ A, j ∈ A, and i /∈ A
A otherwise,

one can prove, by standard arguments, that for fixed α an A ⊂
(
Ω
k

)
with |A| = α,

which maximizes | P(A) |, can be assumed to be within a family of subsets, which
are invariant under the pushing to left operator. It is also easy to see that such
subsets correspond to a downset in L(n, k).

Lemma 1. For α ∈ Z+ max|A|=α | P(A) | is assumed by an A ⊂
(
Ω
k

)
s.t. Φ(A)

is a downset in L(n, k).

Now we are ready to show the first of our main results.

Theorem 1. For fixed α ∈ Z+, maximizing | P(A) | for A ⊂
(
Ω
k

)
, |A| = α, is

equivalent to finding a downset W in L(n, k) with |W | = α and maximal ||W ||.

Proof. Assume that A ⊂
(
Ω
k

)
, W = Φ(A) is a downset in L(n, k), and |A| = α.

For every xk ∈W there are exactly

(xi+1 − xi − 1)
(

k − i

k − 1 − i

)
= (xi+1 − xi − 1)(k − i) (1.1)

yk’s with yk ≤ xk, whose first i components coincide with those of xk and the
(i + 1)-st components differ, and for which A and B have a common shadow if
xk = Φ(A) and yk = Φ(B). (Here x0 � 0.) By (1.1), for xk = Φ(A) fixed, there

is a total of
k−1∑
i=0

(xi+1 − xi − 1)(k − i) =
k∑
i=1

(k − i+ 1)xi −
k−1∑
i=0

(k − i)xi −
k−1∑
i=0

(k − i)

=
k∑
i=1

xi −
(
k + 1

2

)
= |xk| −

(
k + 1

2

)
(1.2)
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B’s with Φ(B) = yk ≤ xk, B ∼ A, and with Φ(B) ∈ A, because Φ(A) is a
downset. Consequently

| P(A) |= 2
∑
xk∈W

|xk| − 2
(
k + 1

2

)
|A| = 2||W || − 2α

(
k + 1

2

)
. (1.3)

Thus our theorem follows from Lemma 1 and (1.3).

From now on we study our problem in the “sum–rank” version.

3 From the Discrete to a Continuous Model

A natural idea to solve a discrete problem for “good parameters” is to study
the related continuous problem. Every zk ∈ Zk we let correspond to a cube

C(zk) �
{
xk : 	xi
 = zi

}
in Rk. This mapping sends our SU,k for U ∈ Z+ to

∼→ SU,k �
{
xk : 0 < x1 < x2 · · · < xk ≤ U , 	xi
 = 	xj
, if i = j

}
. Thus, keeping

the partial order “≤”, we can “embed” our L(U, k) into a “continuous lattice”
∼→ L(U, k) = ( ∼→ SU,k,≤). Moreover, the image ∼→ W � Φ(W ) of a downset W in
L(U, k) is a downset in ∼→ L(U, k), with (finite) integer–components for maximal
points. Let µ be the Lebesgue measure on Rk

′
, and let k′ ≤ k be specified by

the context. For W ⊂ Rk, define

||W || =
∫
W

|xk|dµ, where |xk| =
∑
j

xj . (3.1)

Let D be the set of downsets in ∼→ L(U, k) with finitely many maximal points.
Since it is of no consequence if we add or substract a set of measure zero, we will
frequently exchange “<” (or “>”) and “≤” (or “≥”) in the sequel. It is enough

in our problem for “good α” to consider max
µ(

∼→W )=α,
∼→W∈D ||W || in ∼→ L(U, k),

and the following lemma is the desired bridge.

Lemma 2. Suppose that ∼→ W ∈ D has only maximal points with integer com-
ponents, and so for a W ⊂ L(U, k) ∼→ W = Φ(W ).

Then

|| ∼→ W || = ||W || − k

2
α, where α = µ( ∼→ W ). (3.2)

Proof.

|| ∼→ W || =
∑
zk∈W ||C(zk)|| =

∑
zk∈W

∫
C(zk) |xk|µ(dxk)

=
∑
zk∈W

∫ zk

zk−1 dxk . . .
∫ z1
z1−1 dx1

∑k
j=1 xj

=
∑
zk∈W

∑k
i=1

∫ zi

zi−1
xidxi =

∑
zk∈W

∑k
i=1

1
2 (2zi − 1)

(3.3)

and (3.2) follows, because |W | = µ( ∼→ W ). We say that W ∈ D can be reduced
to W ′ ∈ D, if µ(W ′) = µ(W ) and ||W ′|| ≥ ||W ||.
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4 Cones and Trapezoids

Next we define cones and trapezoids, which will play important role in our
problem. A cone in ∼→ SU,k is a set

Kk(u) =
{
xk ∈ Rk : 0 < x1 < · · · < xk ≤ u and �xi� �= �xj� for i �= j

}
, with u ≤ U.

(4.1)

Clearly, ∼→ SU,k is a cone itself. It can be denoted by Kk(U). A trapezoid Rk(v, u)

in Kk(U) is a downset below (v, u . . . u), where 0 < v ≤ u ≤ U , i.e.

Rk(v, u) �
{
xk ∈ ∼→ SU,k : x1 ≤ v, xk ≤ u

}
(4.2)

and therefore Kk(u) = Rk(u, u). Moreover, for W ⊂ Kk(u) set

W
(u) � Kk(u) �W (4.3)

and
Ŵ (u) �

{
(�u�, . . . , �u�) − xk : xk ∈ W

(u)}
. (4.4)

For integral u one can easily verify that

W = V̂ (u) for V = Ŵ (u) (4.5)

and
Rk(v, u) = K̂

(u)
k (u− v). (4.6)

Lemma 3. For W ∈ D and W ⊂ Kk(u), u ≤ U ,

||W || = ||Kk(u)|| − k�u�µ(Ŵ (u)) + ||Ŵ (u)||. (4.7)

Proof. According to the definitions of “∧(u)” and “|| ||”,

||W || =
∫
W

|xk|µ(dxk) =
∫
Kk(u)�W

(u) |xk|µ(dxk)
= ||Kk(u)|| −

∫
W

(u) |xk|µ(dxk)
= ||Kk(u)|| −

∫
Ŵ (u)

∑k
j=1

(
�u� − xj)µ(dxk)

= ||Kk(u)|| − k�u�µ
(
Ŵ (u)

)
+ ||Ŵ (u)||.

Notice that for u /∈ Z+ Ŵ (u) is not in L(u, k).

Corollary 1. For u ∈ Z+

||Kk(u)|| =
ku

2
µ(Kk(u)). (4.8)

Proof. One can verify (4.8) by standard techniques in calculus for evaluating
integrals, however, Lemma 3 provides a very elegant and simple way.
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By (4.7) for W ⊂ Kk(u)

||W || − ||Ŵ (u)|| = ||Kk(u)|| − ku µ
(
Ŵ (u)

)
(4.9)

and by (4.5) and (4.7) one can exchange the roles of W and Ŵ . Therefore we
have

||Ŵ (u)|| − ||W || = ||Kk(u)|| − ku µ(W ). (4.10)

“Adding (4.9) and (4.10)” and using the fact µ(Kk(u)) = µ(W ) + µ
(
Ŵ (u)

)
, we

obtain (4.8). Next we establish a connection between ||Kk(u)|| and µ(Kk(u)) for

not necessarily integral u. It can elegantly be expressed in terms of densities. We
define the density of W ⊂ Rk

′
(k′ ≤ k defined by context) as

dk′ (W ) =
||W ||
µ(W )

and set d = dk. (4.11)

Then Corollary 1 takes the form

d
(
Kk(u)

)
=
k

2
u, u ∈ Z+. (4.12)

We extend this formula to general u.

Lemma 4. For u ≤ U not necessarily integers, denote by θ � {u} = u − �u�
the fractional part of u. Then

(i) µ
(
Kk(u)

)
=
(�u�
k

)
+ θ

( �u�
k−1

)
,

(ii) ||Kk(u)|| = ku
2 µ

(
Kk(u)

)
+ k−1

2 θ(1 − θ)
( �u�
k−1

)
and therefore

(iii) d
(
Kk(u)

)
= ku

2 +
k−1
2 θ(1−θ)

1
k

(
�u�+1−k

)
+(k−1)θ

.

Proof. By its definition

Kk(u) = Kk
(
�u�

)
∪
{
xk : �u� < xk ≤ u and (x1, . . . , xk−1) ∈ Kk−1

(
�u�

)}
� Kk

(
�u�

)
∪ J (say).

(4.13)

On the other hand, according to the correspondence Φ between the discrete and
the continuous models,

µ
(
Kk(�u�)

)
=

(
�u�
k

)
, µ
(
Kk−1(�u�)

)
=

(
�u�
k − 1

)
. (4.14)

Therefore µ(J) = θ
( �u�
k−1

)
and consequently (i) holds. Now

||Kk(u)|| = ||Kk
(
�u�

)
|| + ||J ||. (4.15)
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By Corollary 1 and (4.14)

||Kk
(
�u�

)
|| =

k�u�
2

(
�u�
k

)
. (4.16)

Furthermore, by (4.8) for k − 1 and by (4.14)

||J || = µ
(
Kk−1(�u�

) ∫ u
�u� xk dxk +

∫ u
�u� dxk||Kk−1

(
�u�

)
||

=
(
�u� + θ

2

)
θ
( �u�
k−1

)
+ θ k−1

2 �u�
( �u�
k−1

)
.

(4.17)

Combination of these three identities gives

||Kk(u)|| =
k�u�

2

(
�u�
k

)
+
(
�u� +

θ

2
+
k − 1

2
�u�

)
θ

(
�u�
k − 1

)
and thus

||Kk(u)|| =
k�u�

2

(
�u�
k

)
+
(
k + 1

2
�u�+

θ

2

)
θ

(
�u�
k − 1

)
. (4.18)

This and (i) imply

||Kk(u)|| − ku
2 µ

(
Kk(u)

)
= −kθ

2

(�u�
k

)
+
(
�u�
2 − k−1

2 θ
)
θ
( �u�
k−1

)
= −kθ

2

(�u�
k

)
+ �u�

2 θ
( �u�
k−1

)
− k−1

2 θ2
( �u�
k−1

)
= − θ�u�

2

(�u�−1
k−1

)
+ �u�

2 θ
( �u�
k−1

)
− k−1

2 θ2
( �u�
k−1

)
= �u�

2 θ
(�u�−1
k−2

)
− k−1

2 θ2
( �u�
k−1

)
= k−1

2 θ
( �u�
k−1

)
− k−1

2 θ2
( �u�
k−1

)
,

and therefore (ii).

Remark 1 (to Lemma 4).
Actually, we can derive a somewhat more general result along the same lines.
Let Jk(u, u′) �

{
(x1, . . . , xk) | u < x1 < · · · < xk ≤ u′ and 	xi
 = 	xj
, for

i = j
}
, u < u′ ∈ R, θ � 	u
 − u and θ′ = u′ − �u′� � {u′}, then

µ
(
Jk(u, u′)

)
=

(
�u′� − 	u


k

)
+
(
�u′� − 	u

k − 1

)
(θ+ θ′) + θθ′

(
�u′� − 	u

k − 2

)
(4.19)

and

||Jk(u, u′)||−k(u+u′)=
k − 1

2
[
(θ′−θ)[1−(θ+θ′)]

](�u′� − 	u

k − 1

)
−θθ

′

2
(θ′−θ)

(
�u′� − 	u

k − 2

)
.

(4.20)

This can be seen as follows.
By shifting the origin, we can assume w.l.o.g., that u = −θ, θ ∈ [0, 1), i.e.
�u� = 0. Then

Jk(u, u′)=Kk

(
�u′�

)
∪
(
{x1 : −θ < x1 ≤ 0}×{(x2, . . . , xk) : (x2, . . . , xk) ∈ Kk−1(�u′�)

)
∪
({

(x1, . . . , xk−1) : (x1, . . . , xk−1) ∈ Kk−1(�u′�)
}
×
{
xk : �u′� < xk ≤ u′})

∪
(
{x1 : −θ < x1 ≤ 0} ×

{
(x2, . . . , xk−1) ∈ Kk−2(�u′�)

}
× {xk : �u′� < xk ≤ u′}

)
and by the same argument as the one used in the proof of Lemma 4 we obtain
(4.19) and (4.20).
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5 The Cases k = 2, 3

Using the same idea as in the proof of Theorem 1 in [2] simple calculations lead
to two alternatives.

Lemma 5. For k = 2, U ∈ Z+ and W ∈ D consider

m1(W ) � max
{
x : (x, y) ∈ W for some y

}
. (5.1)

Then

(i) W can be reduced to a trapezoid, if m1(W ) ≤ U
2

and

(ii) W can be reduced to a cone, if m1(W ) ≥ U
2 .

Now we turn our attention to k = 3 and drop all subscripts k (for example write
K(U) instead of K3(U) and so on).
For W ⊂ K(U) we call the 2–dimensional set

Su(W ) �
{
(x, y) : (x, y, u) ∈W and (x, y, u+ ε) /∈ W for all ε > 0

}
(5.3)

a Z–surface of W at u.
We call this surface regular, when for some (x, y) ∈ Su(W ) and some ε > 0
(x, y, u + ε) ∈ K(U). Therefore Su(W ) is irregular iff u = U . The Y – and
X–surfaces are defined analogously. We present now the basic idea of “moving

top layers from lower density to higher density”.
Observe first that the condition µ

(
R(ν, u)

)
= α (for fixed α) forces v to depend

continuously on u, say
v = Vα(u). (5.4)

There are again two alternatives.

Lemma 6. For k = 3, u ≤ U , and U ∈ Z+ any trapezoid R(v, u) can be reduced
to a cone or the trapezoid R

(
Vα(U), U

)
.

Proof. Fix α and U ∈ Z+. Then ||R
(
Vα(u), u

)
|| is a continuous function in u,

which achieves a maximal value. So, if the lemma is not true, then there are a
U ∈ Z+, an α, and a u0 with v0 � Vα(u0) < u0 < U and R(v0, u0) achieves the
maximal value. R(v0, u0) has one regular Z–surface and one regular X-surface,
namely

S1 �
{
(x, y) : 0 < x < y ≤ 	u0
 − 1, x ≤ v0 and 	x
 = 	y


}
and S2 �

{
(y, z) : 	v0
 < y < z ≤ u0 and 	y
 = 	z


}
.

(5.6)

(c.f. Figure 1)
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	u0
 − 1
v0

ũ− 	v0
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z = u0

: S1 : S′1 : S3

�

�

�

�

v0

} δ1

Z

Y
x = v0

: S2 : S′2 : S(1)
2 : S(2)

ũ
−

	v
0



�

�

Fig. 1.

Case 1: d(S1) + u0 < d(S2) + v0. (5.7)

Choose δ1, δ2 > 0 and define

D1 = S1 × {z : u0 − δ1 < z ≤ u0}
and D2 = {x : v0 < x ≤ v0 + δ2} × S′2.

(5.9)
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They satisfy

µ(D1) = µ(D2), (5.10)

δ1 ≤ u0 −
(
	u0
 − 1

)
, δ2 ≤

(
�v0� + 1

)
− v0, (5.11)

and
d(S1) + u0 < d(S′′2 ) + v0 ≤ d(S′2) + v0, (5.12)

where
S′′2 � S2 �

{
(y, z) : u0 − δ1 < z ≤ u0

}
(5.13)

and

S′2 �
{
S′′2 �

{
(y, z) : v0 < y ≤ v0 + 1

}
if v0 ∈ Z+

S′′2 otherwise. (5.14)

The second inequality in (5.12) follows from Lemma 4 and our choice is possible
by (5.7). Then

R′ �
(
R(v0, u0) �D1

)
∪D2 ∈ D (5.15)

is a trapezoid with measure α.
However by (5.9) - (5.14),

||R′|| − ||R(v0, u0)|| = ||D2|| − ||D1||
= µ(S′

2)
∫ v0+δ2

v0
xdx + δ2||S′

2||
]
−
[
||S1||δ1 + µ(S1)

∫ u0
u0−δ1

zdz

=
[(

µ(S′
2)δ2

) (
v0 + δ2

2

)
+
(
δ2µ(S′

2)
)
d(S′

2)
]
−
[(

µ(S1)δ1

)
d(S1) +

(
µ(S1)δ1

) (
u0 − δ1

2

)]
= µ(D2)

[
v0 + δ2

2
+ d(S′

2)
]
− µ(D1)

[
d(S1) + u0 − δ1

2

]

= µ(D1)
[(

d(S′
2) + v0

)
−
(
d(S1) + u0

)
+ δ1+δ2

2

]
> 0,

[(
[

a contradiction. Here the fourth equality follows from µ(S′2)δ2 = µ(D2) and

µ(S1)δ1 = µ(D2) (by (5.9)), the fifth equality follows from (5.10) and the in-
equality follows from (5.12).

Case 2: d(S1) + u0 > d(S2) + v0. One can come to a contradiction just like in
case 1.
Case 3: d(S1) + u0 = d(S2) + v0. (5.16)

S2 is a “shifted cone”. One can calculate d(S2) and conclude with (5.16)

	u0
 − 2 > v0. (5.17)

Consequently the following two surfaces are not empty:

S′1 �
{
(x, y) : 0 < x < y ≤ 	u0
 − 2, x ≤ v0 and 	x
 = 	y


}
and S

(1)
2 �

{
(y, z) : 	v0
 < y < z ≤ u0 − 1 and 	y
 = 	z


}
= S2 �

{
(y, z) : u0 − 1 < z ≤ u0

}
.

(5.19)
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(See Figure 1) Assume first that

µ(S′1) ≥ µ(S(1)
2 ). (5.20)

Let

D1 �
{
(x, y, z) ∈ R(v0, u0) : u0 − 1 < z ≤ u0

}
= S1 ×

{
z : �u0� − 1 < z ≤ u0

}
∪ S′

1 ×
{
z : u0 − 1 < z ≤ �u0� − 1

}
� D′

1 ∪ D′′
1 ,

D2 �
{
(x, y, z) ∈ SU : v0 < x ≤ x0, z ≤ u0 − 1

}
=

{
x : v0 < x ≤ �v0�

}
× S

(1)
2 ∪

[⋃
i≥2

({
x : �v0� + i − 1 < x ≤ v(i)

}
× S

(i)
2

)]
,

(5.22)

where
S

(i)
2 = S

(i−1)
2 �

{
(y, z) : 	v0
 + 2 − i < x ≤ 	v0
 + 3 − i

}
,

the last v(i) equals x0, for the other i’s v(i) = 	v0
+i, and finally x0 is specified by

µ(D1) = µ(D2), if such an x0 exists.

Otherwise continue with Case 4. Introduce now

R′ =
(
R(v0, u0) �D1

)
∪D2.

R′ is a trapezoid with measure α. Now we have, with justifications given

afterwards,

||D1|| =
[
µ(S1)

(
u0 − u0−
u0�+1

2

) (
u0 − 	u0
 + 1

)
+ ||S1||

(
u0 − 	u0
 + 1

)]
+
[
µ(S′1)

(
	u0
 − 
u0�−u0

2 − 1
) (

	u0
 − u0

)
+ ||S′1||

(
	u0
 − u0

)]
= µ(D′1)

(
d(S1) + u0 − u0−
u0�+1

2

)
+ µ(D′′1 )

[
d(S′1) + 	u0
 − 
u0�−u0

2 − 1
]

=
[
µ(D′1)d(S1) + µ(D′′1 )d(S′)

]
+(u0 − 1)

(
µ(D′1) + µ(D′′1 )

)
+ 1

2µ(D′1)
(
u0 − 	u0
 + 1

)
+ 1

2

(
	u0
 − u0

)(
2µ(D′1) + µ(D′′1 )

)
< µ(D1)

(
d(S1) + u0 − 1

)
+ 1

2

(
u0 − 	u0
 + 1

)
µ(D′1) + 1

2

(
	u0
 − u0

)(
2µ(D′1) + µ(D′′1 )

)
= µ(D1)

(
d(S1) + u0 − 1

)
+ 1

2

[
µ2(D′

1)
µ(S1)

+ 2µ(D
′
1)µ(D′′

1 )
µ(S′

1) + µ(D′′
1 )2

µ(S′
1)

]
<

(
d(S1) + u0 − 1 + µ(D1)

2µ(S′
1)

)
µ(D1).

(5.23)
Here the second and the fourth equality are obtained by

µ(D′1) = µ(S1)
(
u0 − 	u0
 + 1

)
and µ(D′′1 ) = µ(S′1)

(
	u0
 − u0

)
.

The first inequality follows from d(S1) > d(S′1) and µ(D1) = µ(D′1)+µ(D′′1 ) and
the second one follows from µ(S1) > µ(S′1). Similarly, since d(S(1)

2 ) < d(S(i)
1 )

and µ(S(1)
2 ) > d(S(i)

2 ) for i ≥ 2

||D2|| >
(
d(S(1)

2 ) + v0 +
µ(D2)

2µ(S(1)
2 )

)
µ(D2). (5.24)
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Finally, as S2 and S
(1)
2 are shifted cones, by (iii) in Lemma 4, (5.6), (5.16), and

(5.19)
d(S(1)

2 ) + v0 > d(S2) − 1 + v0 = d(S1) + u0 − 1. (5.25)

So a contradiction ||R′|| − ||R(v0, u0)|| = ||D2|| − ||D1|| > 0 follows from (5.19),
(5.23), and (5.25). Therefore (5.20) must be false, i.e.

µ(S′1) < µ(S(1)
2 ). (5.26)

Let now ∼→ u � 	u0
 − 2, S3 � K(∼→ u) � S′1 (c.f. Figure 1), ξ = 1 − {v0}, and
η = u0 −

(
	u0
 − 1

)
, then by (5.26)

µ(S3) − µ(S′1) > µ(S3) − µ(S(1)
2 ) =

(∼→ u− 	v0

)
(ξ − η), (5.27)

and by (i) in Lemma 4

µ(S3) =
1
2
[( ∼→ u−	v0


)2 − ( ∼→ u−	v0

)
+ 2ξ

(∼→ u− 	v0

)]

=
∼→ u− 	v0


2
(∼→ u− 	v0
 1 + 2ξ .

(5.28)
However, by their definitions

µ(S′1) + µ(S3) = µ
(
K(∼→ u)

)
=

1
2
( ∼→ u2− ∼→ u

)
. (5.29)

Adding (5.27) to (5.29) we obtain

µ(S3) >
1
4
( ∼→ u− 1) ∼→ u+

1
2
(∼→ u− 	v0


)
(ξ − η). (5.30)

(5.28) and (5.30) imply

( ∼→ u− 	v0

)( ∼→ u− 	v0
 − 1 + ξ + η

)
>

∼→ u

2
( ∼→ u− 1). (5.31)

Simplifying (5.31), we obtain( ∼→ u − �v0�
)2

>
∼→u2

2
+

∼→u
2

− �v0� − (ξ + η)
( ∼→ u − �v0�

)
>

∼→u2

2
− 3

2

∼→ u + �v0�
(as

∼→ u ≥ �v0�, see (5.17) and as ξ + η ≤ 2)

= 1
2

(
∼→ u − 3

2

)2

− 9
8

+ �v0�, i.e.

∼→ u − �v0� >
√

2
2

∼→ u − 3
√

2
4

, or

�v0� <
(
1 −

√
2

2

)
∼→ u + 3

√
2

4
=

(
1 −

√
2

2

)
u − 1 + 5

√
2

4
,

(5.32)

where u � 	u0
−1 =∼→ u+1. On the other hand, by (iii) in Lemma 4 and (5.16)

with η′ = {u0}

d(S1) = d(S2) + v0 − u0 ≤
(
u0 + 	v0
 + η′(1−η′)

u−
v0�−1

)
+ v0 − u0

= v0 + 	v0
 + η′(1−η′)
u−
v0�−1 .

(5.33)
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Consider that S1 is the union of a rectangle and a 2–dimensional cone (a
triangle).

||S1|| = 1
2

(
	v0
2 − 	v0


)
	v0
 + v0

(
u− 	v0


) (
	v0
 + v0+u−
v0�

2

)
= 1

2

[
	v0
2

(
	v0
 − 1

)
+ v0

(
u− 	v0


)(
v0 + 	v0
 + u

)]
,

(5.34)

and
µ(S1) =

1
2
(
	v0
2 − 	v0


)
+ v0

(
u− 	v0


)
. (5.35)

(5.33) - (5.35) imply

(
v0 + 	v0
 + η′(1−η′)

u−
v0�−1

) (
1
2

(
	v0
2 − 	v0


)
+ v0

(
u− 	v0


))
≥ 1

2

[
	v0
2

(
	v0
 − 1

)
+ v0

(
u− 	v0


)(
v0 + 	v0
 + u

)]
, i.e.

	v0

(
	v0
 − 1

) η′(1−η′)
u−
v0�−1 ≥ v0

(
u− 	v0


) (
u− v0 − 	v0
 − 2η′(1−η′)

u−
v0�−1

)
− v0

(
	v0
2 − 	v0


)
= v0

(
u2 − 3	v0
u+ 	v0
2

)
+ v0	v0
 + v0

(
u− 	v0


) [(
	v0
 − v0

)
− 2η′(1−η′)
u−
v0�−1

]
≥
(
	v0
 − 1

) [(
u2 − 3u	v0
 + 	v0
2

)
+ 	v0
 −

(
u− 	v0


) 2η′(1−η′)
u−
v0�−1

]
,

i.e.
u2 − 3u	v0
 + 	v0
2 ≤

(
2u− 	v0


) η′(1−η′)
u−
v0�−1 − 	v0


≤ 1
4

2u−
v0�
u−
v0�−1 − 	v0
.

(5.36)

Comparing (5.32) and (5.36), one can conclude[(
1 −

√
2

2

)
+ 5

√
2−4
4u

]2

− 3
[(

1 −
√

2
2

)
+ 5

√
2−4
4u

]
+ 1

< 1
u · 1

2
√

2u−5
√

2
− 1
u

[(
1 −

√
2

2

)
+
√

2−4
4u

]
= 1
u

(
1

2
√

2u−5
√

2
− 5

√
2−4
4u

)
− 1
u

(
1 −

√
2

2

)
, or(

1 −
√

2
2

)2

− 3
(
1 −

√
2

2

)
+ 1 <

1
4u (3

√
2 + 2) + 1

u

(
1

2
√

2u−5
√

2
− 4(5

√
2−4)+(5

√
2−4)

16u

)
.

(5.37)

One can check that (5.37) does not hold unless u < 8, or 	u0
 ≤ 8. However,

it is not difficult to check that (5.16) and (5.26) cannot hold simultaneously for
4 < u ≤ 8. Finally using the condition U /∈ Z+ it follows that U ≥ 4. One can

also check the lemma for 3 < u ≤ 4.

Case 4
If an x0 with µ(D1) = µ(D2) does not exist, i.e. D1 is too big to find a D2 with
the same measure, we choose a proper h, 0 < h < 1, such that for

D1 �
{
(x, y, z) ∈ R(v0, u0) : u0 − h < z ≤ u0

}
and

D2 �
{
(x, y, z) ∈ SU : v0 < x < y ≤ u0 − h

}
, µ(D1) = µ(D2).
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D2 is a shifted cone. By the arguments leading to Lemma 4, (c.f. (4.18), (4.19)
in Remark to Lemma 4) we get for its density

d(D2) ≥ 3	v0
 + 3
2

[
u0 − h− 	v0
 −

(
1 − {v0}

)]
− {v0}

(
1−{v0}

)∣∣u0−h−
v0�
∣∣++2

(
1−{v0}

)
= 3

2 (u0 + v0 − h) − {v0}
(
1−{v0}

)∣∣u0−h−
v0�
∣∣++2

(
1−{v0}

) .

However, by (5.16) and Lemma 4

d(D1) = d(S1) + u0 −
h

2
= d(S2) + v0 −

h

2
≤ v0 + 	v0
 + u0 −

h

2
+

1
4
.

Then

d(D2) − d(D1) ≥ u0
2 + v0

2 − 	v0
 − h− 1
4 − {v0}

(
1−{v0}

)∣∣u0−h−
v0�
∣∣++2

(
1−{v0}

)
> 1

2

(
u0 − 	v0


)
− h− 3

4 .

Thus by (5.16), for u0 > 8
d(D2) > d(D1).

For 	uo
 ≤ 8 we check it directly.

Remark 2. For m ∈ Z+ denote by Dm the set of downsets of ∼→ L(U)
(
�∼→

L(U, 3)
)

with m maximal points. We can show that maxµ(W )=α,W∈Dm
||W || can

be achieved, as well.

More precisely, define a metric on the set
{
(xi, yi, zi)ki=1 : (xi, yi, zi) ∈ R3

}
as

the sum of Euclidean (or L1−) metrics of the k components points. Then for
fixed µ(W ) = α, W ∈ Dm, ||W || is a continuous function of its maximal points.

6 On Regular Surfaces

Lemma 7. Every W ∈ D can be reduced to a W ′ ∈ D, which has of each of the
regular X−, Y− and Z− surfaces at most one (for U ∈ Z+).

Proof. Suppose there exists a W that canot be reduced to such kind of W ′.
W.l.o.g. by Remark 1 we assume W achieves →

m′≤m
maxµ(W )=α,W∈Dm′ ||W ||,

(recalling D =
⋃∞
m=1 Dm by its definition).

Case 1: Suppose W has at least 2 regular z–surfaces, say Si at i, for i = 1, 2,
and

d(S1) + u1 ≤ d(S2) + u2. (6.1)
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Using the same method as in the proof of Lemma 6, Case 1, one can obtain a
contradiction. Furthermore, we can see that W has 2 regular X–surfaces iff Ŵ (u)

has 2 regular Z–surfaces. Since W and Ŵ (u) must achieve the maximal value
simultaneously, we are left with Case 2: W has at least 2 regular Y –surfaces S1

at v1 and S2 at v2 with

d(S1) + v1 ≤ d(S2) + v2 (6.2)

and of each of the regular Z− and X− surfaces at most one. Let S′2 = S2,

if v2 /∈ Z, and otherwise let S′2 = S2 �
{
(x, z) | v1 < z ≤ v1 + 1

}
. Since

W has no 2 regular Z–surfaces nor X–surfaces, S2 is rectangular, consequently
d(S′2) > d(S2). Thus we can use S′2 to replace S2 and play the same game as
before to arrive at a contradiction.

7 Main Result in Continuous Model, k = 3

Theorem 2. For U ∈ Z+ and fixed α every W ∈ D with µ(W ) = α can be
reduced to a cone or the trapezoid R

(
Vα(U), U

)
.

Proof. Assume the theorem is not true. Then by Remark 1 and Lemma 6 there
exists a W ∈ D with m maximal points achieving maximal value of ||W || over⋃
m′≤mDm, which is neither a cone nor a trapezoid. Moreover, by Lemma 7 we

can assume that W has at most one regular X−, at most one regular Y−, and
at most one regular Z− surface.

Case 1: W has only one (regular or irregular) Z–surface at u ≤ U . Then W has
one or two maximal points, whose third components must be u. Subcase 1.1:
W has one maximal point, say P = (w, v, u). Because v = 	u
 − 1 implies W is
a trapezoid, we assume w < v ≤ 	u
 − 1. Thus, W has one Z–surface S1 and
one Y –surface, which are shown in Figure 2 (a).
We are going to use the same idea as before. However, it is not enough to
exchange the layers. Instead of it we will exchange cylinders. (a) Suppose w ≥
u− 	v
.
We choose 0 < h1 < u − 	v
 and define S2 �

{
(y, z) : v < y < z ≤ u − h1 and

	y
 = 	z

}
, D1 = S1 ×

{
z : u − h1 < z ≤ u

}
, D2 �

{
x : 0 < x ≤ w

}
× S2, and

W ′ = (W �D1) ∪D2 such that

µ(D1) = µ(D2). (7.1)

Then W ′ ∈ D and furthermore, if we denote {v} by θ and use the arguments of
the proof of Lemma 4 (see Remark to Lemma 4), then we obtain

d(S2)−(v+u−h1) =
(θ′ − θ)

[
1 − (θ′ + θ)

]
− θθ′(θ′ − θ)

(
�u − h1� − �v�

)−1(
�u − h1� − �v� − 1

)
+ 2(θ′ + θ) + 2θθ′

(
�u − h1� − �v�

)−1 � η1,

(7.2)
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S1

Y - surface

(a) (b)

h2

D′2

S′1

Y Z

X X
y = vz = u

P (w, v, u)
P (w, v, u)

�

�

�

�

Fig. 2 (a).

where θ′ � {u− h1} and θ = 1− θ = 	v
 − v, if u− h1 − 	v
 > 1. By Lemma 4

and Corollary 2,

d(S1) − v ≤ θ(1 − θ)
	v
 − 1 + 2θ

� η2. (7.3)

Consequently
d(S2) −

(
d(S1) + u

)
≥ −h1 + η1 − η2. (7.4)

Therefore, by simple calculation

||W ′|| − ||W || = ||D2|| − ||D1||
= µ(D2)

(
d(S2) + w

2

)
− µ(D1)

(
d(S1) + u− h1

2

)
= µ(D2)

[
d(S2) −

(
d(S1) + u

)
+ w

2 + h1
2

]
≥ µ(D2)

[
w
2 − h1

2 + η1 − η2

]
.

(7.5)

By (7.2),

η1 ≥ − θ(1 − θ)
�u− h1� − 	v
 − 1 + 2θ

=
−θ(1 − θ)

�u− h1� − 	v
 − 1 + 2(1 − θ)
. (7.6)
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P (w, v, u)

Z

Y

W

S2

D1 h1

(c)

�

�

Fig. 2 (b).

Thus, (7.3) and (7.6) imply

η1 − η2 ≥ −1
2
. (7.7)

However, when h1 ≤ u− 	v
 − 1, (7.5) and (7.2) imply the contradiction

||W ′|| > ||W ||. (7.8)

When u − 	v
 − 1 ≤ h1 < u − 	v
, S2 becomes a rectangle (c.f. Figure 3) and
d(S2) = v + u− h1 + θ

2 − u−
v�−h1
2 . Then use

η1 =
1 − θ

2
− u− 	v
 − h1

2
, (7.9)

and (7.8) holds again. (b) If w < u − 	v
, then we choose 0 < h2 < w and let
S′1 = S1 �

{
(x, y) : 0 < x ≤ h2

}
, S′2 =

{
(y, z) : v ≤ y < z < u, 	y
 = 	z


}
,

D′1 � S′1 ×
{
z : 	v
 < z ≤ u

}
, and D′2 = S2 × {x : 0 < x ≤ h2} with
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(v, 	v
)

(v, u− h1)

Z

Y

�

�

Fig. 3.

µ(D′1) = µ(D′2). Considering (W � D′1) ∪ D′2 in a similar way we arrive at
a contradiction. (c.f. Figure 2 (a)) Subcase 1.2: W has 2 maximal points.

According to our assumption on regular surfaces the Z–surface S1 of W must
be as in Figure 4.

Then we follow the same reasoning as in the previous subcase in the shadow
part (i.e. exchange cylinders in the shadow part

{
(x, y, z) ∈ SU | x ≤ vo

}
,

where v0 is the smaller first component in the 2 maximal points) and obtain a
contradiction.

Case 2: W has 2 Z–surfaces. Since W and Ŵ always simultaneously achieve
their maximum, we can assume Ŵ has 2 Z–surfaces too, because otherwise we
can use Ŵ , which has been studied in Case 1 already, instead of W . However,
Ŵ has 2 Z–surfaces iff W has one regular X–surface, and{

(0, y, z) ∈ SU
}

�W = ∅. (7.10)

Thus we can assume W has one regular X–surface and (7.10) holds.

Then by our assumption W has 2 maximal points, say P1 = (w1, v1, U) and
P2 = (w2, v2, u) and v1 < 	U
 − 1. Subcase 2.1: 	v1
 ≥ �u�. Then w1 < w2,

because P2 is maximal. Recalling that in our proof under subcase 1.1 we only
exchange the points (x, y, z) with x ≤ w, and y ≥ 	v
, in the present case we
can use the plane x = w1 to cut SU into 2 parts and repeat the same reasoning
as in subcase 1.1 to obtain a contradiction in the part x ≥ w1.

Moreover, for this kind of W ’s, Ŵ (U) has 2 maximal points, P̂1 = (ŵ1, v̂1, U) and
P̂2 = (ŵ2, v̂2, û) with ŵ1 = U − 	v1
, v̂1 = U − v1, ŵ2 = U − u, v̂2 = U − 	w1
,
û = U − w1, i.e. ŵ1 = 	v̂1
 − 1, v̂2 = 	û
 − 1 and ŵ2 ≥ ŵ1. Therefore, the
following subcase 2.2 can be cancelled from our list. Subcase 2.2: w1 = 	v1
−1,
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S1

P1(w, v, u)

Y

X
z = u

�

�

Fig. 4.

v2 = 	u
− 1, and w2 ≥ w1. Subcase 2.3: w1 = 	v1
− 1, v2 = 	u
− 1, w2 < w1,

and 	v1
 < u. In this subcase, there are one regular Z–surface and one regular
Y –surface passing P1.

Denote by S1 =
{
(x, y) : y ≤ v1 	x
 = 	y


}
the irregular Z–surface, by S2

the regular X–surface at w2, a shifted cone, and by S3 =
{
(y, z) : 	y
 = 	z
,

(0, y, z) ∈ SU �W
}

as in Figure 5.
Then ∼→ W � W ∩

{
(x, y, z) : y > v1

}
is a cylinder with base S2. Therefore we

can assume
v2 − v1 = 	u
 − 1 − v1 > U − u, (7.11)

because otherwise, by Lemma 5, we can replace ∼→ W by a cylinder with the
same size 2–dimensional trapezoid base and the same height, and then reduce
W to a downset with 2 regular Y –surfaces. If d(S1) + U < d(S3), then we can
repeat our reasoning as before and arrive at a contradiction. So we only need to
consider

d(S1) + U ≥ d(S3), (7.12)

which, in fact, is also impossible. By Lemma 4

d(S1) = v1 +
θ(1 − θ)

| �v1� − 1 |+ +2θ
� v1 + η. (7.13)
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Y

X
z = U

P1

S1

(a)
�

�

Fig. 5 (a).

Partitioning S3 into a rectangle S′3 and a (2–dimensional) cone S′3, we obtain

||S3|| =
1
2
(
	u
 − 1 + v1 + U + u

)
µ(S′3) +

(
U + 	u
 − 1

)
µ(S′′3 ), (7.14)

µ(S′3) =
(
	u
 − 1 − v1

)
(U − u), µ(S′′3 ) =

(
U − (	u
 − 1)

2

)
, (7.15)

and
µ(S3) = µ(S′3) + µ(S′′3 ). (7.16)

(see Figure 5 (c).) Thus, it follows from (7.12) – (7.16) that

1
2
[
U−u−

(
	u
−1

)
+v1

](
	u
−1−v1

)
(U−u)−

(
	u
−1−v1

)(U − (	u
 − 1)
2

)
+η µ(S3) ≥ 0.

(7.17)
(7.11) and (7.17) imply

η µ(S3) >
(
	u
 − 1 − v1

)(U − (	u
 − 1)
2

)
. (7.18)
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(b)

W

S2

P2

Z

Y
x = W2

�

�

Fig. 5 (b).

(c)

x = 0
Y

Z

S′′3

S3

S′3
W

�

�

Fig. 5 (c).

However, by (7.15) and (7.16)

µ(S3)(
�u� − 1 − v1

)(
U−(�u�−1)

2

) =
U − u(

U−(�u�−1)
2

) +
1

�u� − 1 − v1
≤ 4, if U −

(
�u� − 1

)
≥ 2.

(7.19)

On the other hand, by the definition of η, η ≤ 1
4 , which contradicts (7.18) and

(7.19). When U − 	u
 − 1 ≤ 1, we can directly derive a contradiction.

Thus we are left with the case w1 < 	v1
 − 1 (and 	v1
 < u), i.e. both of the
regular X− and Y –surfaces pass through P1, or in other words neither of the



Appendix: On Edge–Isoperimetric Theorems for Uniform Hypergraphs 999

surfaces passes through P2 unless P2 shares one of them with P1. In fact, all of
the following 3 subcases are not new to us.

Subcase 2.4: There is no regular surface passing through P2, i.e. P2 =
(
	u
 −

2, 	u
 − 1, u
)
. Then the top part of W , namely, Wt � W ∩

{
(x, y, z) : z > u

}
is

a cylinder with a 2 dimensional trapezoid R2(w1, v1) (its irregular Z–surface) as
base. By similar reasoning with Lemma 5 as after (7.11) we can assume v1 = �u�,
which has been treated in the subcase 2.1.

Subcase 2.5: P1 and P2 share a regularX–surface, i.e. w1 = w2 and v2 = 	u
−1.
Then Ŵ (U) falls into subcase 2.4.

Subcase 2.6: P1 and P2 share a regular Z–surface, i.e. v1 = v2, and w2 =
	v2
 − 1. Then Ŵ (U) falls into subcase 2.3.

8 A Last Auxiliary Result

Lemma 8. For U ∈ Z+, U ≥ 6, α =
(
U
3

)
−
(
m
3

)
< 1

2

(
U
3

)
and m ∈ Z+

||R
(
Vα(U), U

)
|| > ||K(u)||, if µ

(
K(u)

)
= α = µ

(
Rα(U), U

)
. (8.1)

Proof. At first let us restrict ourselves to U ≥ 12. We know from (i) in Lemma
4 that

6µ
(
K(u)

)
= 6

(
�u�
3

)
+ 6θ

(
�u�
2

)
= (u − 1)3 −

{[
3

(
θ − 1

2

)2

+
1

4

]
�u� − (1 − θ)3

}
.

(8.2)

Therefore,

d
(
K(u)

)
≥ 3

2
u >

3
2

[
6µ

(
K(u)

) 1
3 + 1

]
=

3
2

[
(6α)

1
3 + 1

]
. (8.3)

On the other hand for η > 0, by (8.2)[
u − (1 + η)

]3
= (u − 1)3 − 3η(u − 1)2 + 3η2 − η3

= 6µ
(
K(u)

)
−
[
3η(u − 1)2 − 3η2(u − 1) + η3 −

[
3
(
θ − 1

2

)2
+ 1

4

]
�u� + (1 − θ)3 + η3

]
= 6µ

(
K(u)

)
−
[
3η�u�2 − 3

(
2ηθ + η2 − θ(1 − θ) + 1

3

)
�u� + (θ + η)3

]
≤ 6µ

(
K(u)

)
− 3�u�

[
�u�η −

(
2η + η2 + 1

3

)]
,

where θ � 1 − θ.
(8.4)

Let

η = ξ − 2θθ
(�u� − 2) + 6θ

> 0 (8.5)

and η, ξ will be defined later. Then by (8.4) and (8.5),
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d
(
K(u)

)
≤ 3

2

[
6µ

(
K(u)

) 1
3 + (1 + ξ)

]
. (8.6)

when

�u� ≥
2η + η2 + 1

3

η
, (8.7)

Choose ξ1 = 0.12 and ξ2 = 0.035, to estimate d
(
K(u)

)
and d

(
K(U)

)
, resp. By

our assumption u ≥ 7 20
29 , if U = 12, and u > 8, if U ≥ 13. Then one can verify

(8.6) with (8.5) for u, ξ1 (or U, ξ2). So, by (8.7)

d
(
K(u)

)
≤ 3

2

[(
6µ(u)

) 1
3 + 1 + ξ1

]
= 3

2

(
(6α)

1
3 + 1 + ξ1

)
(8.8)

d
(
K(U)

)
≤ 3

2

[(
6µ

(
K(U)

)) 1
3 + 1 + ξ2

]
. (8.9)

Setting α = λµ
(
K(U)

)
, by Lemmas 3 and 4, (8.3), and (8.8), we obtain

||R
(
Vα(U), U

)
|| − ||K(u)|| = 3

2Uµ
(
K(u)

)
− 3

(
µ
(
K(U)

)
− α

)
+ ||R̂(U)

(
Vα(U), U

)
|| − ||K(u)||

≥ 3
2

{[(
6µ

(
K(U)

)) 1
3 + 1 + ξ2

] (
2α− µ

(
K(U)

))
+
[(

6
[
µ
(
K(U)

)
− α

]) 1
3 + 1

]
·
(
µ
(
K(U)

)
− α

)
−
[
(6α)

1
3 + 1 + ξ1

]
α
}

= 3
2

3
√

6µ
(
K(u)

)
f(λ), where

f(λ) = 2λ− 1 + (1 − λ)
1
3 − λ

1
3 − ξ2+(ξ1−2ξ2)λ(

6µ
(
K(U)

)) 1
3
,

(8.10)

is concave in λ. Let ε1 = 2.7(
6µ
(
K(U)

)) 1
3
, ε2 = 2.68/2

5
3(

6µ
(
K(U)

)) 1
3

and M ∈ Z+ be

specified by (
M

3

)
≤ 1

2

(
U

3

)
<

(
M + 1

3

)
. (8.11)

Then

ε1 <
3
U

=

(
U−1

2

)(
U
3

) =

(
U
3

)
−
(
U−1

3

)
µ
(
J(U)

) , (8.12)

and as [2(M+1
2 )]3

[6(M
3 )]2

= M(M−1)
(M+1) , by (8.11) and M > 9 (when U > 12),

1
2

(M
2 )

(U
3)

= 1
4

[
M(M−1)
(M+1)2

] 1
3 (6(M+1

3 ))
1
3

µ
(
K(U)

) > 3
2

(
1
2

) 2
3
[
M(M−1)
(M+1)

] 1
3 1[

6µ
(
K(U)

)] 1
3

≥ 3

2
5
3
(0.72)

1
3 1[

6µ
(
K(U)

)] 1
3

= 2.68884...

2
5
3

1[
6µ
(
K(U)

)] 1
3
> ε2.

(8.13)

However, with Taylor’s expansion,

f(ε1) ≥ 2ε1 − 4
3ε1 + 4

9ε
2
1 − ε

4
3
1 − ξ2+(ξ1−2ξ2)ε1(

6µ
(
K(U)

)) 1
3

= 1[
6µ
(
K(U)

)] 1
3

(
2
3 × 2.7 − 2.7 × ε

1
3
1 − ξ2

)
+ ε1[

6µ
(
K(U)

)] 1
3

[
4
9 × 2.7 − (ξ1 − 2ξ2)

]
> 0.

(8.14)
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Moreover, set g(x) = (1 + x)
4
3 − (1 − x)

4
3 . Then

g(0) = g′′(0) = 0, g′(0) =
8
3

and g′′(x) > −0.6254,

when 0 ≤ x ≤ 2ε2 < 0.1551. Thus, by the definition of ε2 and Taylor’s expansion

again

f
(

1
2 − ε2

)
= −2ε2 +

(
1
2

) 4
3 g(2ε2) −

ξ1( 1
2−ε2)+2ξ2ε2[

6µ
(
K(U)

)] 1
3

≥ −(2ε2) +
(

1
2

) 4
3 8

3 (2ε2) − 0.6254(2ε2)3 −
ξ1( 1

2−ε2)+2ξ2ε2[
6µ
(
K(U)

)] 1
3

= 2ε2

[
−1 + 2

5
3

3 − 0.6254(2ε2)2 − 2
2
3

2.68

[
1
2ξ1(1 − 2ε2) + ξ2(2ε2)

]]
≥ 2ε2[−1 + 1.05826 · · · − 0.0150 · · · − 0.0332 . . . ] > 0.

(8.15)

(8.14), (8.15) and the convexity of f imply f(λ) > 0, when λ ∈
[
ε1,

1
2 − ε2

]
,

or, in other words, if U ≥ 12 and ε1µ
(
K(U)

)
≤ α ≤

(
1
2 − ε2

)
µ
(
K(U)

)
, then

||R
(
Vα(U), U

)
|| > ||K(U)||. On the other hand (8.12) and the assumption on α

together imply α > ε1µ
(
K(U)

)
. Moreover it follows from the assumption on α,

(8.11) and (8.13), that α ≤
(

1
2 − ε2

)
µ
(
K(U)

)
, unless

α =
(
U

3

)
−
(
M + 1

3

)
and

(
M

3

)
≤ α ≤

(
M + 1

3

)
, (8.16)

where M is defined by (8.11).

However (8.16) implies R̂(U)
(
Vα(U), U

)
= K(M+1) and u ∈ [M,M+1]. There-

fore

R̂(U)
(
Vα(U), U

)
�K(u) =

{
(x, y, z) : u < z ≤ M + 1, 0 < x < y < M, 	x
 = 	y


}
� ∆, say.

(8.17)
This and Lemma 4 imply

d(∆) = M +
M + 1 + u

2
≥ 2M +

1
2
. (8.18)

Moreover, one can easily check in our case (i.e. U ≥ 12) that M ≥ 3
4U , which

together with (8.18) means that

d(∆) >
3
2
U. (8.19)

This and Lemmas 3, 4 imply

||R
(
Vα(U), U

)
|| − ||K(U)|| = 3

2Uµ
(
K(U)

)
− 3

2U
(
µ
(
K(U)

)
− α

)
+
(
||R̂(U)

(
Vα(U), U

)
|| − ||K(u)||

)
= 3

2U
[
α−

(
µ
(
K(U)

)
− α

)]
+ ||∆||

= 3
2U

(
µ
(
K(u) − R̂(U)

(
Vα(U), U

))
+||∆|| =

(
d(∆) − 3

2U
)
µ(∆) > 0.

(1)
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i.e. so far, we have shown (8.1) for U ≥ 12. Finally, we check (8.1) directly for

U = 6, 7, . . . , 11.

Remark 3. For U < 6, there is no room for α =
(
U
3

)
−
(
M
2

)
< 1

2

(
U
3

)
.

9 Main Result for k = 3 and Good α

Now let us return to our main problem in the discrete model. Denote by R∗(v, u)

the downset of (v, u− 1, u) (v, u ∈ Z+) in L(U, 3) and by K∗(u) the downset of
(u − 2, u− 1, u) (u ∈ Z+) in L(U, 3). Then Lemmas 2,3, and 8 and Theorems 1

and 2 together imply immediately this solution.

Theorem 3. Let U ∈ Z+, U ≥ 6, then

(i) For α =
(
U
3

)
−
(
m
3

)
≤ (U

3)
2 for some m ∈ Z+,

max|A|=αP(A) is achieved by R∗(U −m,U).

(ii) For α =
(
m
3

)
≥ (U

3)
2 for some m /∈ Z+

max|A|=αP(A) is achieved by K∗(m).

10 A False Natural Conjecture for k = 3 and General α;
There Is “Almost” No “Order” at All

We conclude our paper by taking a look at general α. Both, the result for k = 2
in [2] and our result for k = 3 and good α suggest that the following conjecture
is reasonable, namely, that for k = 3 and α with(

U

3

)
−
(
a+ 1

3

)
< α <

(
U

3

)
−
(
a

3

)
≤ N(α) <

(
U
3

)
2
, (10.1)

where a ∈ Z+ and N(α) is a function depending only on α, if U is big enough,
the following configuration W is optimal for maximizing P(A):

(i) take the
(
U
3

)
−
(
a+1
3

)
points (x, y, z) with x ≤ U − (a+ 1) in SU,3

(ii) add the α −
[(
U
3

)
−
(
a+1
3

)]
points (U − a, y, z) where (y, z) are points of a

quasi–star or a quasi–complete graph in the sense of [2] according to the
value of α−

[(
U
3

)
−
(
a+1
3

)]
.

However, this conjecture, which has been made by several authors, is false.

Example 1: For α0 �
[(
U
3

)
−
(
U−2

3

)]
− (U−2)− (U−3) =

(
U
3

)
−
(
U−2

3

)
−2U+5

(when U is big enough), theW described above is S1 � (S2 ∪ S3) where S1 �{
(x, y, z) ∈ SU,3 : x = 1, 2

}
.

S2 �
{
(2, 3, U), (2, 4, U), . . . , (2, U − 2, U), (2, U − 1, U)

}
,

and S3 is listed in (10.2) below.
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Now let us consider the configuration W ′ with W ′ � S1 � (S2 ∪S′3), where S′3 is
also listed in (10.2).

S3 : (2, 3, U−1), (2, 4, U−1), . . . , (2, U−2, U−1), (2, U−3, U−2), (2, U−4, U−2)

S′3 : (1, 2, U), (1, 3, U), (1, 4, U), . . . , (1, U − 2, U), (1, U − 1, U). (10.2)

Thus, ||S3|| > ||S′3|| when U > 10 and therefore ||W || < ||W ′||. This example

tells us that a solution for general α, even when k = 3, is much more challenging.
Actually, if we pay a little bit more attention to it, we will find a deeper result
just at our hands. People working on these kinds of problems usually wish to

find “an order”, more precisely a nested optimal sequence such as

W1 ⊂W2 ⊂ W3 ⊂ . . .

where Wi is optimal for size i. It is not surprising that in many cases, obviously

including our problem, there is no order at all. In these cases, and in particular
for our case, we define Mk as the maximal integer s.t. the optimal nested chain
with length Mk i.e. the optimal nested chain

W1 ⊂ W2 ⊂ W3 ⊂ · · · ⊂ WMk
(10.3)

exists. Considering our problem we only need to study the α-s with α ≤ 1
2

(
U
3

)
,

because we can take “complements”. Therefore we wish Mk to be close to 1
2

(
U
3

)
.

In fact in [2], it was shown that M2 ≥ 1
2

(
U
2

)
− U

2 , and that therefore M2 is

asymptotically equal to 1
2

(
U
3

)
(i.e.

1
2 (U

2)−M2

(U
2)

→ 0).

However, it is surprising that there is a jump between M2 and M3, because
M3 is asymptotically close to zero as can be seen from the following result.

Theorem 4.

M3 <

(
U

3

)
−
(
U − 2

3

)
� α2 for U > U0. (10.4)

Proof. Assume the result is false. Then there is a nested optimal chain W1 ⊂
W2 ⊂ · · · ⊂ Wα2 .

Let α0, W and W ′ be defined as in Example 1 and set α1 �
(
U
3

)
−
(
U−1

3

)
. Then

(when U is big enough) α1 < α0 < α2 and therefore Wα1 ⊂ Wα0 ⊂ Wα2 . First
of all, we draw attention to the fact that in the proofs in Section 3, we actually
have already proved that the optimal configurations in Theorem 3 are unique
(except if α = 1

2

(
U
3

)
.) Therefore, Wα1 = R∗(1, U) and Wα2 = R∗(2, U) or

(1, U − 1, U) ∈Wα1 and (2, U − 1, U) ∈ Wα2 (10.5)
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and so
(1, U − 1, U) ∈Wα0 . (10.6)

Consequently,
Wα0 = W ′. (10.7)

Moreover, there exists an (x0, y0, z0) ∈ Wα0 with x0 ≥ 3, because otherwise
by Theorems 2 and 3 in [2] ||Wα0 || = ||W ||, which would contradict Example 1
(here W and W ′ are defined as in Example 1). However, (x0, y0, z0) /∈ R∗(2, U) =

Wα2 ⊃ Wα0 , a contradiction.

11 A Related Topic: The Maximal Moments for the
Family of Measurable Symmetric Downsets

Next let us drop the condition 	x
 = 	y
, 	y
 = 	z
 used in the definition of
SU,3 in previous sections, i.e. consider the lattice α′(U, 3) � (S′U,3,≤), S′U,3 �{
(x, y, z) ∈ R3 : 0 ≤ x ≤ y ≤ z

}
. The problem becomes more smooth and

therefore much simpler. To see this, we mention here two observations.

(a) To guarantee the formula analogous to (4.8), we don’t have to require u ∈ Z+.

(b) One can simply derive a lemma analogous to Lemma 6, by standard methods
in calculus (such as to take right derivatives and so on).

In fact, in a similar but much simpler way we can prove the following result.

Theorem 5. For U ∈ R let IU = [0, U ]3 ⊂ R3 and let Fα be the family of the
Lebesgue measurable subsets S of IU , satisfying

(i) For every S ∈ Fα µ(S) = α.
(ii) For every permutation π on {1, 2, 3} and every S ∈ Fα (x1, x2, x3) ∈ S

implies xπ(1), xπ(2), xπ(3) ∈ S.
(iii) For every S ∈ Fα, (x, y, z) ∈ S and (x′, y′, z′) ≤ (x, y, z). Also (x′, y′, z′) ∈

S.

Then maxS∈Fα ||S||, where ||S|| =
∫
S
(x + y + z)dx dy dz, is achieved by a set

S∗ ∈ Fα of the form

S∗ =

{{
(x, y, z) : min{x, y, z} ≤ v

}
for some v = v(α), if α ≤ U3

2{
(x, y, z) : 0 ≤ x, y, z ≤ u

}
for some u = u(α), if α ≥ U3

2 .
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Appendix: Solution of Burnashev’s Problem and

a Sharpening of the Erdős/Ko/Rado Theorem

R. Ahlswede

Motivated by a coding problem for Gaussian channels, Burnashev came to the
following Geometric Problem (which he stated at the Information Theory Meet-
ing in Oberwolfach, Germany, April 1982). For every δ > 0, does there exist a
constant λ(δ) > 0 such that the following is true: “Every finite set {x1, . . . , xN}
in a Hilbert space H has a subset {xi1 , . . . , xiM }, M ≥ λ(δ)N , without ‘bad’
triangles. (A triangle is bad, if one side is longer than 1 + δ and the two others
are shorter (≤) than 1)”?

This is the case for Euclidean spaces. (A good exercise before the further
reading!) We show that this is not so for infinite–dimensional Hilbert spaces.
The proof is based on a sharpening of the famous Erdős–Ko–Rado Theorem and
was given at the same meeting.

The publication of this note from 1982 was originally planned in a forthcoming
book on Combinatorics by G. Katona. Since the completion of this book is still
unclear and on the other hand the method of generated sets of [1] and the method
of pushing and pulling of [2] are now available there is realistic hope that this
direction of work with its open problems can now be continued. Therefore it
should be made known and the late publication is justified.

The solution was found by a funny chance event: Burnashev pronounced the
name “Hilbert” in the Russian way like “Gilbert”, which gave us the inspiration
to view the problem in a sequence space.

Let h be the Hamming distance. Define

Gn
k �

({
(a1, a2, a3, . . . ) : at ∈

{
0,

1√
2

}
, 1 ≤ t ≤ n; at = 0, t > n;

n∑
t=1

at =
k√
2

}
, h

)
,

Obviously, for 1 ≤ k ≤ n Gnk ⊂ H = 2 and for an, bn ∈ Gnk

h(an, bn) ≤ 2 ⇔ ‖an − bn‖2 ≤ 1. (1)

We call X ⊂ Gnk good, if it contains no bad triangle. It suffices to show that
for some k

gk(n) � max
X⊂Gn

k , good
|X | = o

((
n

k

))
. (2)

Using the representation of subsets of an n–set as (0 − 1)–incidence vectors
the determination of q2(n) leads to an extremal problem of independent interest,
whose solution provides in all but one case an amazing sharpening of the well–
known Erdős/Ko/Rado Theorem.

This says that for any family B ⊂ P�
(
{1, . . . , n}

)
of all –element subsets of

an n–set with the

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1006–1009, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Intersection Property: B ∩B′ = ∅ ∀B,B′ ∈ B
necessarily

|B| ≤
(
n− 1
− 1

)
, if n ≥ 2. (3)

Our result is the

Theorem. Let n ≥ 2,  ≥ 2. For any A ⊂ P�
(
(1, 2, . . . , n)

)
with the

Triangle Property: ∀A,B,C ∈ A : A ∩B = ∅, B ∩ C = ∅ ⇒ A ∩ C = ∅
we have

|A| ≤
{
n if  = 2 and n ≡ 0 mod 3(
n−1
�−1

)
otherwise.

(4)

Moreover, this bound is best possible.

Proof: The Triangle Property implies that A can be partitioned into families
A(1), . . . ,A(T ) such that

(a) The families A(t), 1 ≤ t ≤ T , have the Intersection Property.
(b) The sets A(t) � ∪

{
A : A ∈ A(t)

}
, 1 ≤ t ≤ T , are disjoint.

(c) The numbers αt � |A(t)| satisfy  ≤ αt ≤ n for 1 ≤ t ≤ T.

This and (3) imply

|A| =
∑

1≤t≤T
|A(t)| ≤

∑
t:αt<2�

(
αt


)
+

∑
t:αt≥2�

(
αt − 1
− 1

)
. (5)

Case 1: The second sum equals 0
By Pascal’s identity for q ≥ p ≥ (
q



)
+
(
p



)
=

(
q



)
+
(
p− 1


)
+
(
p− 1
− 1

)
≤
(
q



)
+
(
p− 1


)
+
(

q

− 1

)
=
(
q + 1


)
+
(
p− 1


)

and therefore with (b)

|A| ≤
∑

t:αt<2�

(
αt


)
≤
(

2− 1


)
n

�2− 1� +
(

(2− 1)x


)
, where x =

n

2− 1
− n

�2− 1� .

(1)

Case 2: The second sum does not equal 0
We show first that for 2 > γ ≥ , β ≥ , γ + β ≤ n(

γ



)
+
(
β − 1
− 1

)
≤

(
γ + β − 1
− 1

)
. (7)

Clearly,

(γ + β − 1) · · · · · (γ + β − + 1) ≥ (β − 1) · · · · · (β − + 1) + γ�−1

≥ (β − 1) · · · · · (β − + 1) + γ(γ − 1) · · · · · (γ − + 2)(γ − + 1),
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since γ − + 1 ≤ , and thus (7) follows.
Using (7) we can shift terms from the first sum to the second sum in (5) and

obtain finally an upper bound of the form∑
i∈I

(
ρi − 1
− 1

)
;

∑
ρi ≤ n, ρi ≥ 2,

which is obviously smaller than
(
n−1
�−1

)
.

Thus we have

|A| ≤ max
((

n− 1
− 1

)
,

(
2− 1


)
n

�2− 1� +
(

(2− 1)x


))
(8)

where x = n
2�−1 − n

�2�−1� .

For  = 2 thus |A| ≤
{
n− 1 if n ≡ 0 mod 3
n if n ≡ 0 mod 3

.

In all other cases it suffices to show(
n− 1
− 1

)
≥

(
2− 1
− 1

)
n

�2− 1� +
(

(2− 1)x


)
.

In case n = 2 this is true, because

2
�2− 1� = 1 and

(
(2− 1)x



)
=
(

1


)
= 0.

In case n ≥ 2+ 1 we have(
n− 1
− 1

)
≥

(
2− 1
− 1

)
n

2− 1
, because (n−1)(n−+1) = n(n−)+−1 ≥ n(+1)

(9)
and thus (2− 1)(n− 1)(n− 2) · · · · · (n− + 1) ≥ (2− 1)(2− 2) · · · · · (+ 1)n.

Since for 0 ≤ x ≤ 1 x
(
2�−1
�

)
≥
(
(2�−1)x

�

)
(9) yields the result.

Translation of the result for Gn2 yields

g2(n) =

{
n for n ≡ 0 mod 3
n− 1 otherwise

.

Thus we have as

Corollary. (Negative answer to Burnashev’s Question for every δ > 0)

lim
n→∞

g2(n) · |Gn2 |−1 = lim
n→∞

2
n− 1

= 0.

Problems

1. Let M(N) be the guaranteed cardinality of a largest good subset of an N–set
in H . We have just shown that M(N) ≤ 0(

√
N).

What is the exact asymptotic growth of M(N)?
2. What is the best choice of λ(δ) for the n–dimensional Euclidean space?
3. Generalize the Theorem to families of sets with the property:

|A ∩B| ≥ d, |B ∩ C| ≥ d ⇒ |A ∩ C| ≥ d.
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Realization of Intensity Modulated Radiation

Fields Using Multileaf Collimators

T. Kalinowski

Abstract. In the treatment of cancer using high energetic radiation
the problem arises how to irradiate the tumor without damaging the
healthy tissue in the immediate vicinity. In order to do this as efficiently
as possible intensity modulated radiation therapy (IMRT) is used. A
modern way to modulate the homogeneous radiation field delivered by
an external accelerator is to use a multileaf collimator in the static or in
the dynamic mode. In this paper several aspects of the construction of
optimal treatment plans are discussed and some algorithms for this task
are described.

1 Introduction

In cancer treatment high energetic radiation is used to destroy the tumor. To
achieve this goal the irradiation process must be planned in such a way that the
tumor (target volume) receives a sufficiently high dose while the organs close to
it (organs at risk) are not damaged. In clinical practice the radiation is delivered
by a linear accelerator which is part of a gantry that can be rotated about the
treatment couch (see Figure 1).

Fig. 1. A linear accelerator with a treatment couch

The first step in the treatment planning after the target volume and the organs
at risk have been localized is to discretize the radiation beam head into bixels
and the irradiated volume into voxels. Then a set of gantry angles from which

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1010–1055, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 2. The leaf pairs of a multileaf collimator

radiation is released has to be determined. In order to increase the efficiency
of the treatment it is often desirable to modulate the intensity profile of the
radiation beam. So for each gantry angle an intensity function is prescribed, i.e.
an amount of radiation released at each bixel. Finally, we have to find a way
to realize this modulation. Here we consider only the last step of this planning
process. That is as our starting point we take an intensity function for a fixed
irradiation angle. We assume that the radiation head is a rectangle and choose
a partition into equidistant cells as discretization. Then the intensity function
can be described as a nonnegative matrix whose entries are the desired doses at
the corresponding bixels. A modern approach to the modulation of homogeneous
fields is the usage of a multileaf collimator (MLC). A multileaf collimator consists
of one pair of metal leaves for each row of the intensity matrix (see Figure 2).
These leaves can be inserted between the beam head and the patient in order to
protect parts of the irradiated area. So differently shaped homogeneous fields are
generated and by superimposing a number of these the given modulated intensity
can be realized. There are two essentially different ways to generate intensity
modulated fields with multileaf collimators: in the static mode (stop–and–shoot)
the beam is switched off when the leaves are moving while in the dynamic mode
the beam is switched on during the whole treatment and the modulation is
achieved by varying the speed of the leaf motion. Two important criteria for
the quality of a treatment plan are the total irradiation time and the total
treatment time. The total irradiation time should be small since there is always
a small amount of radiation transmitted through the leaves, and if the used model
ignores this leaf transmission the error increases with the total irradiation time.
A small total treatment time is desirable for efficiency reasons. In the dynamic
mode the two criteria coincide. So here the problem is to determine a velocity
function for each leaf such that the given intensity is realized in the shortest
possible time. In the static mode the whole treatment consists of the irradiation
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and the intervals in between when the leaves are moved. Thus we have two
parameters which influence the total treatment time: the irradiation time and
the number of homogeneous fields that are needed. How these parameters have
to be weighted depends on the used technology: the longer the time intervals
between the different fields are, the more important becomes the reduction of
the number of fields. The lengths of these time intervals is influenced by the leaf
velocity and by the so called verification and record overhead, which is the time
necessary to check the correct positions of the leaves. In a more realistic model
one should also take the shapes of the fields into account, because clearly the
necessary leaf travel time between two fields depends on the shapes of these fields
(see [18,2]). The dynamic mode has the advantage of a smaller total treatment
time, but the static mode involves no leaf movement with radiation on and so
the verification of the correct realization of the treatment plan is easier which
makes the method less sensitive to malfunctions of the technology.

There are additional machine–dependent restrictions which have to be con-
sidered when determining the leaf positions:

Interleaf collision constraint (ICC): In some widely used MLC’s it is for-
bidden that opposite leaves of adjacent rows overlap, because otherwise these
leaves collide. So leaf positions as illustrated in Figure 3 are not allowed.

Fig. 3. Leaf position that is excluded by the ICC. The shading indicates the area that
is covered by the leaves

Tongue and groove constraint: In order to reduce leakage radiation between
adjacent leaves the commercially available MLC’s use a tongue–and–groove
(or similar) design (see Figure 4) with the effect that there is a small overlap
of the regions that are covered by adjacent leaves.

Consider two bixels x and y that are adjacent along a column and two
homogeneous fields, where in the first field x is irradiated and y is covered and
in the second field y is irradiated and x is covered. Then in the composition
of these fields along the border of x and y there is a narrow strip (the
overlap of the regions that are covered by the leaves in the rows of x and
y, respectively) that receives no radiation at all. Figure 5 illustrates this for
the intensity map ( 2 3

3 4 ).
To avoid this effect one may require that two bixels that are adjacent

along a column are irradiated simultaneously for the time the lower of the
two doses is delivered. Then the border region receives this lower dose. If this
is the case for all the relevant pairs of adjacent bixels the treatment plan is
said to satisfy the tongue and groove constraint.

In this paper we collect some of the known algorithms for the intensity modula-
tion of radiation beams with multileaf collimators in a unified notation.
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Radiation

leaf 1 leaf 2 leaf 3 leaf 4 leaf 5

Fig. 4. The principle of the tongue–and–groove design. The picture shows a cut through
the leaf bank perpendicular to the direction of leaf motion.

2 Static Methods

This chapter is organized as follows. In the first section some notation is intro-
duced and we describe a linear programming formulation of the total irradiation
time minimization (taken from [7]). In the second section we prove that the
minimization of the number of homogeneous fields that are needed is an NP–
complete problem. The remaining sections are devoted to the discussion of some
concrete algorithms.

3 MU

1 MU

1 MU

2 MU

1 MU

1 MU

(b)(a)

Fig. 5. Two realizations of the same intensity map. (a) The overlap of bixels (1, 1) und
(2, 1) receives no radiation because of the tongue and groove effect. (b) The overlaps of
bixels that are adjacent along a column receive the smaller one of the doses delivered
to the overlapping bixels.
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2.1 Notation and LP–Formulation

Throughout we use the notation [n] := {1, 2, . . . , n} for positive integers n.
The given intensity function can be considered as a nonnegative integer matrix
A = (ai,j) 1≤i≤m

1≤j≤n
. A segment is a matrix that corresponds to a leaf position of an

MLC. This is made precise in the following definition.

Definition 1. A segment is an m × n–matrix S = (si,j), such that there exist
integers li, ri (i ∈ [m]) with the following properties:

1 ≤ li ≤ ri + 1 ≤ n+ 1 (i ∈ [m]), (1)

si,j =
{

1 if li ≤ j ≤ ri
0 otherwise (i ∈ [m], j ∈ [n]). (2)

So li − 1 and ri + 1 have to be interpreted as the positions of the i–th left and
right leaf, respectively. A segmentation of A is a representation of A as a sum of
segments, i.e.

A =
k∑
i=1

uiSi

with segments Si and positive numbers ui (i = 1, 2, . . . , k). Every segmentation
corresponds in the obvious way to a treatment plan realizing the given intensity
matrix A. Our goal is to minimize the total number of monitor units (TNMU)
and the number of segments (NS), which in the segmentation correspond to∑k
i=1 ui and k, respectively. First of all, observe that in general it is not possi-

ble to minimize both of these parameters simultaneously. For the segmentation
problem with ICC this was shown by an example in [9]. Here we give an example
that is independent of the ICC, that means the simultaneous minimization is not
possible, no matter if the ICC is taken into account or not. The matrix ( 2 6 3

4 5 6 )
has a segmentation with 6 monitor units

( 2 6 3
4 5 6 ) = 3 ( 0 1 1

1 1 1 ) + 1 ( 1 1 0
1 1 1 ) + 1 ( 1 1 0

0 1 1 ) + 1 ( 0 1 0
0 0 1 ) ,

and this cannot be done with 3 segments. However, if we allow to use 7 monitor
units, 3 segments are sufficient:

( 2 6 3
4 5 6 ) = 4 ( 0 1 0

1 1 1 ) + 2 ( 1 1 1
0 0 1 ) + 1 ( 0 0 1

0 1 0 ) .

But it will be an easy consequence of Lemma 1 below, that for a single row A,
i.e. in the case m = 1, both parameters can be minimized simultaneously. By F
we denote the subsets of V := [m] × [n] that correspond to segments, that is

F = {T ⊆ V : There exists a segment S with ((i, j) ∈ T ⇐⇒ si,j = 1)}.
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Now an LP–relaxation of the TNMU–minimization problem is given by:

(P )



∑
T∈F

f(T ) → min subject to

f(T ) ≥ 0 ∀T ∈ F ,

∑
T∈F :(i,j)∈T

f(T ) = ai,j ∀(i, j) ∈ V.

In order to show that a certain algorithm is optimal with respect to the TNMU
one can use the dual of this program:

(D)


∑

(i,j)∈V
ai,jg(i, j) → max subject to

∑
(i,j)∈T

g(i, j) ≤ 1 ∀T ∈ F .

Following [7] one can define the functions gs (1 ≤ s ≤ m) by

gs(i, j) =


1 if i = s, ai,j ≥ ai,j−1 and ai,j+1 < ai,j

−1 if i = s, ai,j < ai,j−1 and ai,j+1 ≥ ai,j
0 otherwise,

where we put ai,0 = ai,n+1 = 0 for all i. It is easy to see that the gs are feasible
for (D) and that

∑
(i,j)∈V

ai,jgs(i, j) =
n∑
j=1

max{0, as,j − as,j−1}.

Thus

max
1≤i≤m

n∑
j=1

max{0, ai,j − ai,j−1}

is a lower bound for the TNMU of a segmentation, and in order to show the
optimality of a given algorithm it is sufficient to show that it realizes this bound.

In order to include the ICC into our model we have to add the following
conditions to the definition of a segment:

(ICC) li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m− 1]). (3)

2.2 NS–Minimization is NP–Complete

According to [1] R.E. Burkard showed that the NS–minimization is NP–complete
for m ≥ 2. Here we describe a formulation of the (m = 1)–case which was
found independently by the author and the authors of [1], and yields the NP–
completeness in this case. The intensity map is an n–dimensional row vector
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a = (a1, a2, . . . , an) with nonnegative integer entries, and a segment is an n–
dimensional (0, 1)−vector s = s(l, r) with

si(l, r) =
{

1 if l ≤ i ≤ r
0 otherwise,

for some integers l and r. Now the decision version of the NS–minimization
problem is the following: given a row vector a = (a1, . . . , an) and an integer
N , is there a segmentation of a with at most N segments? In order to prove
the NP–completeness of this problem we give a network flow formulation of the
segmentation problem. We define the digraph Γ = (V,E), where

V = [n + 1],
E = {(i, j) : 1 ≤ i < j ≤ n+ 1}

Now a flow yl,r+1 > 0 on an arc (l, r+ 1) ∈ E can be associated with the vector
yl,r+1s(l, r). Then a segmentation of a corresponds to a flow on Γ , such that
the net flow at vertex i is −di, where di := ai − ai−1 for i = 1, 2, . . . , n and
dn+1 := −an, i.e.

i−1∑
j=1

yj,i −
n+1∑
j=i+1

yi,j = −di (i ∈ [n + 1]).

In order to count the segments in the considered segmentation we introduce the
(0, 1)−variables xi,j for 1 ≤ i < j ≤ n+1, where xl,r+1 = 1 iff the segment s(l, r)
has nonzero coefficient. So we can write the problem of finding a segmentation
with minimal number of segments as the following fixed charge network flow
problem: ∑

1≤i<j≤n+1

xi,j → min subject to (4)

yi,j ≤ Lxi,j (1 ≤ i < j ≤ n+ 1) (5)
i−1∑
j=1

yj,i −
n+1∑
j=i+1

yi,j = −di (i ∈ [n+ 1]) (6)

xi,j ∈ {0, 1}, yi,j ∈ R+ (1 ≤ i < j ≤ n+ 1), (7)

where L is an upper bound for the coefficients in the segmentation, e.g. the
maximum entry of A.

Lemma 1. There is an optimal solution to (4)–(7) with yi,j = xi,j = 0 for all
(i, j) with di ≤ 0 or dj ≥ 0.

Proof. Let (x,y) be an optimal solution and assume there is positive flow yi,j
on some arc (i, j) with di ≤ 0 or dj ≥ 0. Let

φ(x,y) = |{(i, j) ∈ E : yi,j > 0 and di ≤ 0 or dj ≥ 0}|.
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We construct another optimal solution (x′,y′) with φ(x′,y′) < φ(x,y). Repeat-
ing this step if necessary, we finally obtain a solution (x′′,y′′) with φ(x′′,y′′) = 0,
and thus (x′′,y′′) is the required solution. Let (i1, i2, . . . , it) be a path with the
following properties:

1. yik,ik+1 > 0 and (dik ≤ 0 or dik+1 ≥ 0) for 1 ≤ k ≤ t− 1.
2. For i < i1, yi,i1 > 0 implies (di > 0 and di1 < 0).
3. For i > it, yit,i > 0 implies (dit > 0 and di < 0).

Such a path with t ≥ 2 exists by assumption.

Case 1: di1 > 0 and dit < 0.
Let α = min{yik,ik+1 : 1 ≤ k ≤ t− 1}, and put

y′ik,ik+1
= yik,ik+1 − α (1 ≤ k ≤ t− 1),

x′ik ,ik+1
=

{
1 if y′ik,ik+1

> 0,
0 if y′ik,ik+1

= 0,

x′i1,it = 1,

y′i1,it = yi1,it + α

and x′i,j = xi,j , y′i,j = yi,j for all the remaining (i, j). Obviously, the tran-
sition from (x,y) to (x′,y′) preserves the net flows at the vertices, hence
(x′,y′) is a feasible solution. Now for at least one k ∈ [t − 1], xik,ik+1 = 1
and x′ik,ik+1

= 0 and since the only x–component which might change from
0 to 1 is xi1,it , we obtain∑

1≤i<j≤n+1

x′i,j ≤
∑

1≤i<j≤n+1

xi,j ,

hence (x′,y′) is also optimal. Finally, for a k ∈ [t − 1] with yik,ik+1 = α,
y′ik,ik+1

= 0. And since (i1, it) is the only arc with increasing flow and does
not contribute to φ,

φ(x′,y′) < φ(x,y).

Case 2: di1 > 0 and dit ≥ 0.
Since the net flow in it is nonpositive there is some it+1 > it with yit,it+1 > 0
and by condition 3, dit+1 < 0. Now we make the same construction as in Case
1 with the path (i1, . . . , it, it+1).

Case 3: di1 ≤ 0 and dit < 0.
Since the net flow on i1 is nonnegative there is some i0 < i1 with yi0,i1 > 0
and by condition 2, di0 > 0. Now we make the same construction as in Case
1 with the path (i0, i1, . . . , it).

Case 4: di1 ≤ 0 and dit ≥ 0.
As in the Cases 2 and 3, there are i0 < i1 and it+1 > it with yi0,i1 > 0,
yit,it+1 > 0, di0 > 0 and dit+1 < 0, and we can make the same construction
with the path (i0, i1, . . . , it+1).
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So we can restrict our search to the arc set

E0 = {(i, j) : 1 ≤ i < j ≤ n+ 1, di > 0, dj < 0}

and thus we have reduced the problem to a fixed charge transportation problem
with sources S = {i : di > 0} and sinks T = {j : dj < 0}.
Example 1. The segmentation

( 2 4 1 3 1 4 ) = 2( 1 1 0 0 0 0 ) + ( 0 1 0 0 0 0 ) + ( 0 1 1 1 1 1 ) + 2( 0 0 0 1 0 0 )
+ 3( 0 0 0 0 0 1 ) (8)

corresponds to the flow in Fig. 6.

1 (  2)

2 (  2)

4 (  2)

6 (  3)

3 (3)

5 (2)

7 (4)

2

1

3

2
1

Fig. 6. The flow corresponding to the segmentation (8). The numbers in parentheses
are the net flows at the vertices.

Remark 1. Observe that in an optimal flow satisfying the conditions of Lemma
1 the sum of the flows over all arcs, i.e. the TNMU of the corresponding seg-
mentation, equals the sum of the net flows at the sinks. Clearly, this is a lower
bound for the TNMU, hence the corresponding segmentation is also optimal with
respect to the TNMU. So for m = 1, in contrast to the general case, the TNMU
and the NS can be minimized simultaneously.

Using this transportation formulation we can now prove the NP–completeness.

Theorem 1. The NS–minimization problem is NP–complete.

Proof. The problem is obviously in NP, and to show the NP–hardness we reduce
the 0 − 1−knapsack problem: given positive integers c1, . . . , cn−1,K, is there a
subset I ⊆ {1, . . . , n− 1} with

∑
i∈I

ci = K ? We put

ai =
i∑
j=1

cj (i = 1, 2, . . . , n− 1) and an = K,
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and claim that the answer to the 0−1−knapsack problem (c1, c2, . . . , cn−1,K) is
yes iff the answer to the NS-minimization problem (a1, a2, . . . , an, n− 1) is yes.
We distinguish 3 cases.

Case 1: K >
n−1∑
i=1

ci = an−1.

The answer to the knapsack problem (c1, c2, . . . , cn−1,K) is no, and in the
transportation problem corresponding to the segmentation we have n sources
and 1 sink, so we need n edges with nonzero flow and hence the answer to
the NS–minimization problem (a1, . . . , an, n− 1) is also no.

Case 2: K =
n−1∑
i=1

ci = an−1.

The answer to the knapsack problem (c1, c2, . . . , cn−1,K) is yes, and in the
transportation problem corresponding to the segmentation we have n − 1
sources and 1 sink, so n − 1 edges with nonzero flow are sufficient and the
answer to the NS–minimization problem (a1, . . . , an, n− 1) is also yes.

Case 3: K <
n−1∑
i=1

ci = an−1.

In the transportation problem we have n−1 sources with supplies c1, c2, . . . ,
cn−1 and 2 sinks with demands K and an−1 − K. At every source there
must be at least one outgoing arc with nonzero flow. So altogether there are
at least n − 1 edges with nonzero flow and n − 1 arcs are sufficient iff at
every source there is exactly one outgoing arc with nonzero flow. But this is
equivalent to the existence of a subset I ⊂ {1, 2, . . . , n− 1} with

∑
i∈I

ci = K.

Due to this result it is reasonable to look for a good approximative algorithm
for the NS–minimization.

2.3 The Algorithm of Galvin, Chen and Smith

In [8] the authors propose a heuristic algorithm which aims at finding a segmen-
tation with a small NS. As several of the algorithms below it works according
to the following general strategy: depending on the given matrix A a coeffi-
cient u > 0 and a number of segments S1, S2, . . . , St are determined such that
A′ = A − u(S1 + S2 + · · · + St) is still nonnegative, and then the algorithm is
iterated with A′ instead of A. It is clear that this always yields a segmentation
of A. Since in a number of algorithms the maximal entry of A is a parameter,
it is convenient to give it a name. So let L denote the maximal entry of the
considered matrix A for the rest of this thesis. The algorithm from [8] works as
follows

1. In a preliminary step eliminate the background intensity, that is put A :=
A−uJ , where u is the smallest entry of A and J is the m×n all–one matrix.

2. Let u be the smallest integer such that 1
2u(u+ 1) ≥ L.

3. Mark all the entries of A which are greater or equal to u, i.e. which can be
irradiated with u MU.
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4. Determine a sequence of segments whose sum is a (0, 1)−matrix S which has
a 1 at position (i, j) iff the entry (i, j) is marked.

5. Put A := A− uS, u := u− 1 and continue with step 3.

If we do not consider interleaf collision constraints the rows can be treated
independently and step 4 can be realized as follows. In each row i, we find
the maximal intervals of entries which are greater than or equal to u. These
intervals can be described by their left and right boundaries, that is by numbers
li,1, . . . , li,t(i) and ri,1, . . . , ri,t(i), such that

1 ≤ li,1, ri,t(i) ≤ n,

li,k ≤ ri,k (1 ≤ k ≤ t(i)),
ri,k < li,k+1 − 1 (1 ≤ k ≤ t(i) − 1),

ai,j

{
≥ u if li,k ≤ j ≤ ri,k for some k,
< u otherwise.

With the additional convention that t(i) = 0 for rows without entries greater
or equal to u and li,k = n + 1, ri,k = n for k > t(i), the whole procedure is
summarized in Algorithm 1.

Algorithm 1. Galvin, Chen and Smith
u := min{ai,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
A := A − uJ
u := min

{
k : 1

2
k(k + 1) ≥ L

}
while A �= 0 do

for i = 1 to m do
determine li,1, li,2, . . . , li,t(i), ri,1, ri,2, . . . , ri,t(i)

t := max
1≤i≤m

t(i)

for 1 ≤ k ≤ t let Sk be the segment determined by the li,k, ri,k

S :=
t∑

k=1

Sk

A := A − uS; u := u − 1

Example 2. We will illustrate some of the described algorithms by construction
of a segmentation for the benchmark matrix (from [4,14])

A =


4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

 .

For u = 3 we obtain S =
(

1 1 0 0 1 1
0 1 0 1 0 1
0 1 0 0 0 1
1 1 1 0 1 1

)
with residual matrix

(
1 2 0 1 1 2
2 1 1 0 1 1
2 0 2 1 2 1
2 0 0 2 2 0

)
.

For u = 2 we obtain S =
(

0 1 0 0 0 1
1 0 0 0 0 0
1 0 1 0 1 0
1 0 0 1 1 0

)
with residual matrix

(
1 0 0 1 1 0
0 1 1 0 1 1
0 0 0 1 0 1
0 0 0 0 0 0

)
.
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So the total segmentation is(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3

(
1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0

)
+ 3

(
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 3

(
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)

+ 2
(

0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

)
+ 2

(
0 0 0 0 0 1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0

)
+ 2

(
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

)
+ 1

(
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

)

+ 1
(

0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

)
.

2.4 The Algorithm of Bortfeld et al.

The first segmentation algorithm which is optimal with respect to the TNMU
was introduced in [3]. Again we neglect additional constraints like ICC, and so
the rows can be treated independently. Let a = (a1, a2, . . . , an) be a row of A.
In addition we put a0 = an+1 = 0 and L = max

1≤i≤n
ai. Now, for 1 ≤ k ≤ L, we

determine the index sets

Pk = {i ∈ [n] : ai−1 < k ≤ ai}, Qk = {i ∈ [n] : ai ≥ k > ai+1},

and put P =
⋃
k Pk, Q =

⋃
k Qk where the unions have to be understood in the

multiset sense. Observe that, for each k, |Pk| = |Qk|, and that

c :=
L∑
k=1

|Pk| =
n∑
i=1

max{0, ai − ai−1}.

If P = (p1, p2, . . . , pc) and Q = (q1, q2, . . . , qc) are ordered such that qi ≥ pi for
all i, then we can write a as a sum of c segments b(1), . . . ,b(c) defined by

b
(i)
j =

{
1 if pi ≤ j ≤ qi,
0 otherwise.

In [3] two variants of the segmentation algorithm are deduced from this. For the
sweep technique P and Q are ordered independently by magnitude, i.e.

p1 ≤ p2 ≤ . . . ≤ pc, q1 ≤ q2 ≤ . . . ≤ qc.

For the close–in technique the Pk and the Qk are ordered by magnitude, each
element of a Pk is paired with the corresponding element of Qk and the resulting
pairs (p, q) are ordered by the magnitude of the first component.

Combining the segmentations of the single rows one can produce segmenta-
tions for general intensity matrices.
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Example 3. For the second row of A =
(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
we obtain

P1 = {1}, P2 = {1, 4, 6}, P3 = {2, 4, 6}, P4 = {2, 6},
Q1 = {6}, Q2 = Q3 = {2, 4, 6}, Q4 = {2, 6}

and the sequence of pairs (p, q) using the sweep technique is

(1, 2), (1, 2), (2, 2), (2, 4), (4, 4), (4, 6), (6, 6), (6, 6), (6, 6),

while the close–in technique yields

(1, 6), (1, 2), (2, 2), (2, 2), (4, 4), (4, 4), (6, 6), (6, 6), (6, 6).

The corresponding segmentations of the whole matrix are(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 1

(
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0

)
+ 1

(
1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0

)
+ 1

(
1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
1 1 1 0 0 0

)

+ 1
(

1 1 0 0 0 0
0 1 1 1 0 0
0 0 0 0 1 1
1 1 1 1 1 0

)
+ 1

(
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 1 1 1 1 0

)
+ 1

(
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 2

(
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)

+ 1
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
+ 1

(
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
and(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 1

(
1 1 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

)
+ 1

(
1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 1

)
+ 1

(
1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0

)

+ 1
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1
1 0 0 0 0 0

)
+ 1

(
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 1

(
0 0 0 1 1 1
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 2

(
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0

)

+ 1
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
+ 1

(
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
.

2.5 The Algorithm of Engel

Engel proposes an algorithm which is optimal with respect to the TNMU and
almost optimal with respect to the NS. The theoretical result underlying that
algorithm is

Theorem 2 ([7]). The minimal TNMU of a segmentation of A equals

c(A) := max
1≤i≤m

ci(A), where (9)

ci(A) :=
n∑
j=1

max{0, ai,j − ai,j−1}. (10)

(Recall that ai,0 = ai,n+1 = 0 for all i.)
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Using this terminology the reason for the optimality of the algorithm of Bortfeld
et al. can be summarized as follows: if A′ is the residual matrix after the first
step, then by construction

ci(A′) = ci(A) − 1, (11)

for all i with ci(A) > 0, in particular c(A′) = c(A)− 1, and thus after c(A) steps
A is reduced to the zero matrix. The drawback of this method is that a priori
all the segments have coefficient 1, and thus the NS is rather large. Obviously,
if the algorithm yields the same segment S in u different steps, these can be
combined to obtain one segment with coefficient u. In view of (11) this amounts
to the search for a pair (u, S) of a positive integer u and a segment S such that
A− uS is still nonnegative and

ci(A− uS) = ci(A) − u,

for all i with ci(A) > 0. But this condition is unnecessary strong: we only need

c(A− uS) = c(A) − u, (12)

i.e.
ci(A− uS) ≤ c(A) − u (13)

for all i. For the choice of the coefficient u it is a suggestive strategy to take the
maximal u for which there exists a segment S such that A− uS is nonnegative
and (12) is true. Let umax be this maximal possible value for u. According to
[7], umax can be determined as follows. We put

di,j = ai,j − ai,j−1 (1 ≤ i ≤ m, 1 ≤ j ≤ n+ 1)

and consider some segment S, given by l1, . . . , lm and r1, . . . , rm. One can prove
(see [7]) that it is no restriction to assume that, for all i, either li = ri + 1 or
(di,li > 0 and di,ri+1 < 0), and that under these assumptions ci(A − uS) ≤
c(A) − u is equivalent to u ≤ vi(li, ri), where

vi(l, r) =


gi(A) if l = r + 1,
gi(A) + min{di,l,−di,r+1} if l ≤ r and gi(A) ≤ |di,l + di,r+1|,
(di,l − di,r+1 + gi(A)) /2 if l ≤ r and gi(A) > |di,l + di,r+1|,

with gi(A) := c(A) − ci(A). For convenience we denote the set of pairs (l, r) to
which we restrict our search in row i by Ii, that is we put

Ii := {(l, r) : 1 ≤ l ≤ r + 1 ≤ n+ 1
and either l = r + 1 or (di,l > 0 and di,r+1 < 0)}.

Clearly the nonnegativity of A−uS is equivalent to u ≤ wi(li, ri) for all i, where

wi(l, r) =

{
∞ if l = r + 1,
min
l≤j≤r

ai,j if l ≤ r.
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Now we put, for 1 ≤ i ≤ m and (l, r) ∈ Ii,

ûi(l, r) = min{vi(l, r), wi(l, r)},

and for 1 ≤ i ≤ m,

ũi = max
(l,r)∈Ii

ûi(l, r). (14)

Then

umax = min
1≤i≤m

ũi. (15)

In order to construct a segment S such that, for u = umax, A−uS is nonnegative
and (12) is true, we just have to find, for every i ∈ [m], a pair (li, ri) ∈ Ii with

ûi(li, ri) ≥ umax.

A trivial way of doing this is to take a pair (li, ri) where the maximum in (14) is
attained, i.e. with ûi(li, ri) = ũi. These (li, ri) can be computed simultaneously
with the calculation of umax and this method yields mn + n − 1 as an upper
bound for the NS of the segmentation (see [7]). But there are better constructions
for S after the determination of umax. We describe a construction of S which,
on randomly generated test matrices, yields slightly better results than the one
given in [7]. We put

q(A) = |{(i, j) ∈ [m] × [n] : di,j = 0}| , (16)

and choose a segment S so that q(A − uS) is minimized. To make this precise,
for 1 ≤ i ≤ m and (l, r) ∈ Ii, we put

pi(l, r) =


2 if di,l = −di,r+1 = umax,
1 if di,l = umax = −di,r+1 or di,l = umax = −di,r+1,
0 if l = r + 1 or (di,l = umax and − di,r+1 = umax).

Now for (li, ri) we choose among the pairs (l, r) ∈ Ii with ûi(l, r) ≥ umax one
with maximal value of pi(l, r), and if there are several of these we choose one
with maximal value of r − l.

Example 4. For the benchmark matrix the algorithm yields(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 4

(
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 2

(
0 0 0 0 1 1
0 0 0 1 0 0
1 1 1 0 0 0
0 1 1 1 1 0

)
+ 1

(
0 0 0 1 1 1
1 1 1 1 0 0
0 0 0 1 1 0
1 1 1 0 0 0

)

+ 1
(

0 0 0 0 1 1
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1

)
+ 1

(
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 1

)
+ 1

(
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1

)
.
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2.6 The Algorithm of Kalinowski

In [11] the approach of [7] is generalized to include the ICC. For this purpose we
reformulate Theorem 2 as follows: let

−→
G0 = (V,E0) be a digraph with

V = [m] × [n + 1] ∪ {s, t},
E0 = E1 ∪ E2 where
E1 = {(s, (i, 1)) : i ∈ [m]} ∪ {((i, n+ 1), t) : i ∈ [m]},
E2 = {((i, j), (i, j + 1)) : i ∈ [m], j ∈ [n− 1]},

and define a weight function δ on
−→
G0 (depending on A) by

δ(s, (i, 1)) = ai,1 i ∈ [m],
δ((i, n+ 1), t) = 0 i ∈ [m],

δ((i, j), (i, j + 1)) = max{0, di,j+1} i ∈ [m], j ∈ [n].

An equivalent formulation of Theorem 2 is

Theorem 2′ 1. The minimal TNMU of a segmentation of A (without ICC)
equals the maximal weight of an (s, t)–path in

−→
G0 with respect to A.

The vertices (i, n+1) (i ∈ [m]) are not necessary here, since the arcs ((i, n), (i, n+
1)) have weight 0 anyway. But we have added them to avoid case distinctions
below. In order to model the ICC in the graph we have to add some additional
arcs. We define the digraph

−→
G = (V,E) with E = E0 ∪E3 ∪ E4, where

E3 = {((i, j), (i+ 1, j)) : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1},
E4 = {((i, j), (i− 1, j)) : 2 ≤ i ≤ m, 1 ≤ j ≤ n− 1},

and we extend δ to E by

δ((i, j), (i+ 1, j)) = −ai,j 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1,
δ((i, j), (i− 1, j)) = −ai,j 2 ≤ i ≤ m, 1 ≤ j ≤ n− 1.

In Figure 7 the construction is illustrated for the matrix

A =
(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
.

The main result of [11] is

Theorem 3. The minimal TNMU of a segmentation of A with ICC equals the
maximal weight of an (s, t)–path in

−→
G with respect to A.

We denote this maximal weight by c(A):

c(A) = max{δ(P ) : P is an (s, t) − path in
−→
G}.
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4 5 0 1 4 5
2 4 1 3 1 4

2 4 1 3 1 4
2 3 2 1 2 4

2 3 2 1 2 4
5 3 3 2 5 3

1 0 1 3 1 0

2 0 2 0 3 0

1 0 0 1 2 0

0 0 0 3 0 0

ts

4

2

2

5

Fig. 7. The weighted digraph corresponding to the benchmark matrix

The proof of the theorem consists of two parts. First with an (s, t)–path P in
−→
G

we associate a function gP : [m] × [n] → {0, 1,−1} such that g is dually feasible
for the TNMU–minimization, and for some (s, t)–path P with δ(P ) = c(A) we
have ∑

(i,j)∈[m]×[n]

ai,jg(i, j) = δ(P ).

From this by duality we conclude that the TNMU of a segmentation is greater
or equal to c(A). The function gP that does the job is

gP (i, j) =



1 if {(i, j), (i, j + 1), (i, j + 2)} ⊂ P, di,j ≥ 0, di,j+1 < 0,
1 if {(i, j), (i, j + 1)} ⊂ P, (i, j + 2) ∈ P, di,j ≥ 0,

−1 if {(i, j), (i, j + 1), (i, j + 2)} ⊂ P, di,j < 0, di,j+1 ≥ 0,
−1 if (i, j) ∈ P, (i, j + 1) ∈ P,
−1 if {(i− 1, j), (i, j), (i+ 1, j)} ⊂ P,
−1 if (i, j) ∈ P, (i, j + 1) ∈ P, di,j+1 ≥ 0,

0 otherwise.

The second part of the proof is the construction of a segmentation of A with
TNMU c(A). For this we put A0 = A, and in the i–th step we construct a
segment S = Si such that c(Ai−1 − S) = c(Ai−1) − 1, and put Ai = Ai−1 − S.
So for k = c(A) after k steps we obtain c(Ak) = 0 and this implies Ak = 0. By
construction

A =
k∑
i=1

Si

is the required segmentation. In order to describe the construction of S for a
fixed A we put

α1(i, j) = max{δ(P ) : P is an (s, (i, j)) − path in
−→
G},

α2(i, j) = max{δ(P ) : P is an ((i, j), t) − path in
−→
G},

α(i, j) = α1(i, j) + α2(i, j),
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and define two subsets of [m] × [n],

V1 = {(i, j) ∈ [m] × [n] : di,j ≥ 0, di,j+1 < 0},
V2 = {(i, j) ∈ V1 : α(i, j) = c(A), α1(i, j) = ai,j}.

Now the segment S (described by the li, ri (i ∈ [m])) can be constructed ac-
cording to Algorithm 2. The proofs that the gP have the claimed properties, and
that the algorithm yields the required results are quite technical and we omit
them here (see [11] for the details).

In order to reduce the NS one can proceed analogous to the algorithm of Engel.
In [12] is described a backtracking algorithm, that determines a pair (u, S) of an
integer u and a segment S such that A−uS is nonnegative, c(A−uS) = c(A)−u
and u is maximal under the condition that a segment with these properties exists.

Example 5. For the benchmark matrix the algorithm from [12] yields(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3

(
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 3

(
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

)
+ 1

(
0 0 0 0 0 1
0 0 0 1 1 1
0 0 0 0 1 0
0 1 1 1 1 0

)

+ 1
(

0 0 0 1 1 1
0 0 0 1 0 0
0 1 1 0 0 0
1 1 1 0 0 0

)
+ 1

(
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 1 1 0

)
+ 1

(
1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
0 0 0 0 0 0

)
.

Algorithm 2. Segment S(A, V2)
for (i, j) ∈ V2 do

li := max{j′ ≤ j : ai,j′ = 0}+1
ri := j

for i = 1 to i1 − 1 do
5: li := li1 ; ri := li − 1

for i = it + 1 to m do
li := lit ; ri := li − 1

for k = 1 to t − 1 do
if jk > jk+1 then

10: i := ik
while i < ik+1 and li > rik+1 + 1 do

i := i + 1
ri := li−1 − 1
li := max{j ≤ ri : aij = 0} + 1

15: for i′ = i + 1 to ik+1 − 1 do
ri′ := rik+1 ; li′ := ri′ + 1

else
i := ik+1

while i > ik and li > rik + 1 do
20: i := i − 1

ri := li+1 − 1
li := max{j ≤ ri : aij = 0} + 1

for i′ = ik + 1 to i − 1 do
ri′ := rik ; li′ := ri′ + 1
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2.7 The Algorithm of Xia and Verhey

In [24] another heuristic method for the construction of a segmentation with
small NS is proposed. Here again the general principle is to determine a coeffi-
cient u and a segment S and to continue with A− uS. The coefficient is chosen
to be a power of 2 which is close to half of the maximal entry of A, precisely

u = 2
logL�−1,

where the base of the logarithm is 2. The next step towards the algorithm is the
observation that in the two–column case every (0, 1)–matrix is a segment. So for
a two–column matrix A the segment corresponding to the coefficient u may be
defined by

si,j =
{

1 if ai,j ≥ u,
0 otherwise.

In the whole segmentation process every power of 2 between 1 and 2
logL�−1

appears at most once as a coefficient, and thus the NS is at most 	logL
. The
straightforward generalization of this method to an n–column matrix A is to
divide A into two–column submatrices, and apply the algorithm to these sub-
matrices. (If n is odd one has to add a dummy (n+1)–th column with all entries
equal to 0.) This yields 	n2 
	logL
 as an upper bound for the NS. Actually, this
bound can be replaced by


n
2 �∑
k=1

	logLk
,

where Lk is the maximal entry of the submatrix which consists of the columns
2k − 1 and 2k. Obviously, it is not very efficient to treat the two–column sub-
matrices independently, because it may be possible to combine some segments
for different two–column submatrices to obtain a single segment for the whole
matrix. The authors of [24] propose two ways of doing this. The sliding window
technique determines the coefficient always according to the leftmost nonzero
two–column submatrix, say columns j and j + 1. Then the leaves are set to
obtain the largest possible extension of a leaf setting for columns j and j + 1.
The reducing level technique determines the coefficient according to the maximal
entry of the whole matrix A and sets the leaves such that the irradiated area,
i.e. the number of 1’s in the segment S, is maximal.

Example 6. The segmentation of the benchmark matrix using the sliding win-
dow technique is(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 4

(
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 2

(
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 0 0 0
0 1 1 1 1 1

)
+ 1

(
0 1 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
1 1 1 0 0 0

)

+ 2
(

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0

)
+ 1

(
0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 1

)
+ 1

(
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
+ 1

(
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
,
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and with the reducing level technique we obtain(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 4

(
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 4

(
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0

)
+ 2

(
0 0 0 0 0 0
0 0 0 1 0 0
1 1 1 0 0 0
0 1 1 1 0 0

)

+ 2
(

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)
+ 1

(
0 1 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
1 1 1 0 0 0

)
+ 1

(
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

)
+ 1

(
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
.

In [17] four variations of the Xia–Verhey–algorithm are compared to the algo-
rithm of Galvin, Chen and Smith and the algorithm of Bortfeld et al. The three
alternative versions of the Xia–Verhey–algorithm differ in the choice of the coef-
ficient u. In the first one it is u =

⌈
L
2

⌉
, in the second one it is the nearest integer

to the average of the nonzero entries of A, and in the third one it is the median
of the nonzero entries of A. The essential result of the comparison is that none
of these variants is most efficient in all cases (neither for random test matrices
nor for clinical examples), but the original version of Xia and Verhey yields on
average the smallest NS. The NS can be reduced by a factor of 2 compared to
Bortfeld’s algorithm at the cost of an increase of the TNMU by about 50%.

2.8 The Algorithm of Siochi

In [18] a segmentation algorithm is described which is the basis of the Siemens
IMFAST algorithm, as implemented in the commercial IMRT planning system
CORVUS. This algorithm minimizes a more realistic measure for the total treat-
ment time which takes into account both the irradiation time and the leaf travel
time. For the segmentation A =

∑k
t=1 utSt we put

τ =
k∑
t=1

ut
D

+
k∑
t=2

max{TV R, δt}, (17)

where D is the dose rate (in MU/min), TV R is the verification and record (V&R)
overhead and

δt = max
1≤i≤m

max

{
|l(t)i − l

(t−1)
i |

v
,
|r(t)i − r

(t−1)
i |

v

}

is the leaf travel time between segments t − 1 and t. Here v is the leaf speed,
and l

(t−1)
i , r

(t−1)
i (i ∈ [m]) and l

(t)
i , r

(t)
i (i ∈ [m]) are the parameters of the

segments t − 1 and t, respectively. The second sum starts at t = 2 since it is
assumed that the leaves are set to the first position before the treatment starts.
The motivation for taking the maximum in the second sum in (17) instead of
the sum of the two values is that we can already start the V&R–cycle in rows
where the leaves have already stopped while in others they are still moving, and
according to [18] the V&R of the last leaf pair is negligible compared to that of
all the others combined. Now the proposed algorithm is a combination of two
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parts called extraction and rod pushing. The extraction part is closely related
to the algorithm of Galvin, Chen and Smith, but formulated in a way that
allows to include ICC and tongue and groove constraints. The rod pushing part
is essentially a reformulation of the algorithm of Bortfeld et al. in a geometric
setting, but also adjustable to additional constraints. First we describe the basic
algorithm without additional constraints, and after that we show how the two
parts have to be modified to include the constraints.

The basic algorithm

Rod pushing: The matrix A is visualized as a rectangular m × n–array of
rods, where the rod at position (i, j) consists of ai,j cubes. In the beginning
all the rods stand on a plane π. Fig. 8 illustrates this for the matrix(

1 4 2
3 2 1
1 2 2

)
.

Fig. 8. Visualization of an intensity matrix as an array of rods

Now we push some of the rods up in order to achieve a situation where, for
all h > 0, the positions of the cubes at height h (above π) can be used to
describe a segment. The position of any rod (i, j) is uniquely determined by
the height of its lowest cube (the base of the rod), which we call b(i, j). That
is, the rod (i, j) occupies the cubes

(i, j, b(i, j)), (i, j, b(i, j) + 1), . . . , (i, j, t(i, j)),

where t(i, j) := b(i, j) + ai,j − 1 is the height of the highest cube (the top)
of the rod. Now the rod pushing procedure can be described as follows:

for i = 1 to m do
b(i, 1) := 1, t(i, 1) = ai,1
for j = 2 to n do

if ai,j > ai,j−1 then
b(i, j) := b(i, j − 1); t(i, j) = b(i, j) + ai,j − 1

else
t(i, j) := t(i, j − 1); b(i, j) = t(i, j) − ai,j + 1
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Fig. 9. The rod pushing process for one row

Fig. 9 illustrates the rod pushing process corresponding to the segmentation

( 1 4 2 3 4 1 2 ) = ( 1 1 0 0 0 0 0 ) + ( 0 1 0 0 0 0 0 ) + ( 0 1 1 1 1 0 0 )
+( 0 1 1 1 1 0 0 ) + ( 0 0 0 1 1 0 0 ) + ( 0 0 0 0 1 1 1 ) + ( 0 0 0 0 0 0 1 )

By construction, for every h, the cubes at height h describe a segment, the
sum of these segments is A and the maximal height of a cube in row i
is

∑n
j=1 max{0, ai,j − ai,j−1}. So by Theorem 2 the result is optimal with

respect to the TNMU, and one can check that the same segmentation is
obtained by the algorithm of Bortfeld et al. using the sweep technique.

Extraction: This step consists of the determination of a sequence of coeffi-
cients u1, u2, . . . , uk0 and corresponding segments S1, . . . , Sk0 such that the
residual matrix

A′ = A−
k∑
i=1

uiSi

is nonnegative. The optimization algorithm does an exhaustive search on a
certain set of pairs (k0,u) where k0 is a positive integer and u is a k0–tuple
u = (u1, . . . , uk0) of positive integers (to be defined below). For each of these
pairs, a sequence of segments (S1, . . . , Sk0) is determined as follows.
A0 := A
for i = 1 to k0 do

determine a segment Si with respect to the matrix Ai−1 and the coeffi-
cient ui as in the algorithm of Galvin et al.
Ai := Ai−1 − uiSi

Then the rod pushing procedure is applied to Ak0 and the pairs (k0,u)
are evaluated according to the total treatment time τ for the segmentation
that results from the combination of the two parts. Finally, the (u1, . . . , uk0)
yielding the smallest τ is chosen for the segmentation together with the
corresponding (S1, . . . , Sk0) and the subsequent rod pushing segments. The
search space is restricted by the following conditions, which have been found
to be strong enough to make the search computationally feasible but weak
enough to give good solutions ([18]).
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1. u1 ≥ u2 ≥ . . . ≥ uk0 .
2. u1 ≤ max{�L/2�, û}, where û is the extract value yielding the best result

if we extract only one segment before applying the rod pushing, i.e. if
k0 = 1.

3.
k0∑
i=1

ui ≤ max
1≤i≤m

n∑
j=1

max{0, ai,j − ai,j−1}.

Example 7. To illustrate the algorithm we assume that the size of the cells in
our benchmark matrix is 1 cm×1 cm, the leaf speed v = 1 cm/sec, the verification
and record overhead TV R = 2 sec and the dose rate D = 60 MU/min. The best
solution if only one segment is extracted is obtained with û = 3 and so the
extraction sequences (u1, . . . , uk0) with 3 ≥ u1 ≥ u2 ≥ . . . ≥ uk0 > 0 and∑k0
i=1 ui ≤ 10 have to be checked. The result is that the segmentation with only

one extraction is already the optimal one, namely(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3

(
1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0

)
+
(

1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

)
+
(

0 1 0 0 0 0
1 1 1 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0

)

+
(

0 0 0 1 1 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 1 0

)
+
(

0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 1
0 0 0 1 1 0

)
+
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 1 1

)
+
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)

+
(

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)
where we have

τ = (10 + 2 + 3 + 4 + 3 + 2 + 2 + 2) sec = 28 sec.

Interleaf collision constraint: The ICC forbids the overlapping of opposite
leaves in adjacent rows, that is we must have

li ≤ ri+1 + 1 and ri ≥ li+1 − 1 (1 ≤ i ≤ m− 1).

Extraction: In the extraction step with coefficient u we have to find, in each
row i, an interval of entries greater or equal to u. If we fix two adjacent
columns j and j + 1 and require that every nonempty of the intervals inter-
sects at least one of these columns, then the ICC is automatically satisfied,
since then li ≤ j + 1 and ri ≥ j for all i with li ≤ ri, and for the zero–rows
of the segment it is obvious how to choose (li, ri) with li = ri+1 in order to
satisfy the ICC. Now we can do this for all possible pairs of adjacent columns
j, j + 1 and finally choose the segment with the largest irradiated area.

Rod pushing: A violation of the ICC can only occur, if for some (i, j) we
have b(i, j) > t(i+ 1, j) + 1 or t(i, j) < b(i+ 1, j)− 1 (see Fig. 10, where the
segment corresponding to height 3 is ( 1 0 0

0 0 1 ) and thus violates the ICC).
If this is the case we may push up the rod (i + 1, j) (resp. (i, j)) (see

Algorithm 3 for the details).
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Fig. 10. The segment corresponding to height 3 violates the ICC

Tongue and groove effect: We have to make sure that it does not occur that
in one segment the bixel (i, j) is exposed and the bixel (i±1, j) is covered, while
in some later step (i, j) is covered and (i± 1, j) is exposed.

Extraction: A sufficient condition to avoid the tongue and groove effect be-
tween different extract matrices is that, for every extract matrix S(t) =(
s
(t)
i,j

)
with coefficient ut, we have

ai,j − ut ≥ ai+1,j if s(t)i,j = 1 and s
(t)
i+1,j = 0 (18)

ai,j − ut ≥ ai−1,j if s(t)i,j = 1 and s
(t)
i−1,j = 0. (19)

This implies that if in some later step t′ the bixel (i ± 1, j) is exposed (i.e.
s
(t′)
i±1,j = 1) then it is also possible to expose bixel (i, j) and so the tongue

and groove underdosage is avoided. In order to achieve the validity of (18)
and (19) one proceeds as follows

construct a segment S = (si,j) as above
repeat

for (i, j) with si,j = 1 and (18) or (19) is violated do
si,j := 0

change entries from 1 to 0 so that a segment satisfying the ICC results
until no entry has to be changed

Rod pushing: In the rod pushing process the tongue and groove effect can
be avoided using a modification of the basic method similar to Algorithm 3.
Instead of the corrections in lines 14 to 19 and 22 to 27 of this algorithm one
has to use

t(i + 1, j) := t(i, j)
b(i+ 1, j) := t(i + 1, j) − ai+1,j + 1

}
if ai,j < ai+1,j

and t(i, j) > t(i+ 1, j),

b(i, j) := b(i+ 1, j)
t(i, j) := b(i, j) + ai,j − 1

}
if ai,j < ai+1,j

and b(i, j) < b(i+ 1, j),

t(i, j) := t(i + 1, j)
b(i, j) := t(i, j) − ai,j + 1

}
if ai,j ≥ ai+1,j

and t(i, j) < t(i+ 1, j),
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Algorithm 3. Rod pushing with ICC
for i = 1 to m do

b(i, 1) = 1; t(i, 1) = ai,1

for j = 2 to n do
for i = 1 to m do

5: if ai,j > ai,j−1 then
b(i, j) := b(i, j − 1); t(i, j) = b(i, j) + ai,j − 1

else
t(i, j) := t(i, j − 1); b(i, j) = t(i, j) − ai,j + 1

Choose i0 ∈ [m] with t(i0, j) ≥ t(i, j) for all i
10: for i = i0 − 1 downto 1 do

if t(i, j) < b(i + 1, j) − 1 then
t(i, j) := b(i + 1, j) − 1; b(i, j) := t(i, j) − ai,j + 1

if b(i, j) > t(i + 1, j) + 1 then
t(i + 1, j) := b(i, j) − 1; b(i + 1, j) := t(i + 1, j) − ai+1,j + 1

15: for i = i0 + 1 to m do
if t(i, j) < b(i − 1, j) − 1 then

t(i, j) := b(i − 1, j) − 1; b(i, j) := t(i, j) − ai,j + 1
if b(i, j) > t(i − 1, j) + 1 then

t(i − 1, j) := b(i, j) − 1; b(i − 1, j) := t(i − 1, j) − ai+1,j + 1

b(i+ 1, j) := b(i, j)
t(i+ 1, j) := b(i+ 1, j) + ai+1,j − 1

}
if ai,j ≥ ai+1,j

and b(i, j) > b(i+ 1, j).

These corrections make sure that, for two rods that are adjacent along a
column, the shorter one has its base above or at the same level as the longer
one and has its top below or at the same level as the longer one. Thus the
resulting segments also satisfy the ICC.

2.9 The Algorithm of Kamath et al.

Another segmentation algorithm is described in [13]. Here the authors consider
more general constraints which are motivated by the design of some MLCs:

Minimum separation constraint (MSC): The distance between the left and
the right leaf in every row can not be smaller than a minimum distance δ0 ≥ 0.
In our terminology this means

ri − li ≥ δ0 − 1 (i ∈ [m]).

Leaf interdigitation constraint (LIC): The distance between opposite
leaves in adjacent rows is at least δ1 for some δ1 ≥ 0, i.e.

ri+1 − li ≥ δ1 − 1, ri − li+1 ≥ δ1 − 1 (i ∈ [m− 1]).

For δ1 = 0 this is just the ICC.
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The proposed algorithm constructs segmentations in which the leaves always
move from left to right. So the segmentation can be described by

I
(i)
L (1) ≤ I

(i)
L (2) ≤ . . . ≤ I

(i)
L (n), I(i)

R (1) ≤ I
(i)
R (2) ≤ . . . ≤ I

(i)
R (n) (i ∈ [m]),

where I
(i)
L (j) and I

(i)
R (j) denote the numbers of monitor units that have been

delivered when the left and the right leaf, respectively, in row i passes column
j. These numbers can be translated into segments as follows. Let

S(t) =
(
s
(t)
i,j

)
denote the segment corresponding to the leaf position when the t−th monitor
unit is delivered. Then

s
(t)
i,j =

{
1 if I(i)

R < t ≤ I
(i)
L (j)

0 otherwise.

The condition that must be satisfied in order to generate the matrix A is

I
(i)
L (j) − I

(i)
R (j) = ai,j (i ∈ [m], j ∈ [n]).

First neglecting the leaf interdigitation constraint a segmentation is build up
from segmentations of the single rows as described in Algorithm 4. Observe that

Algorithm 4. Basic segmentation
for i = 1 to m do

I
(i)
L (1) = ai,1; I

(i)
R = 0

for j = 2 to n do
I
(i)
L (j) = I

(i)
L (j − 1) + max{0, ai,j − ai,j−1}

I
(i)
R (j) = I

(i)
R (j − 1) + max{0, ai,j−1 − ai,j}

this is another formulation of the rod pushing part of Siochi’s algorithm: I(i)
L (j)

and I
(i)
R (j) + 1 correspond to t(i, j) and b(i, j), respectively. The essential result

on Algorithm 4 is

Theorem 4.

1. Algorithm 4 is optimal with respect to the TNMU even when bidirectional
leaf movement is permitted. (Theorem 3 in [13])

2. If there exists a segmentation of A satisfying the MSC then the segmentation
constructed using Algorithm 4 satisfies the MSC. (Theorem 5 in [13])

In order to construct a segmentation satisfying the LIC it is proposed to modify
the I(i)

L (j), I(i)
R (j) obtained by Algorithm 4 until the LIC is satisfied. If, as a result

of Algorithm 4, I(i)
R (j) > 0 for some i ∈ [m], j ≤ δ1 there is no segmentation



1036 T. Kalinowski

satisfying the LIC. So w.l.o.g. we may assume I(i)
R (j) = 0 for all i ∈ [m], 1 ≤ j ≤

δm. An LIC–violation occurs iff I
(k)
L (j − δ1) < I

(i)
R (j) for some i ∈ [m], j ∈ [n],

k ∈ {i + 1, i − 1}. Among all violations we determine one with minimal j and
eliminate it by putting

I
(k)
L (j − δ1) := I

(i)
R (j),

and modifying the I(k)
L (j′) (j′ > j − δ1) appropriately (see Algorithm 5 for the

details). The main result on Algorithm 5 is

Theorem 5 (Theorem 6 in [13]).

1. Algorithm 5 terminates.
2. If Algorithm 5 terminates with a violation of the MSC, then there is no

segmentation satisfying MSC and LIC.
3. Otherwise the algorithm yields a segmentation satisfying MSC and LIC and

having minimal TNMU under these conditions.

Algorithm 5. : Elimination of LIC violations
while The MSC is satisfied and the LIC is violated do

j0 := min{j ∈ [n] : ∃i ∈ [m] with I
(k)
L (j−δ1) < I

(i)
R (j) for some k ∈ {i+1, i−1}}

choose i and k ∈ {i + 1, i − 1} with I
(k)
L (j0 − δ1) < I

(i)
R (j0)

I
(k)
L (j0 − δ1) := I

(i)
R (j0)

5: I
(k)
R (j0 − δ1) := I

(k)
L (j0 − δ1) − ak,j0−δ1

for j = j0 − δ1 + 1 to n do

I
(k)
L (j) := max

{
I
(k)
L (j), I

(k)
L (j − 1) + max{0, ai,j − ai,j−1}

}
I
(k)
R (j) := I

(k)
L (j) − ak,j

If δ1 = 0 lines 4–9 of Algorithm 5 can be replaced by

∆ := I
(i)
R (j0) − I

(k)
L (j0)

for j = j0 to n do
I
(k)
L (j) := I

(k)
L (j) +∆

I
(k)
R (j) := I

(k)
R (j) +∆

In this case the algorithm coincides with the ICC–version of Siochi’s rod push-
ing method, no MSC–violation can occur and thus always a TNMU–optimal
segmentation is obtained.

2.10 The Algorithm of Boland, Hamacher and Lenzen

In [2] is given a network flow formulation of the TNMU–minimization which also
includes the ICC. The set of segments is identified with the set of paths from
D to D′ in the layered digraph G = (V,E), constructed as follows. The vertices
in the i−th layer correspond to the possible pairs (li, ri) (1 ≤ i ≤ m), and two
additional vertices D and D′ are added:

V = {(i, l, r) : i = 1, . . . ,m; l = 1, . . . , n+ 1; r = l − 1, . . . , n+ 1} ∪ {D,D′}.
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Between two vertices (i, l, r) and (i+1, l′, r′) there is an arc if the corresponding
leaf positions are consistent with the ICC, i.e. if l′ ≤ r + 1 and r′ ≥ l − 1. In
addition E contains all arcs from D to the first layer, all arcs from the last layer
m to D′ and the arc (D′, D), so

E = E+(D) ∪ E−(D′) ∪
m−1⋃
i=1

E(i) ∪ {(D′, D)}, where

E+(D) = {(D, (1, l, r)) : (1, l, r) ∈ V },
E−(D′) = {((m, l, r), D′) : (m, l, r) ∈ V },

E(i) = {((i, l, r), (i+ 1, l′, r′)) : l′ ≤ r + 1, r′ ≥ l − 1}.

There is a bijection between the possible leaf positions and the cycles in G.
This is illustrated in Fig. 11 which shows two cycles in G for m = 4, n = 2,
corresponding to the segments(

1 0
0 1
1 1
1 0

)
(straight lines) and

(
0 1
1 1
1 0
0 1

)
(dotted lines).

110 111 112 121 122 132

210 211 212 221 222 232

310 311 312 321 322 332

410 411 412 421 422 432

D'

D

Fig. 11. The vertices of G for m = 4, n = 2 and two cycles

With a segment S, given by (l1, r1), (l2, r2), . . . , (lm, rm), we associate a unit
flow on the cycle

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′, D.

Then any positive combination of segments defines a circulation φ : E → R+ on
G. For instance,

3
(

1 0
0 1
1 1
1 0

)
+ 2

(
0 1
1 1
1 0
0 1

)
=

(
3 2
2 5
5 3
3 2

)
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corresponds to 3 units of flow on (D, (1, 1, 1), (2, 2, 2), (3, 1, 2), (4, 1, 1), D′), 2
units of flow on (D, (1, 2, 2), (2, 1, 2), (3, 1, 1), (4, 2, 2), D′) and 5 units of flow on
(D′, D). The amount of radiation that is released at bixel (i, j) equals the sum of
the flows going through the vertices (i, l, r) with l ≤ j ≤ r, hence the conditions
that must be satisfied by the circulation in order to correspond to a segmentation
of A are

j∑
l=1

n∑
r=j

r+1∑
l′=1

n∑
r′=max{l,l′}−1

φ((i, l, r), (i + 1, l′, r′)) = ai,j , (20)

for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n, and
j∑
l=1

n∑
r=j

φ((m, l, r), D′) = am,j, (21)

for 1 ≤ j ≤ n. Since all the flow must go through the arc (D′, D), the TN-
MU of the segmentation corresponding to φ equals φ(D′, D). Thus the TNMU–
minimization problem can be solved by finding a circulation satisfying condi-
tions (20) and (21) and having minimal cost with respect to the cost function
α : E → R+,

α(e) =
{

1 if e = (D,D′),
0 otherwise.

The graph G can be expanded to a graph Ĝ = (V̂ , Ê) so that, instead of the
constraints (20) and (21), the structure of Ĝ together with a capacity function
on Ê forces the circulation to represent a segmentation of A.

V̂ = {(i, l, r)1, (i, l, r)2 : 1 ≤ i ≤ m, 1 ≤ l ≤ r + 1 ≤ n+ 1}
∪ {(i, j) : 1 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {D,D′}.

The arcs set of Ĝ is Ê = Êold ∪ Ê1 ∪ Ê2, where

Êold = {((i, l, r)2, (i+ 1, l′, r′)1) : ((i, l, r), (i + 1, l′, r′)) ∈ E}
∪ {(D, (1, l, r)1) : (1, l, r)1 ∈ V̂ }
∪ {((m, l, r)2, D′) : (m, l, r)2 ∈ V̂ }
∪ {(D′, D)},

Ê1 = {((i, l, r)1, (i, l− 1)) : (i, l, r)1 ∈ V̂ }
∪ {((i, r), (i, l, r)2) : (i, l, r)2 ∈ V̂ },

Ê2 = {((i, j − 1), (i, j)) : i ∈ [m], j ∈ [n]}.

Now a segment with parameters li, ri (i ∈ [m]) corresponds to the cycle

D,(1, l1, r1)1, (1, l1 − 1), (1, l1), . . . , (1, r1), (1, l1, r1)2,

(2, l2, r2)1, (2, l2 − 1), (2, l2), . . . , (2, r2), (2, l2, r2)2,
. . .

(m, lm, rm), (m, lm − 1), (m, lm), . . . , (m, rm), (m, lm, rm)2, D′, D
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Figure 12 shows the cycles in Ĝ corresponding to the cycles in Figure 11.
Now the flow on the arc ((i, j − 1), (i, j)) equals the amount of radiation

released at bixel (i, j) in the corresponding segmentation, and introducing lower
and upper capacities u and u on the arcs of Ĝ by

u(e) =
{

0 if e ∈ Êold ∪ Ê1

ai,j if e = ((i, j − 1), (i, j)) ∈ Ê2 (22)

u(e) =
{
∞ if e ∈ Êold ∪ Ê1

ai,j if e = ((i, j − 1), (i, j)) ∈ Ê2 (23)

Now in order to obtain another reformulation of the TNMU–minimization prob-
lem one just has to make sure that the flow on the edge ((i, l, r)1, (i, l − 1))
equals the flow on the edge ((i, r), (i, l, r)2), since both of these correspond to
the amount of radiation that is released while li = l and ri = r.

Theorem 6 ([2]). The TNMU–minimization problem is equivalent to the net-
work flow problem

φ(D′, D) → min

subject to φ a circulation in Ĝ = (V̂ , Ê) with lower and upper capacities u and
u, defined by (22) and (23), and satisfying, for all (i, l, r)1,2 ∈ V̂ ,

φ((i, l, r)1, (i, l − 1)) = φ((i, r), (i, l, r)2). (24)

This formulation is quite close to a pure Min–Cost–Network–Flow problem. But
the standard algorithms for this problem type have to be adjusted in order
to include the side constraint (24). Doing this one obtains a polynomial time
algorithm for the TNMU–minimization with ICC (see [2] and [15]).

Example 8. A segmentation of the benchmark matrix with ICC that is opti-
mal with respect to the TNMU, and thus corresponds to an optimal flow on the
appropriate Ĝ is the one given in Example 5.

2.11 The Algorithm of Baatar and Hamacher

Another TNMU–optimal segmentation algorithm was proposed in [1]. For this
a digraph G = (V,E) is constructed as follows: The vertex set consists of 2m
layers L1, R1, L2, R2, . . . , Lm, Rm and two additional vertices D and D′. Here,
for i = 1, 2, . . .m,

Li = {(i, 1, 1), (i, 1, 2), . . . , (i, 1, n+ 1)}, Ri = {(i, 2, 0), (i, 2, 1), . . . , (i, 2, n)}

Now arcs between Li and Ri correspond to possible leaf positions in row i, that
is

E1 = {((i, 1, l), (i, 2, r)) : 1 ≤ i ≤ m, 1 ≤ l ≤ r + 1 ≤ n+ 1},
and arcs between Ri and Li+1 correspond to leaf positions satisfying the ICC,
that is

E2 = {((i, 2, r), (i+ 1, 1, l)) : 1 ≤ i ≤ m− 1, 1 ≤ l ≤ r + 1 ≤ n+ 1},
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110 1 111 1 112 1 121 1 122 1 132 1

110 111 2 112 2 121 2 122 2 132 2

D

1,0 1,1 1,2

210 1 211 1 212 1 221 1 222 1 232 1

210 2 211 2 212 2 221 2 222 2 232 2

2,0 2,1 2,2

310 1 311 1 312 1 321 1 322 1 332 1

310 2 311 2 312 2 321 2 322 2 332 2

3,0 3,1 3,2

410 1 411 1 412 1 421 1 422 1 432 1

410 2 411 2 412 2 421 2 422 2 432 2

4,0 4,1 4,2

D'

Fig. 12. The vertices of Ĝ for m = 4, n = 2 and two cycles

and finally all the arcs between D and L1 and between Rm and D′ are added,
that is

E = E1 ∪ E2 ∪E3 ∪ E4 ∪ {((m, 2, r), D′) : 0 ≤ r ≤ n} ∪ {(D′, D)},



Realization of Intensity Modulated Radiation Fields 1041

where

E3 = {(D, (1, 1, l)), : 1 ≤ l ≤ n+ 1} and E4 = {((m, 2, r), D′) : 0 ≤ r ≤ n}.

Figure 13 shows G for m = 3 and n = 4.

D

D'

L 1

R 1

L 2

R 2

L 3

R 3

Fig. 13. The digraph G for m = 3 and n = 4

As in the description of Hamacher’s algorithm we associate to a segment with
parameters l1, r1, l2, r2, . . . , lm, rm a unit flow on the cycle

D, (1, 1, l1), (1, 2, r1), (2, 1, l2), (2, 2, r2), . . . , (m, 1, lm, 1), (m, 2, rm), D′, D.

So every segmentation corresponds to a circulation on G (but not conversely,
since the ICC between the left leaf of row i and the right leaf of row i+ 1 is not
reflected in the structure of the digraph). In the circulation corresponding to a
segmentation the total flow going through vertex (i, 1, l) equals the number of
monitor units for which the left leaf is positioned at j − 1, i.e. for which li = j,
and similarly, the total flow going through (i, 2, r) equals the number of monitor
units for which ri = j. Let φ be a circulation on G, and denote by φ(v) the total
flow going through v ∈ V . In [1] it is shown that in order to find a circulation
corresponding to a segmentation with minimal TNMU, we may assume that, for
all i ∈ [m],

φ(i, 1, 1) = ai,1, φ(i, 2, n) = ai,n and φ(i, 2, 0) = φ(i, 1, n+ 1) = 0.
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Fixing these values, necessary and sufficient conditions for the φ(v) to correspond
to a segmentation of A are (see [1])

φ(i, 1, j) − l∗i,j = φ(i, 2, j) − r∗i,j ≥ 0 (i ∈ [m], j ∈ [n]), (25)
k∑
j=1

φ(i, 1, j) ≥
k−1∑
j=1

φ(i + 1, 2, j) (1 ≤ i ≤ m− 1, 1 ≤ k ≤ n), (26)

k∑
j=1

φ(i, 1, j) ≤
k−1∑
j=1

φ(i− 1, 2, j) (2 ≤ i ≤ m, 1 ≤ k ≤ n), (27)

φ(i, 1, l) ∈ Z (1 ≤ i ≤ m, 2 ≤ l ≤ n), (28)
φ(i, 2, r) ∈ Z (1 ≤ i ≤ m, 1 ≤ r ≤ n− 1). (29)

where

l∗i,j = max{0, ai,j − ai,j−1} and r∗i,j = max{0, ai,j − ai,j+1}.

So the task to determine φ(v) corresponding to a segmentation with minimal
TNMU leads to the mixed integer program

T → min subject to

T = ai,1 +
n∑
j=2

φ(i, 1, j) and (25) − (29).

 (30)

The constraint matrix of this problem is totally unimodular, as is shown in [1]
using the theorem of Ghouila–Houri, and so in order to determine the φ(v) it is
sufficient to solve the LP–relaxation of (30). When the φ(v) are determined a
segmentation with minimal TNMU can be constructed by iteratively extracting
unit flows along cycles in G taking in each layer the leftmost vertex with positive
throughput. In [1] it is also proposed to reduce the NS by a greedy strategy: an
integer program is solved to determine the maximal u such that there is a cycle
in G along which flow u can be extracted and the residual network still satisfies
(25)–(29).

2.12 The Algorithm of Langer, Thai and Papiez

In [14] the authors give a mixed integer linear program formulation of the seg-
mentation problem which can be used to find a segmentation with minimal NS
among those with minimal TNMU. The model also allows to include additional
constraints. In order to describe segmentations binary variables l(t)i,j and r

(t)
i,j are

introduced for i ∈ [m], j ∈ [n] and t ∈ [T ], where T is an upper bound for the
TNMU, for instance

T =
∑

(i,j)∈[m]×[n]

ai,j .

l
(t)
i,j takes value 1 if bixel (i, j) is covered by the left leaf while the t–th MU is

delivered, but takes value 0 otherwise. Similarly, r(t)i,j takes value 1 if bixel (i, j)
is covered by the right leaf. Then the segment delivering the t–th MU is given by
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s
(t)
i,j = 1 − l

(t)
i,j − r

(t)
i,j . (31)

Observe that this equation, together with s
(t)
i,j , l

(t)
i,j , r

(t)
i,j ∈ {0, 1}, also implies that

the opposite leaves in row i do not overlap, i.e. that for no (i, j, t) both l
(t)
i,j and

r
(t)
i,j equal 1. The geometric properties of the leaves are modelled by the following

constraints:

l
(t)
i,j+1 ≤ l

(t)
i,j (i ∈ [m], j ∈ [n− 1], t ∈ [T ]), (32)

r
(t)
i,j ≤ r

(t)
i,j+1 (i ∈ [m], j ∈ [n− 1], t ∈ [T ]). (33)

Furthermore, for a segmentation of A we obtain the constraints

T∑
t=1

s
(t)
i,j = ai,j (i ∈ [m], j ∈ [n]). (34)

The MUs can be counted by introducing new binary variables z(t) (t ∈ [T ]),
where z(t) takes value 1 iff s

(t)
i,j = 1 for at least one pair (i, j), formally∑

(i,j)∈[m]×[n]

s
(t)
i,j ≤ mnz(t) (t ∈ [T ]). (35)

Now the TNMU–minimization problem can be formulated as

T∑
t=1

z(t) → min subject to (31)–(35). (36)

Let T0 denote the optimal value of the objective function, i.e. the minimal TN-
MU. Observe that the determination of T0 as the solution of (36) can be replaced
by the calculation of the minimal TNMU according to Theorem 2. The next step
is to find, among all the segmentations with T0 MU, one with minimal NS. For
this new binary variables g(t) (t ∈ [T0−1]) are introduced, where g(t) takes value
1 if s(t)i,j = s

(t+1)
i,j for some (i, j) ∈ [m] × [n]. The global variable g(t) is described

by local binary variables
σ

(t)
i,j = α

(t)
i,j + β

(t)
i,j , (37)

where α(t)
i,j and β

(t)
i,j are binary variables satisfying

−α(t)
i,j ≤ s

(t+1)
i,j − s

(t)
i,j ≤ β

(t)
i,j . (38)

g(t) can take the value 0 only if all the σ(t)
i,j are zero, and this yields∑

(i,j)∈[m]×[n]

σ
(t)
i,j ≤ mng(t) (t ∈ [T0]). (39)
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So the NS–minimization (with minimal TNMU) is

T0∑
t=1

g(t) → min subject to (31)–(35),(37)–(39). (40)

The authors of [14] suggest to solve this program by standard branch and bound
techniques as implemented in commercial packages as CPLEX. Special restric-
tions can be included by adding constraints to the program. So the ICC corre-
sponds to

l
(t)
i,j + r

(t)
i+1,j ≤ 1 (i ∈ [m− 1], j ∈ [n], t ∈ [T ]), (41)

r
(t)
i,j + l

(t)
i+1,j ≤ 1 (i ∈ [m− 1], j ∈ [n], t ∈ [T ]). (42)

The method for the segmentation problem with ICC described in [14] is to
increase the number T ′ of monitor units step by step, starting with T ′ = T0, and
in each step try to find a feasible solution with T ′ monitor units. This procedure
can be shortened by determining the minimal TNMU for a segmentation with
ICC according to Theorem 3 and fixing T ′ at this value.

The tongue and groove condition is described by

− 1 ≤ s
(t)
i+1,j − s

(t)
i,j + s

(t′)
i,j − s

(t′)
i+1,j ≤ 1

(i ∈ [m− 1], i ∈ [n], 1 ≤ t < t′ ≤ T ). (43)

The drawback of this method is that it requires to solve integer programs with
a huge number of variables, and so it seems to be applicable only to very small
problems.

Example 9. For the benchmark matrix the algorithm yields the same result as
Engel’s algorithm.

2.13 The Algorithm of Dai and Zhu

The algorithm proposed in [6] searches for a segmentation with a small NS. Again
this is done by choosing a segment S and a coefficient u such that A′ = A− uS
is nonnegative and continuing with A′. The criterion for the choice of u and S
is the complexity of the residual matrix A′, where the complexity of a matrix A
is the number of segments necessary for a segmentation of A using some other
algorithm. Obviously, the result of this method depends on the algorithm that
is used to measure the complexity.

Recall that L denotes the maximum entry of A. For u ∈ [L] we determine
in each row i maximal intervals of entries greater than or equal to u. As in the
section on the algorithm of Galvin et al. these can be described by numbers
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li,1,u, . . . , li,t(i,u),u and ri,1,u, . . . , ri,t(i,u),u, such that

1 ≤ li,1,u, ri,t(i,u),u ≤ n

li,k,u ≤ ri,k,u (1 ≤ k ≤ t(i, u))
ri,k,u < li,k+1,u − 1 (1 ≤ k ≤ t(i, u) − 1)

ai,j

{
≥ u if li,k,u ≤ j ≤ ri,k,u for some k,
< u otherwise.

Now for all u ∈ [L] the complexities ofA−uS are computed for all the
∏m
i=1 t(i, u)

possible segments, and among all the tested pairs (u, S) one with minimal com-
plexity of A − uS is chosen. If there are several pairs with minimal complexity
of the residual matrix, we choose one with maximal irradiated area, i.e. with
maximal number of 1’s in S. The ICC can easily be included into the algorithm
by excluding segments that violate the ICC from the complexity checking. The
obvious drawback of this algorithm is the time complexity. The number of seg-
ments that have to be checked grows exponentially with the size of the matrix,
and so the method becomes infeasible for moderate problem sizes.

Example 10. We consider segmentation without ICC and use the algorithm of
Bortfeld et al. with the sweep technique for the calculation of the complexity.
Then our benchmark matrix has complexity 9, and the first extracted matrix is

3
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 1 1 0 0 0

)
,

where the residual matrix
(

1 2 0 1 4 5
2 1 1 3 1 4
2 3 2 1 2 1
2 0 0 2 5 3

)
has complexity 6. Continuing we obtain

the segmentation(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3

(
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 1 1 0 0 0

)
+ 3

(
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)
+ 1

(
0 0 0 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 1 1 0

)

+ 1
(

1 1 0 0 0 0
1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 1 0

)
+ 1

(
0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0

)
+ 1

(
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0

)
.

As indicated by the example, the algorithm yields quite good results compared
to other algorithms, in particular it is essentially more NS–efficient than the
algorithm used for the calculation of the complexity. This is confirmed in [6] by
a number of numerical experiments.

2.14 Reduction of Leaf Motion

After the segments and their coefficients have been determined by some algo-
rithm we still have the freedom to choose the order in which the corresponding
homogeneous fields are delivered. In order to reduce the total treatment time it
is suggestive to choose an order which minimizes the leaf travel time between
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consecutive segments. The minimization of the overall leaf travel time is equiv-
alent to the search for a Hamiltonian path of minimal weight on the complete
graph which has the segments as vertices and a weight function µ on the edges,
defined as follows: for two segments S and S′, given by li, ri (i ∈ [m]) and l′i, r

′
i

(i ∈ [m]), respectively, we put

µ(S, S′) = max
1≤i≤m

max{|li − l′i|, |ri − r′i|}.

Clearly, µ(S, S′) = µ(S′, S), µ(S, S′) ≥ 0 with equality iff li = l′i and ri = r′i for
all i ∈ [m] and

µ(S, S′′) = max
1≤i≤m

max{|li − l′′i |, |ri − r′′i |}

≤ max
1≤i≤m

max{|li − l′i| + |l′i − l′′i |, |ri − r′i| + |r′i − r′′i |}

≤ µ(S, S′) + µ(S′, S′′).

Thus µ is a metric and there are good approximations for a minimal Hamiltonian
path ([10]). When the number NS is not relatively small, as is the case for
practical problems, it is even possible to solve the Hamiltonian path problem
exactly.

Example 11. Using the version of Kalinowski’s algorithm that heuristically re-
duces the NS we obtain the segmentation 16 10 0 5 4 12

1 13 16 6 2 14
6 6 3 3 15 2
8 15 3 0 13 11
3 16 13 6 9 3
7 16 10 11 14 6

 = 8

 0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 1 0
0 1 1 1 1 0

 + 8

 1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0

 + 4

 1 0 0 0 0 0
0 1 1 1 0 0
1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0


+3

 0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 1 1

 + 2

 1 1 0 0 0 0
0 0 1 0 0 0
1 1 1 1 1 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 1 1 1 1

 +

 0 0 0 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1

 +

 0 0 0 1 1 1
0 0 0 0 0 1
0 0 1 1 1 1
0 0 0 0 1 0
0 1 1 1 1 0
1 0 0 0 0 0


+

 1 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0

 +

 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

 .

If we deliver the segments in this order the length of the corresponding Hamil-
tonian path is 5 + 1 + 4 + 5 + 4 + 3 + 5 + 1 = 28. Using a minimum span-
ning tree approximation for the Hamiltonian path we obtain the delivery order
1, 4, 6, 7, 5, 2, 3, 8, 9 with a length of 3 + 3 + 3 + 3 + 1 + 1 + 1 + 1 = 16.

First numerical results for the reduction of leaf motion when the algorithms of
Engel and Kalinowski are used are shown in 1.

For algorithms using a sweep technique, such that the leaves move always
in one direction there is nothing to do, since the leaf motion is automatically
minimized.

Lemma 2. Let A =
∑k
t=1 utS

(t) be a segmentation obtained by some algorithm
using a sweep–technique, that is if l(t)i and r(t)i are the parameters of S(t) (t ∈ [k])
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Table 1. Reduction of leaf motion by a minimum spanning tree approximation of
the minimal Hamiltonian path for the algorithms of Kalinowski ([12]) and Engel ([7]).
Pold is the Hamiltonian path corresponding to the order in which the segments are
constructed by the algorithm and Pnew is the approximation of a minimal Hamiltonian
path. The results are averaged over 1000 15 × 15−matrices with random entries from
{0, 1, . . . , 16}.

Engel Kalinowski

L µ(Pold) µ(Pnew) µ(Pold) µ(Pnew)

3 112.5 106.5 64.7 49.3
4 126.1 119.1 81.5 59.9
5 136.7 128.2 128.3 85.7
6 145.9 136.4 141.5 93.3
7 152.0 141.9 152.1 99.4
8 157.4 146.7 163.4 105.4
9 163.2 151.2 172.7 111.7
10 166.6 154.3 179.7 116.5
11 170.5 158.3 187.5 121.2
12 174.2 161.0 193.4 124.4
13 178.1 165.1 199.8 128.4
14 180.6 167.0 206.5 131.6
15 183.1 169.5 211.0 134.8
16 185.4 171.9 217.4 138.5

then we have, for all i ∈ [m],

l
(1)
i ≤ l

(2)
i ≤ . . . ≤ l

(k)
i and r

(1)
i ≤ r

(2)
i ≤ . . . ≤ r

(k)
i .

Then (S(1), S(2), . . . , S(k)) is a Hamiltonian path of minimal weight in the com-
plete graph with vertex set {S(1), S(2), . . . , S(k)} and weight function µ.

Proof. Let π be an arbitrary permutation of [k]. We have to show that

k−1∑
t=1

µ
(
S(π(t)), S(π(t+1))

)
≥
k−1∑
t=1

µ
(
S(t), S(t+1)

)
.

The crucial observation is that, for 1 ≤ t ≤ t′′ ≤ t′ ≤ k, we have

µ
(
S(t), S(t′)

)
≥ µ

(
S(t), S(t′′)

)
,

which follows directly from the definition of µ. If π(t) < π(t+1) for all t ∈ [k−1]
there is nothing to do. Otherwise put

t0 = min{t : π(t) > π(t+ 1)},

t1 =
{
k if π(t0) = k,
min{t : π(t+ 1) > π(t0)} otherwise,

t2 = min{t : π(t) > π(t1)}.
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Table 2. Test results without ICC. The columns labeled Gal, Bor, X–V and Eng
correspond to the algorithm of Galvin et al. [8], the algorithm of Bortfeld et al. [3], the
algorithm of Xia and Verhey [24] and the algorithm of Engel [7], respectively.

TNMU NS

L Gal Bor X–V Eng Gal Bor X–V Eng

3 17.0 14.0 16.6 14.0 11.3 14.0 11.1 9.7
4 31.3 17.9 22.4 17.9 15.4 17.9 14.1 10.9
5 32.7 21.8 25.0 21.8 16.2 21.8 15.1 11.7
6 39.5 25.6 37.7 25.6 17.7 25.6 17.9 12.5
7 50.9 29.5 38.8 29.5 20.1 29.5 16.2 13.1
8 60.5 33.3 46.3 33.3 21.3 33.3 20.2 13.7
9 60.3 37.1 51.0 37.1 22.1 37.1 20.2 14.2
10 71.0 40.9 53.9 40.9 23.1 40.9 20.5 14.7
11 83.5 44.8 55.7 44.8 25.1 44.8 21.6 15.1
12 84.5 48.6 81.1 48.6 25.7 48.6 21.8 15.5
13 98.2 52.4 83.3 52.4 26.5 52.4 22.4 15.8
14 108.7 56.2 83.5 56.2 27.2 56.2 22.8 16.2
15 128.2 60.1 83.5 60.1 27.9 60.1 23.5 16.5
16 93.6 63.8 93.6 63.8 29.4 63.8 23.9 16.8

Now we may replace π by the permutation π′ given by

π(1), . . . , π(t2 − 1), π(t1), π(t1 − 1), . . . , π(t2), π(t1 + 1), . . . , π(k).

To see this, assume first t2 > 1 and t1 < k. Then π(t2 − 1) < π(t1) < π(t2)
and π(t1) < π(t2) < π(t1 + 1), hence

k−1∑
t=1

µ
(
S(π′(t)), S(π′(t+1))

)
=
k−1∑
t=1

µ
(
S(π(t)), S(π(t+1))

)
− µ

(
S(π(t2−1)), S(π(t2))

)
−µ

(
S(π(t1)), S(π(t1+1))

)
+µ

(
S(π(t2−1)), S(π(t1))

)
+µ

(
S(π(t2)), S(π(t1+1))

)
≤
k−1∑
t=1

µ
(
S(π(t)), S(π(t+1))

)
.

Similarly,

k−1∑
t=1

µ
(
S(π′(t)), S(π′(t+1))

)
≤
k−1∑
t=1

µ
(
S(π(t)), S(π(t+1))

)
if t2 = 1 or t1 = k. Repeating this replacement if necessary, we obtain the
permutation 1, 2, . . . , k, and the lemma is proved.

2.15 Numerical Results

In this subsection the performance of some of the algorithms is compared based
on the segmentation of 15 × 15–matrices. As in [24] for every algorithm we
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construct segmentations of 1000 matrices with random entries from {0, 1, . . . , L}
(L = 3, 4, . . . , 16) and determine the average TNMU and the average NS. We
used the results from [24] for the algorithm of Galvin et al., the algorithm of
Bortfeld et al. and the algorithm of Xia and Verhey, and we implemented the
algorithm of Engel, the algorithm of Kamath and the algorithm of Kalinowski
in C++. The results are shown in Tables 2 and 3.

Table 3. Test results with ICC. The columns labeled Gal, Bor, X–V, Kam and Kal
correspond to the algorithm Galvin et al. [8], the algorithm of Bortfeld et al. [3], the
algorithm of Xia and Verhey [24], the algorithm of Kamath [13] and the algorithm of
Kalinowski [12], respectively.

TNMU NS

L Gal Bor X–V Kam Kal Gal Bor X–V Kam Kal

3 19.7 17.7 19.5 15.4 15.4 13.4 17.7 13.3 15.4 12.6
4 40.5 22.8 29.6 19.5 19.5 20.4 22.8 18.6 19.5 14.5
5 40.1 27.9 30.9 23.6 23.6 20.4 27.9 19.0 23.6 16.0
6 44.2 32.8 46.8 27.6 27.6 21.5 32.8 20.3 27.6 17.2
7 67.1 37.9 45.6 31.7 31.7 27.1 37.9 20.0 31.7 18.2
8 72.3 42.8 63.4 35.7 35.7 28.2 42.8 24.3 35.7 19.1
9 72.3 47.8 67.1 39.8 39.8 28.3 47.8 24.3 39.8 19.9
10 76.5 52.6 68.6 43.8 43.8 28.9 52.6 25.7 43.8 20.7
11 81.4 57.6 68.6 47.7 47.7 30.9 57.6 25.7 47.7 21.3
12 106.8 62.4 101.1 51.8 51.8 34.8 62.4 27.0 51.8 21.9
13 101.1 67.3 100.6 55.7 55.7 35.5 67.3 26.9 55.7 22.5
14 112.7 72.2 100.0 59.8 59.8 35.6 72.2 26.9 59.8 23.0
15 116.0 77.1 98.0 63.8 63.8 35.9 77.1 26.7 63.8 23.5
16 154.5 82.0 124.9 67.7 67.7 41.7 82.0 30.0 67.7 24.0

With respect to the computation time all of the considered algorithms are
acceptable: On an 1.3GHz PC the computation of the whole column for the
algorithm of Kalinowski took 40 minutes, and for all the other algorithms the
whole column can be computed in a few minutes.

3 Dynamic Methods

Another approach to the generation of intensity modulated irradiation fields is
to use an MLC in the dynamic mode. That means the beam is always switched
on and the modulation is realized by varying the speed of the leaves. In the
literature two different variants can be found according to the starting positions
of the leaves. For the sweep technique both leaves start at the left end of the
field and move always to the right, while for the close–in technique the leaves
start at opposite ends of the field and move towards each other. Obviously, with
a single run of the close–in technique only profiles with a single maximum can be
generated, and profiles where the gradient is too small are also excluded due to
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the finiteness of the maximal leaf velocity. In contrast, the sweep technique can
be used to generate arbitrary profiles, and several authors have derived equations
for the leaf velocities realizing a given profile and minimizing the total irradiation
time ([5,16,20,21,4,19]). In the first section we sketch the basic principle that is
common to all of these approaches and in the second section we describe how
the tongue and groove effect can be avoided using a method introduced in [22].

3.1 The Basic Principle

The leaf trajectories are determined independently for each row, and thus we
only describe the realization of a single row profile. Let a0, a1, . . . , an be the
required doses at the equidistant points x0, x1, . . . , xn, where x0 and xn are the
coordinates of the left and the right end of the field, respectively. Denote by tL(x)
(tR(x)) the time when the left (right) leaf passes the point with coordinate x.
Then the dose delivered at x is proportional to tL(x)− tR(x) and by scaling the
time appropriately we may assume

aj = tL(xj) − tR(xj).

Denote the maximal leaf velocity by v̂ and the velocities of the left and the right
leaf by vL(x) and vR(x), respectively. Suppose tL(xj) and tR(xj) are already
known. Then in order to minimize the time that is needed to generate the profile
over the interval [xj , xj+1] we put, for xj ≤ x < xj+1,

vR(x) = v̂ if aj+1 ≥ aj and vL(x) = v̂ if aj+1 < aj . (44)

First assume aj+1 ≥ aj . Then

aj+1 = tL(xj+1) − tR(xj+1) = tL(xj+1) −
(
tR(xj) +

∆x

v̂

)
,

where ∆x = xj+1 − xj . We interpolate the profile between xj and xj+1 linearly,
so vL(x) is constant for xj ≤ x < xj+1, and we obtain

vL(x) =
∆x

tL(xj+1) − tL(xj)
=

v̂

1 + (aj+1 − aj) v̂
∆x

, (45)

and analogously, if aj+1 < aj ,

vR(x) =
∆x

tR(xj+1) − tR(xj)
=

v̂

1 − (aj+1 − ai) v̂
∆x

. (46)

The generation of the whole profile is complete when the left leaf reaches xn.
The time it takes for the left leaf to cross the interval [xj , xj+1] is

∆x

v̂
if aj+1 ≤ aj and

∆x

v̂
+ (aj+1 − aj) if aj+1 ≥ ai.
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Thus the total irradiation time is

tL(xn) =
xn − x0

v̂
+
n−1∑
j=0

max{aj+1 − aj , 0}.

To see that this is optimal under the condition that both leaves start at x0,
observe that, for 0 ≤ j ≤ n− 1,

aj+1 = tL(xj+1) − tR(xj+1) and aj = tL(xj) − tR(xj),

thus, if aj+1 > aj ,

tL(xj+1) − tL(xj) = tR(xj+1) − tR(xj) + aj+1 − aj ≥
∆x

v̂
+ aj+1 − aj .

Clearly the total irradiation time for a multiple row intensity map is just the
maximum of the irradiation time over the rows.

This method can be refined in several ways. So [19] and [20] include a com-
pensation for the transmission through the leaves, and [21] takes into account
the finite acceleration of the leaves.

3.2 The Tongue and Groove Effect

As in the static mode the tongue and groove design of the MLCs causes under-
dosage in the border region between adjacent rows, as illustrated in Figure 14.

Fig. 14. Suppose the method from the previous section yields the same constant ve-
locity for all the depicted leaves. Then the strip between the dotted lines receives only
half of the dose that is required in both rows.

In [22] there is proposed a method to avoid this effect in the sense that after
the correction the border region always receives the lower of the two relevant
doses. The procedure is very similar to the tongue and groove correction of
Siochi’s rod pushing algorithm.

Synchronization of two rows: Consider two adjacent rows (ai,0, . . . , ai,n) and
(ai+1,0, . . . , ai+1,n) and denote by t

(k)
L (x), t(k)R (x) (k ∈ {i, i + 1}) the times

when the left (resp. right) leaf of row k passes x. We determine inductively leaf
velocities v(k)

L and v(k)
R on the intervals [xj , xj+1] such that the given profile is

generated without tongue and groove underdosage. Suppose the leaf motion
up to the point xj is already determined. First we compute the velocities and
the corresponding t(k)L (xj+1), t

(k)
R (xj+1) according to (44)–(45). Tongue and

groove underdosage occurs iff

t
(i)
R (xj+1) > t

(i+1)
R (xj+1) and t

(i)
L (xj+1) > t

(i+1)
L (xj+1), (47)
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or the same with the roles of i and i + 1 interchanged. We call the pair of
rows synchronized if

t
(i)
R (xj+1) = t

(i+1)
R (xj+1) or t

(i)
L (xj+1) = t

(i+1)
L (xj+1).

Then in order to avoid the tongue and groove effect it is sufficient to change
the velocities in such a way that the rows are synchronized. By symmetry
we may assume that (47) holds. Then we just have to slow down both leaves
in row i+ 1. Precisely, if ai,j+1 ≤ ai+1,j+1, we put

t
(i+1)
L (xj+1) := t

(i)
L (xj+1),

t
(i+1)
R (xj+1) := t

(i+1)
L (xj+1) − ai+1,j+1,

and if ai,j+1 > ai+1,j+1 we put

t
(i+1)
R (xj+1) := t

(i)
R (xj+1),

t
(i+1)
L (xj+1) := t

(i+1)
R (xj+1) + ai+1,j+1.

This is illustrated in Figure 15.

i i+1 i i+1

i i+1

time

time

i i+1

before synchronization after synchronization

time

time

Fig. 15. The synchronization for two rows. The straight lines stand for t
(i)
L (xj+1) and

t
(i)
R (xj+1), the dotted lines stand for t

(i+1)
L (xj+1) and t

(i+1)
R (xj+1).
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Finally the new velocities for xj ≤ x < xj+1 are computed:

v
(i+1)
L (x) =

∆x

t
(i+1)
L (xj+1) − t

(i+1)
L (xj)

,

v
(i+1)
R (x) =

∆x

t
(i+1)
R (xj+1) − t

(i+1)
R (xj)

.

Synchronization of more than two rows: For general treatment plans the
synchronization of leaf trajectories is based on the iterated synchronization of
two rows. To correct the leaf trajectories between the points xj and xj+1 first
a row i0 with slowest left leaf is determined, i.e. with t

(i0)
L (xj+1) ≥ t

(i)
L (xj+1)

for all i ∈ [m]. Now the whole synchronization is described in Algorithm 6.
The algorithm terminates since in every step some leaves are slowed down,
but never a left leaf arrives later at xj+1 than the one in row i0, and so in
the worst case finally t

(i)
L (xj+1) = t

(i0)
L (xj+1) for all i.

Algorithm 6. : Synchronization of leaf motion
repeat

finished:=true
for i = i0 − 1 downto 1 do

if rows i and i + 1 are not synchronized then
finished:=false
synchronize rows i and i + 1

for i = i0 to m − 1 do
if rows i and i + 1 are not synchronized then

finished:=false
synchronize rows i and i + 1

until finished

In [23] the authors argue that it might not be necessary to fully synchronize
the leaf motion. This is because in the overlap region that is covered by both
leaves the depth of each leaf is only half of the full leaf–depth and taking account
of the difference between the transmission through the full depth and the half
depth they derive a criterion for ’partial synchronization’ which assures that the
overlap region receives at least the lower of the two relevant doses.

4 Summary and Discussion

To realize intensity modulated radiation fields using a multileaf collimator in
the static mode it is necessary to determine a sequence of leaf positions and
corresponding irradiation times such that the superposition of the homogeneous
fields yields the required modulated intensity. This amounts to the problem of
representing a nonnegative integer matrix as a positive integer combination of
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certain (0, 1)–matrices, so called segments. In order to optimize the treatment
this segmentation has to be chosen in such a way that the total number of mon-
itor units and the number of segments are small. Ignoring machine–dependent
constraints the construction of a segmentation with minimal number of monitor
units can be done in polynomial time, for instance by the algorithm of Bortfeld et
al. [3] or the algorithm of Engel [7]. In contrast, the minimization of the number
of segments is NP–complete already for a single row, and thus probably one has
to be satisfied with an approximative algorithm for this problem. Our variant of
Engel’s algorithm seems to be very good in this respect, but there remains the
problem to find a theoretical bound for the quality of the approximation. Other
algorithms use heuristic principles to reduce the number of segments, but are no
longer optimal with respect to the monitor units.

For the segmentation problem with interleaf collision constraint the algorithm
of Kamath et al. [13], the algorithm of Baatar and Hamacher [1] and the algo-
rithm of Kalinowski [12] minimize the number of monitor units in polynomial
time. In addition, [1] and [12] propose greedy heuristics for the reduction of the
number of segments, but these algorithms have the drawback that the compu-
tation time grows rapidly with the problem size.

The algorithm of Langer et al. formulates the segmentation problem as a
mixed integer program and finds solutions that are optimal in first instance
with respect to the monitor units and in second instance with respect to the
segments. Also machine–dependent constraints are easily included. However, as
for the algorithm of Dai and Zhu, due to computational complexity the method
is not applicable for problem sizes that arise in practice.

One difficulty that comes up when the tongue and groove constraint is taken
into account is that the local strategy of most of the published algorithms is no
longer applicable since the different segments are not independent of each other.
The first question which has to be addressed in this context is if it is necessary
to avoid the tongue and groove effect totally, or if it is sufficient to reduce it to
some extend. In the second case some quantitative measure for this acceptable
underdosage has to be developed, and a corresponding objective function for the
minimization has to be constructed.

When the multileaf collimator is used in the dynamic mode the leaf velocities
have to be chosen so that the required intensity is generated. It is possible to
determine optimal leaf velocities for an unidirectional sweep of the leaves across
the field. Also the tongue and groove underdosage can be totally avoided by
synchronization of the leaf motion.
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Sparse Asymmetric Connectors in

Communication Networks�

R. Ahlswede and H. Aydinian

Abstract. An (n, N, d)–connector is an acyclic digraph with n inputs
and N outputs in which for any injective mapping of input vertices into
output vertices there exist n vertex disjoint paths of length d joining
each input to its corresponding output. We consider the problem of con-
struction of sparse (n, N, 2)–connectors (depth 2 connectors) when n �
N . The probabilistic argument in [1] shows the existence of (n, N, 2)–
connectors of size (number of edges) O(N) if n ≤ N1/2−ε, ε > 0. How-
ever, the known explicit constructions with n ≤

√
N in [6],[1],[2] are of

size O(N
√

n). Here we present a simple combinatorial construction for
(n, N, 2)–connectors of size O(N log2 n). We also consider depth 2 fault–
tolerant connectors under arc or node failures.

Keywords: connector, rearrangeable network, fault–tolerant connector.

1 Introduction

An (n,N)–network is a directed acyclic graph with n distinguished vertices called
inputs and N other distinguished vertices called outputs. All other vertices are
called links. The size of the network is the number of edges, and the depth is
the length of the longest path from an input to an output.

An (n,N, d)–connector (also called a rearrangeable network) is a network
of depth d (n ≤ N), such that for every injective mapping of input vertices
into output vertices there exist n vertex disjoint paths joining each input to its
corresponding output. Connectors are useful architectures for parallel machines.
Their study started from pioneering works [13], [14], [8], [3], in connection with
practical problems arisen in designing of switching networks for telephone traffic.

Symmetric connectors, i.e. (n, n, d)–connectors are well studied. Pippenger
and Yao [11] obtained lower and upper bounds for the size of an (n, n, d)–
connector: Ω(n1+1/d) and O(n1+1/d(logn)1/d), respectively. The best known ex-
plicit construction for odd depth 2i+ 1 is O(n1+1/(i+1)), due to Pippenger [12].
Hwang and Richards [7] gave an explicit construction for depth 2 connectors of
size O(n5/3). For asymmetric connectors Oruc [10] gave constructions for depth
Ω(log2 N + log2 n) of size O((N +n) log2 n) and for depth Ω(log2 N + log2

2 n) of
size O(N + n log2 n). Hwang and Richards [7] gave an explicit construction for
(n,N, 2)–connectors of size (1+o(1))N

√
n if n ≤

√
N . Baltz, Jäger and Srivastav

[1], [2] showed by a probabilistic argument the existence of (n,N, 2)–connectors
� Supported by DFG-Schwerpunkt Nr.1126 “Algorithmik großer und komplexer

Netzwerke”.
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of size O(N), if n ≤ N1/2−ε, ε > 0. They also extended the result of Hwang and
Richards and improved it by a constant factor.

We are interested in the case when n � N . Such connectors with d = 2 are of
particular interest (refering to [1,2]) in the design of sparse electronic switches.
A challenging problem is to construct linear–sized (n,N, 2)–connectors. In this
paper we show how to construct (n,N, 2)–connectors of size O(N log2 n).

Let us consider the following standard approach to build connectors of depth 2.
Suppose the vertex set V = I∪L∪O of a graph G = (V,E) is partitioned into

input vertices I with |I| = n, link vertices L with |L| = L and output vertices
O with |O| = N . Then one can easily see that G is an (n,N, 2)–connector if the
following two conditions are satisfied.

C1: I and L are completely connected, that is inputs and links form a complete
bipartite graph.

C2: |Γ (S)| ≥ |S| holds for every S ⊂ O with |S| ≤ n, i.e. the Hall’s condition
(shortly H–condition) is fulfilled for every n-set of output vertices O.

In this paper we consider connectors satisfying conditions C1,C2. In Section 3
we give a simple explicit construction for such connectors of size (1+o(1))N log2 n

for all n < N1/
√

log2N .
In Section 4 we consider reliable or fault-tolerant connectors. An (n,N, 2)–

connector is called t-edge fault-tolerant if in spite of any t or less edge failures it
still remains an (n,N, 2)–connector. Correspondingly, it is called t-vertex fault-
tolerant if t or less vertex failures are admissible in the connector.

We show that our construction can be used to obtain t-edge/vertex fault–
tolerant connectors.

2 Preliminary

We need some notation and definitions from extremal set theory. Let [n] :=
{1, . . . , n}. Given n, k ∈ N we denote

2[n] =
{
A : A ⊂ [n]

}
,

(
[n]
k

)
=

{
A ∈ 2[n] : |A| = k

}
.

For a family A ⊂
(
[n]
k

)
we use the notation ||A|| := | ∪A∈A A|. The shadow of

A ⊂
(
[n]
k

)
is defined by

∂(A) =
{
F ⊂

(
[n]
k − 1

)
: ∃A ∈ A : F ⊂ A

}
.

Define also the colex order for the k-sets of N denoted by
(

N

k

)
: For A,B ∈

(
N

k

)
A ≺ B ⇔ max

(
(A �B) ∪ (B �A)

)
∈ B.

Let C(k,m) denote the first m members of
(

N

k

)
in the colex ordering.

The following fact is well known (see [4] or [5]). Every positive integer m can
be uniquely represented in the following form called the k–cascade representation
of m:
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m =
(
ak
k

)
+
(
ak−1

k − 1

)
+ · · · +

(
at
t

)
(2.1)

with ak > ak−1 > · · · > at ≥ t ≥ 1.
Recall now the well–known Kruskal–Katona Theorem (see [4],[5]).

Theorem KK. Let A be a family of k–sets with |A| = m and let m have the
cascade representation (2.1).

Then we have
|∂(A)| ≥ |∂

(
C(k,m)

)
|, (2.2)

or equivalently

|∂(A)| ≥
(

ak
k − 1

)
+ · · · +

(
at

t− 1

)
.

For our purposes we need the following

Corollary KK (see [5]). Let A ⊂
(

N

k

)
with

|A| ≤
(

2k − 1
k

)
+
(

2k − 3
k − 1

)
+ · · · +

(
3
2

)
+
(

1
1

)
. (2.3)

Then |∂(A)| ≥ |A| and the bound (2.3) is best possible.

3 The Construction

Given n < N , let k be the smallest integer such that

n ≤
(

2k − 1
k

)
+
(

2k − 3
k − 1

)
+ · · · +

(
3
2

)
+
(

1
1

)
. (3.1)

We take the k–cascade representation of

N =
(
ak
k

)
+
(
ak−1

k − 1

)
+ · · · +

(
at
t

)
(3.2)

and put

L =
(

ak
k − 1

)
+
(
ak−1

k − 2

)
+ · · · +

(
at

t− 1

)
. (3.3)

Consider now the set C(k,N). It is known (see [4],[5]) that

∂(C(k,N)) = C(k − 1, |∂(C(k,N)|)),

moreover, |∂(C(k,N))| = L.
Our construction now is straightforward. The vertex set of our graph G =

(V,E) is V = I ∪ L ∪ O with |I| = n, |L| = L, |O| = N .
C1. The inputs I and links L form a complete bipartite graph. We identify

the outputs with C(k,N), and the links with ∂(C(k,N)). Thus the vertices of
O and L correspond respectively to the initial N k-sets and L (k − 1)-sets of
N in the colex ordering. The edges between links and outputs are defined in a
natural way, by inclusion. Clearly, each vertex of O has k neighbors (k subsets
from

(
N

k−1

)
).



Sparse Asymmetric Connectors in Communication Networks 1059

C2. Corollary KK implies that |Γ (S)| > |S| for every subset S ⊂ O with
|S| ≤ n. Thus we have the following

Proposition. The described construction (called ∂–construction) gives an (n,N)–
connector of size

|E| = nL+Nk. (3.4)

Let us estimate |E| in terms of parameters n and N . By (3.1) we have

Θ(log2 n) = k ≤ log2 n. (3.5)

By (3.2) and (3.3) we have

N = Θ

((
ak
k

))
, L = O

(
k

ak
N

)
, (3.6)

where ak ≥ k
e

(
ak

k

)1/k and hence

ak = Ω
(
log2 nN

1/ log2 n
)
. (3.7)

Finally, (3.4),(3.5),(3.6) and (3.7) give

|E| = nL+ Nk = N log2 n

(
O
(
n

ak

)
+ 1

)
.

If now n = O
(
log2 nN

1/ log2 n
)
, then

|E| = O(N log2 n).

In particular, we have the following

Theorem 1. For all N and n = O
(
N1/

√
log2N

)
there are explicitly constructible

(n,N, 2)–connectors of size (1 + o(1))N log2 n.

4 Fault–Tolerant Connectors

In this section we show that by ∂–construction we can also obtain t–fault–
tolerant connectors.

Theorem 2. Let G = (V,E) be an (n,N)–connector given by ∂–construction,
and let k be the degree of output vertices defined from

(
2k−3
k

)
< n ≤

(
2k−1
k

)
. Then

G is a (k − 1)–edge fault–tolerant connector.

To prove the theorem we need the following

Lemma 1. Let A ⊂
(

N

k

)
. Then

|∂A| − |A| ≥ k − 1 (4.1)

if (a) |A| ≤
(
2k−1
k

)
−k+1, or (b)

(
2k−1
k

)
−k+1 < |A| ≤

(
2k−1
k

)
and ||A|| = 2k−1.
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Proof. Case (a) can be easily derived from Theorem KK by simple calculations.
Case (b): The cascade representation of |A| for this case is

|A| =
(

2k − 2
k

)
+
(

2k − 3
k − 1

)
+ · · · +

(
a1

1

)
,

where 1 ≤ a1 ≤ k − 1, or

|A| =
(

2k − 1
k

)
.

Hence by Theorem KK

|∂(A)| ≥
(

2k − 2
k − 1

)
+
(

2k − 3
k − 2

)
+ · · · +

(
k

1

)
+
(
a1

0

)
=
(

2k − 1
k

)
.

Note that ||A|| > 2k − 1 (since ||A|| = 2k − 1). We use now the result in
Moers [9] which generalizes the Kruskal–Katona Theorem. In our special case,
||A|| > 2k − 1, it says that the minimum of |∂A| is attained for ||A|| = 2k.
Moreover, an optimal family achieving the minimum is

A∗ = C(k, |A| − 1) ∪
(
{1, . . . , k − 1, 2k}

)
.

Observe now that

|∂(A∗)| =
(

2k − 1
k

)
+ k − 1.

�

Proof of Theorem 2
Let G = (V,E) be an (n,N, 2)–connector given by ∂–construction. Given an
injective mapping φ : I → O, let M = φ(I) ⊂ O . Define also L′ = Γ (M).
Let now G′ be the subgraph of G induced by the vertices I ∪ L′ ∪M. Let also
E1 and E2 be the edge sets of G′ induced by I ∪ L′ and L′ ∪M, respectively.
Suppose now t (t ≤ k − 1) edge–failures have occurred in G′. Since I ∪ L′ is
a complete bipartite graph, we note that the ”worst” case is that all faults are
from E2. Thus it is sufficient to show that after deletion of t edges in E2 the
resulting graph satisfies the H–condition.

Suppose now S ⊆ M. Remind that n = |I| = |M| ≤
(
2k−1
k

)
. Let A ⊂

(
N

k

)
be the family identified with S. If A satisfies one of the conditions of Lemma 1,
then (4.1) means that |Γ (S)|− |S| ≥ k−1. This clearly implies that the removal
of any k−1 link–vertices (and hence any k−1 edges) from G′ results in a graph,
where the output vertices satisfy the H–condition. Thus it remains to consider
the case |A| >

(
2k−1
k

)
− k + 1 with ||A|| = 2k − 1.

This case is easier to examine in terms of the incidence matrix H for A and
∂(A) (equivalently, the adjacency matrix of the corresponding bipartite graph
induced by Γ (S) ∪ S). Let the columns of H be labeled by elements of A and
the rows by elements of ∂(A).

Without loss of generality we may assume that A ⊂
(
[2k−1]
k−1

)
. Suppose first

that A =
(
[2k−1]
k

)
and consider the corresponding incidence matrix H of size(

2k−1
k

)
×
(
2k−1
k

)
.
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Each column and each row of H contains exactly k ones. Delete now any
k − i− 1 (1 ≤ i ≤ k − 1) columns in H .

Lemma 2.

(i) Every row in the resulting matrix H ′ contains at least i+ 1 ones.
(ii) Every two rows of H ′ contain together at least k + i ones.

Proof. (i) is obvious. (ii) follows from the fact that any two rows have at most
one 1 in common and hence two rows in H ′ have at least 2k−(k−i) = k+i ones.
Thus the incidence matrix H ′ of every family A with |A| =

(
2k−1
k

)
− k + 1 + i

has the properties (i) and (ii). �

Exchange now any t ≤ k−1 ones inH ′ into zeros (which corresponds to deletion
of t edges in E2), obtaining a new matrix H∗. In view of (i) and (ii) H∗ contains
at most one all–zero row. Thus the sum of all columns of H∗ contains at most one
zero coordinate if i < k− 1 and no zero coordinate if i = k− 1. This implies that
for the corresponding bipartite graphG∗ (with t deleted edges) |Γ (S)| ≥ |S| holds
for every set of output vertices S with

(
2k−1
k

)
− k + 1 < |S| ≤

(
2k−1
k

)
.

This completes the proof of Theorem 2. �

Clearly, if G is a t-vertex fault–tolerant (n,N)–connector, then it is also a
t-edge fault–tolerant (n,N)–connector. Thus in general we can speak about t–
fault–tolerant connectors under edge–vertex failures.

The following statement directly follows from the proof of Theorem 2.

Corollary 1. The ∂–construction gives a (k−1)–fault–tolerant (n,N)–connector
if (

2k − 3
k − 1

)
< n ≤

(
2k − 1
k

)
− k + 1.

5 A Direction of Further Research

Our main tool are results on shadows of subfamilies of the family of subsets of a
finite set, which is a poset by the inclusion relation. It is conceivable that shadow
properties of other posets give better results.
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X
Finding CNRI(W), the Identification Capacity of

the AVC W, if Randomization in the Encoding
Is Excluded

R. Ahlswede

For a DMC W it is not hard to show that CNRI(W ) equals the logarithm of the
number of different row-vectors in W (see [A145]). Also for AVC W0 with 0-1-
matrices only as transmission matrices CNRI(W0) equals the capacity C(W0) for
transmission, which in turn equals Shannon’s zero error capacity C0(W ), where
W = 1

|W0|
∑

W∈W0

W (see [A7]).

But for general W CNRI(W) can be larger than C(W). For example by The-
orem 5 of [A145] for

W =
{(

1 0
0 1

)
,

(
1 − δ δ
δ 1 − δ

)}
, δ ∈ (0,

1
2
)

CNRI(W) > C(W) = 1 − h(δ),

where the identity is a very special case of the capacity theorem of [A6]. Comput-
er results by B. Balkenhol suggest that CNRI(W) < 1. The heart of the matter
is the following coding problem.

We denote by B(un, d) ⊂ {0, 1}n the Hamming ball with radius d. For numbers
1 < β < δ < 1

2 and λ ∈ (0, 1) find a subset A ⊂ {0, 1}n as large as possible such
that for all xn ∈ A∣∣∣∣∣∣B(xn, nδ) ∩

 ⋃
yn∈A\{xn}

B(yn, nβ)

∣∣∣∣∣∣ ≤ λ|B(xn, nδ)|.

As special cases we get
a) δ = β: Here the problem is the essence of the Coding Theorem for the BSC.
b) λ = 0: Then the problem reduces to a generalization of the problem of

maximal error correcting codes (where in addition δ = β).

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, p. 1063, 2006.
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Intersection Graphs of Rectangles and Segments

R. Ahlswede and I. Karapetyan

Let F be a finite family of sets and G(F ) be the intersection graph of F (the
vertices of G(F ) are the sets of family F and the edges of G(F ) correspond to
intersecting pairs of sets). The transversal number τ(F ) is the minimum number
of points meeting all sets of F . The independent (stability) number α(F ) is the
maximum number of pairwise disjoint sets in F . The clique number ω(F ) is the
maximum number of pairwise intersecting sets in F . The coloring number q(F )
is the minimum number of classes in a partition of F into pairwise disjoint sets.

The following problem was raised by Gýarfás and Lehel [1]. Suppose that
some rectangles with sides parallel to coordinate axes are given in the plane. Is
there a constant c such that

τ(F ) ≤ cα(F )?

Gýarfás and Lehel showed [1]⌊
3
2
α(F )

⌋
≤ τ(F ) ≤ α2(F ).

J. Beck [2] improved the upper bound to cα log2 α, where α = α(F ). Gy. Károlyi
[2] improved it to

cα logα.

Fon-Der-Flaass and Kostochka [3] improved the lower bound to⌊
5
3
α

⌋
.

Statement 1. Let F = {R1, R2, . . . , Rn} be a family of rectangles in the plane.
Then τ(F ) ≤ 2(k + 1)α(F ), where k = max

1≤i≤n

⌈
�i(Ri)
ωi(Ri)

⌉
and i(Ri) is the length

of Ri and ωi(Ri) is the width of Ri.

Corollary. It F is a family of squares in the plane, then

τ(F ) ≤ 4α(F ).

Statement 1*. If F is a family of unit squares, then τ(F ) ≤ 2α(F ).

Statement 2. Let F = {R1, R2, . . . , Rn} consist of only k noncongruent rec-
tangles (k ≤ n) then

τ(F ) ≤ 4kα(F ),

For a family F of rectangles in the plane Asplund and Grünbaum in [4] proved
that q(F ) ≤ 4ω2(F ) − 3ω(F ) and if G(F ) is triangle-free then q(F ) ≤ 6. Burl-
ing [5] showed that q(F ) cannot be bounded by any function of ω(F ) for

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1064–1065, 2006.
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three-dimensional boxes. Akiyama, Hosono and Urabe [6] proved, if a family
F of unit squares and G(F ) is triangle-free, then q(F ) ≤ 3 and they stated the
following

Conjecture. q(F ) ≤ ω(F ) + 1 for a family F of unit squares in the plane.
This conjecture is evidently not correct.

Counterexample. Replace each vertex of a pentagon (C5) by a k-clique. Ob-
viously the defined graph is intersection graph of unit squares in the plane, with
clique number 2k, while the coloring number is 3k.

Statement 3. If F is a family of squares in the plane, then q(F ) ≤ 4ω(F ) − 3
and if G(F ) is triangle-free then q(F ) ≤ 3.

We note that statement 3 was independently proved by Perepelitsa [7].

Problem (Asplund, Grünbaum [4]). Suppose we have m concurrent straight
lines Li in a plane. Given m and ω, does there exist a family of segments F (in
the plane) each of them parallel to one of the lines Li, such that

q(F ) = mω(F )?

In [4] two examples with m = 2, ω = 3, q = 5, and m = 2, ω = 4, q = 6 are given.

Statement 4. For m = 2 and every k there exists a family of segments (parallel
to the concurrent lines L1, L2) with ω(F ) = k, such that

q(F ) = 2k if k is even

and
q(F ) = 2k − 1 if k is odd.

Statement 5. If F is a family of segments parallel to the concurrent lines L1, L2

in the plane and G(F ) has no induced odd cycles (C2k+1, k ≥ 2) then G(F ) is a
perfect graph.

Recall that a graph G is said to be perfect if q(G′) = ω(G′) for every induced
subgraph G′ of G.
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Cutoff Rate Enhancement

E. Arikan

1 Cutoff Rate

The cutoff rate of a discrete memoryless channel (DMC) W : X → Y is defined as

R0(W ) = max
Q

− log
∑
y∈Y

[∑
x∈X

Q(x)
√
W (y|x)

]2

(1)

where the maximum is over all probability distributions on X . This parameter
serves as a figure of merit for coding applications. There is also a decoding
algorithm known as ’sequential decoding’ that can readily achieve rates up to R0.

2 Parallel Channels Theorem

Gallager [1, p.149] shows that ifW is the parallel combination of two independent
DMC’s W1 and W2, then R0(W ) = R0(W1) + R0(W2). A precise definition of
parallel combination is as follows. If W1 : X1 → Y1 and W2 : X2 → Y2, then
W : X1 ×X2 → Y1 × Y2 and

W (y1y2|x1x2) = W1(y1|x1)W2(y2|x2). (2)

In particular, if we consider the channel Wn that consists of n parallel uses of
the same DMC W , this theorem gives

R0(Wn) = nR0(W ) (3)

3 Massey’s Example

If the parallel channels are not independent, the above theorem no longer applies.
The following example due to Massey [2] illustrates this. Suppose W is the
parallel combination of two binary erasure channels (BEC) W1 and W2 that
are completely correlated in the sense that erasures on the two channels always
occur simultaneously. Then, a simple calculation shows that

R0(W ) = log
4

1 + 3ε
(4)

R0(W1) = R0(W2) = log
2

1 + ε
(5)

and
R0(W ) < R0(W1) +R0(W2) (6)

for all 0 < ε < 1, where ε is the erasure probability.
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This inequality is obtained under the assumption that completely independent
encoding and decoding are carried out on the subchannels. The decoders for W1

and W2 do not know each other’s code, and do not in fact observe each other’s
channel output. This result is counter-intuitive in many ways and should make
one think hard about the meaning of cutoff rate.

We may note that the capacities of these channels are C(W ) = 2(1 − ε),
C(W1) = C(W2) = (1 − ε) bits, and so C(W ) = C(W1) + C(W2). Certainly,
the capacity C(W ) represents the ultimate achievable rate by the channel W
and it cannot be increased by splitting or otherwise. What is unexpected is that
the capacity is not decreased by this operation and in fact the cutoff rate is
increased!

4 Ahlswede, Balkenhol, Cai Example

Ahlswede et al. [3] considered the case where W is the parallel combination of
two completely correlated binary symmetric channels (BSC) W1 and W2. Thus,
errors on W1 and W2 occur always simultaneously. The capacities are given by
(for ε = 1/2)

C(W ) = 1 + (1 −H(ε)) (7)

C(W1) = C(W2) = 1 −H(ε) (8)

where
H(ε) = −ε log(ε) − (1 − ε) log(1 − ε),

and ε is the probability of error. In this case, the capacity is decreased if one
ignores the correlation between the two subchannels. The sum capacity under
independent encoding and decoding equals C(W1) + C(W2), which is less than
C(W ) for all 0 < ε < 1/2.

However, Ahlswede et al. proposed a scheme that employs independent en-
coding on the two subchannels W1 and W2 and a two-stage decoding algorithm,
where the decoder for W1 passes its estimate of the error locations to the decoder
for W2 This scheme achieves rates up to C(W1) on channel W1, and rates up
to 1 bit on W2, for a sum rate that equals the capacity C(W ) of the original
channel.

It appears that Massey’s example is an example of a very specific type corre-
lation between subchannels where decoder cooperation has no payoff. In general,
we will be interested in decoding strategies where the decoders help each other
by passing their final decisions.

If we look at the cutoff rates for this example, we obtain that

R0(W ) = 1 + log
2

1 +
√

4ε(1 − ε
(9)

R0(W1) = R0(W2) = log
2

1 +
√

4ε(1 − ε
(10)
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If one employs the two-stage procedure, with the decoder for W1 passing its
estimates of error locations to the decoder for W2, then the sum cutoff rate
equals the cutoff rate R0(W ) of the original channel

R0(W1) +R0(W2|W1) = R0(W ) (11)

where we introduced the notation R0(W2|W1) to denote the cutoff rate under
the condition the two-stage decoding rule.

On the other hand if decoders work independently, the sum cutoff rate is
smaller than that of the original channel

R0(W ) > R0(W1) +R0(W2) (12)

for all 0 < ε < 1/2.
Although, there is no improvement (and no loss) in the cutoff rate under the

two-stage decoding scheme, there may be complexity advantages by splitting the
decoder into two parts as it avoids decoding a large code and instead decodes
two smaller ones in succesion.

5 Open Problem

The above examples raise several questions.

– Given a channel W , is it always possible to split it into two subchannels W1

andW2 such that under two-stage decoding R0(W ) < R0(W1)+R0(W2|W1)?
What is the largest achievable gain?

– Identify the class of channels for which independent encoding and decoding
improves the cutoff rate, i.e., R0(W ) < R0(W1) +R0(W2).

– Consider splitting the nth extension Wn of W in the same way. What is the
largest achievable gain in terms of the sum cutoff rate?

– Another direction is to consider the above problems under L-way splitting,
where W is split into L subchannels W1, . . . ,WL, independent encoding is
applied on each subchannel, and the decoding is done in L stages where
every decoder observes the entire output of channel W plus the estimates of
decoders that precede it.

– The above problems may be studied also under the assumption that the
inputs to the subchannels are correlated in some way. What is the sum
cutoff rate in this case?
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Some Problems in Organic Coding Theory

S. Artmann

1 Introduction

Organic coding theory describes, analyses, and simulates the structure and func-
tion of organic codes (OC), viz., of codes used in living systems as sets of ar-
bitrary rules of encoding and decoding between two independent subsystems
[3]. A very well-known example of OC is the genetic code (GC), a degenerate
quaternary code of length 3 whose codewords (mRNA triplets) encode amino
acids, which are component parts of the primary structure of proteins, and the
beginning and end of encoding mRNA sequences. From a semiotic point of view,
GC is of great interest because it breaks free from a pure symbolic way of en-
coding which can be characterized as resulting in codes wherein the mutual
Kolomogorov complexity of the encoding and the encoded structure is nearly
equal to the Kolmogorov complexity of each one of these structures [2]. GC is
analysed thoroughly since fifty years. But organic coding theory is still in its in-
fancy. Many problems of formal, empirical, and methodological nature are open.
In the following, I present three of them: the empirical problem of the evolution-
ary function of OCs (2), the methodological problem of the arbitrariness of OCs
(3), and the formal problem of selecting an adequate model of OCs (4).

2 Why Organic Codes?

A long time it was believed that GC is a unique phenomenon in nature. Today
the picture has changed radically: There are many more OCs in living systems,
e.g., mRNA splicing codes, membrane adhesion codes, signal transduction codes
between the intercellular and intracellular messenger systems, pattern codes in
ontogeny, and so on. From a first systematical survey of OCs known today, it
was conjectured that every macro-evolutionary step in the history of life consists
in establishing a new OC [3]: without splicing codes no eukaryotes, without
adhesion and transduction codes no multicellular organisms, and without pattern
codes no animals. This conjecture must be subjected to further empirical research
on the number, structure, function, origin and evolution of OCs.

3 Why These Organic Codes?

If the concept of OC is ontologically useful in biology, that is, if this concept
is necessary to define an important class of biological objects, then biological
research on OC is threatened to be trapped in an epistemological deadlock. One
of the fundamental characteristics of OCs is their arbitrariness: The encoding
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resp. decoding rules between the encoding and the encoded structure of an OC
are not motivated by some extra-codical affinities between both structures. This
well-known property of the signs of human language [14] was described in the
case of GC as its origin in a “frozen accident” [6] whose singular occurence
is not deducible from physico-chemical laws but can only be explained by the
narration of some contingent boundary conditions. If this is true then the only
message that, from an evolutionary point of view, the existence of GC can deliver
us is that it is more advantageous for self-reproduction to have any GC than
to have no GC. Its internal structure passes on pure natural chance as the
only source of evolutionary innovation. More generally, the concept of OC is, in
this case, an index of an epistemological limitation that biological research will
never overcome because the structure of OC can only be accepted as “gratuit”
[11], i.e., given for free. Since this is not a satisfying situation for biology, the
“frozen accident”-theorem of the arbirariness of OC must be subjected to further
research which should combine empirical and formal aspects of the evolution of
OCs [10].

4 How to Model?

Formal models of OC that can help to show a way out of the methodological
problem should fulfil the following methodological requirements. Syntactically,
the model has to allow an adequate and clear representation of the encoding
and the encoded structure in a uniform conceptual framework so that none of
the ontological dualisms can appear that haunt the theory of human language
(e.g., between the material and the mental aspect of a code). Semantically, the
model must be able to describe its semantics by its own means so that the dif-
ference between the object-level and the meta-level of the model is not reflected
in any kind of epistemological dualism. Pragmatically, the model has to simu-
late the modelled object so that it can stimulate empirical research with virtual
experiments. Petri Nets (PNs), a species of bipartite graphs, fulfil all three re-
quirements [12,4]. PNs allow a formal and graphic representation of concurrent
processes in one topological structure. The semantics of a PN is representable as
a PN. A PN simulates the processes that can happen in its framework by mod-
elling the dynamics of tokens marking the component parts of a PN. Therefore
it is not surprising that PNs are used for the simulation of biological systems,
especially of metabolic pathways [5,7,8]. The most simplest PN is defined as
follows [Bra80]: A directed net is a triple N = (S, T ;F ) so that

1. S ∩ T = ∅
2. S ∪ T = ∅
3. F ⊆ (S × T ) ∪ (T × S)
4. dom(F ) ∪ codom(F ) = S ∪ T.

S (the set of places) and T (the set of transitions) represent the two kinds of
nodes of a PN, and F (the flow relation) is a subset of all such arcs between S-
and T -nodes that connect a S-node to a T -node or a T - to a S-node.
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We propose that for the modelling of OCs interfaces are the most important
PN structures. They are defined (for simple nets wherein two nodes that are
connected in the same way to the same sets of nodes are identified) as follows
[16]: N = (S, T ;F ) is a simple net, and B = (SB, TB;FB) is a subnet of N.
Q ⊆ SB∪TB is a set of distinguished nodes of B where Z = (SZ, TZ;FZ) with
SZ = S− (SB−Q), TZ = T − (TB−Q), and FZ = F ∩ (SZ×TZ∪TZ×SZ)
is also a subnet of N . Q is called the interface of B and Z, and Z is called the
environment of B with respect to Q (in N), iff 1) there exists no path from
an element of B to an element of Z not containing an element of Q, and 2)
F ∩(Q×Q) = ∅ Such interfaces can serve in PNs as representations of arbitrary
encoding and decoding rules between two subnets that represent the encoding
and the encoded structures connected by a code. As far as I can see, the potential
of interfaces to model OCs was not realized until now. A first step towards the
use of PN interfaces would be a systematic investigation into the behaviour
of different interface structures in different types of environment. This could
be done by using PNs with interface structures in Artificial Life experiments on
virtual ecosystems wherein PNs compete against each other as virtual organisms.
The use of PNs can help to solve an open problem in Artificial Life: Simulations
of the evolution of ecosystems like Tierra [13], Echo [9], and Avida [1] surely
show interesting evolutionary dynamics but they seem to be rather too limited
in comparison to the requirements of open-ended evolutions of complexity [15].
My proposal is that one of the main reasons of this limitation is the neglect of
OCs in these programs because each OC opens up vast new areas where natural
and virtual evolution can search for unforeseen solutions of adaptive problems.
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Generalized Anticodes in Hamming Spaces

H. Aydinian

Let H(n) = {0, 1}n denote the binary Hamming space with the Hamming dis-
tance dH . The Hamming weight is denoted by wtH . Given integers l ≥ 1, 1 ≤
δ < n, let A ⊂ H(n) satisfy the Condition (D): for every subset A ⊂ A with
|A| = l + 1 there exist two distinct points a, b ∈ A with dH(a, b) ≤ δ.

Problem. Determine or estimate

D(n, δ, l) := max |A|.

Remark 1. The same problem can be considered for other metric spaces. Among
them the q–ary Hamming space Hq(n) = {0, 1, . . . , q−1}n and the Johnson space
J (n, k) = {x ∈ H(n) : wtH(x) = k} with Johnson distance dJ = 1

2dH are most
important from coding point of view.

Comment. For l = 1 we have the Isodiametric Problem: Given n, δ, find the
largest size of a set of points A ⊂ H(n) with diameter δ (δ := max

a,b∈A
dH(a, b)).

This problem was solved by Kleitman [1] who showed that Hamming balls of
diameter δ have optimal size. Let Be(x) be the Hamming ball of radius e centered
at x, that is Be(x) := {a ∈ H(n) : dH(a, x) ≤ e}. Let also be := |Be(x)|.

Theorem (Kleitman [1]). For 0 < δ < n

D(n, δ, 1) =
{
be , if δ = 2e
be +

(
n−1
e

)
, if δ = 2e+ 1

Remark 2. The corresponding problems for the Johnson space and Hamming

space Hq(n) were solved by Ahlswede and Khachatrian in [2] and [3], respectively.

The problem is open for l = 2.
Consider the case when δ = 2e is even. Observe then that two disjoint Hamming
balls Be(x) and Be(y) of radius e ≤ 1

2n satisfy Condition (D), i.e. for every three
points a1, a2, a3 ∈ Be(x) ∪Be(y) at least two are at distance ≤ δ. Thus we have

D(n, 2e, 2) ≥ 2be.

Can we do it better?

Let us consider the following construction of a competitor set, which in some
cases is “better” than two balls.

Construction. For an integer n and 0 ≤ r ≤ e ≤ (n− 1)/3 define

Sr := {(a, b) : a ∈ H(n− 3r − 1), wtH(a) ≤ e− r, b ∈ H(3r + 1)},

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1073–1074, 2006.
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Observe that Sr satisfies Condition (D) with δ = 2e. Thus, for 1 ≤ e ≤ (n−1)/3,
we have

D(n, 2e, 2) ≥ max
0≤r≤e

|Sr|.

Examples
1. n = 15, δ = 8. 2. n = 19, δ = 8.

2b4 = 2
∑4
i=0

(
15
i

)
= 2 · 1941. 2b4 = 2

∑4
i=0

(
19
i

)
= 2 · 5036.

S4 = 213 = 2 · 4096 > 2b4. S3 = 10 · 210 = 2 · 5120 > 2b4.

Remark 3. As an application we note that the function D(n, δ, l + 1) can be
used to obtain better upper bounds for (n, δ + 1)–codes C ⊂ H(n) correcting
e = �δ/2� errors (see [4]). In fact we have

|C| ≤ 2n · l
D(n, δ, l)

.
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Two Problems from Coding Theory

V. Blinovsky

We suggest to prove the two following conjectures about the properties of some
special functions.

First consider the following polynome in λ ∈ [0, (q − 1)/q], q = 2, 3, . . .

fq
L(λ) =

∑
ji:

∑q
i=1 ji=L+1

(
1 − max{j1, . . . , jq}

L + 1

)(
L + 1

j1, . . . , jq

)(
λ

q − 1

)L+1−jq

(1− λ)jq .

(1)

It arise in the problem of obtaining the upper bound for the rate of multiple
pa cking of q−ary Hamming space. The problem is to prove that this function
is
⋂
−convex.

In the binary case q = 2 it can be shown that

f2
L(λ) =

�∑
i=1

(
2i−2
i−1

)
i

(λ(1 − λ))i,

where  =
⌊
L
2

⌋
and

(f2)′′L = −
(

2


)
(λ(1 − λ))�−1.

Hence in binary case this conjecture is valid. Problem is to prove the convexity
of f qL(λ) for the arbitrary q.

Next problem arise when I obtain the upper bound for the reliability function
for list-of−L decoding in binary symmetric channel. It is necessary to prove the
inequality

ϕqL(ξ) =
�∑
i=1

(−1)i+q
(
L+ 1
i

)
(ai,q + ai,q−1) ln

cosh
(
L+1

2 − i
)
ξ

cosh L+1
2 ξ

≤ 0, (2)

where q = 1, 2, . . . , ; ξ ∈ R1, and

ai,q =
(L+ 1)

(
L−i−q−1
L−2q−1

)
+ i

(
L−i−q−1
L−2q−2

)(
2q
q

) .

We conjecture that function ϕqL(ξ) is
⋂
−convex (from which inequality (2) easily

follows).
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Private Capacity of Broadcast Channels

N. Cai

The broadcast channel was introduced by T. M. Cover in 1972 [7]. In its sim-
plified version, it has one sender (or encoder) E and two users (or decoders)
Dl, l = 1, 2. The sender E is required to send the messages m1 and m2 uni-
formly chosen from the message sets M1 and M2 respectively to D1 and D2

correctly with probability close to one. That is, the sender encodes the mes-
sage (m1,m2) to an input sequence xn over a finite input alphabet X and sends
it to the two users via two noisy channels Wn and V n, respectively. The first
(second) user D1 (D2) decodes the output sequence yn over the finite output
alphabet Y of the channel Wn (the output sequence zn over the finite output
alphabet Z of the channel V n) to the first message m̂1 (the second message m̂2

). In general, the capacity regions for this kind of channels are still unknown.
Their determination is probably one of the hardest open problems in Multi-user
Shannon Theory.

The wiretap channel was introduced by A. D. Wyner in 1975 [12] and gen-
eralized by I. Csiszàr and J. Körner in 1978 [6], which can be considered as
applying a “broadcast channel” for a different purpose. Namely, a wiretap chan-
nel has the same statistical properties as a broadcast channel and the difference
is that one of the receivers, say D2, now is assumed to be an illegal user, or an
eavesdropper. There is only one message from M(= M1) to be transmitted (i.
e., M2 does not exist at all). The requirement for the wiretap channel is that
the legal receiver D1 should be able to recover the message from M correctly
with high probability whereas the eavesdropper D2 should obtain no significant
knowledge about the message. To protect the security of the data randomization
at encoder is allowed. The capacity regions for wiretap channels were determined
([12] and [6]).

However, in the real life the answer to the question who is legal user often de-
pends on the sources of message. For example, each customer is only legal for the
statement of his own account but illegal for the others when a bank distributes
the statements of balances of accounts to its customers. Similar situations are for
letters, emails,.... This motivates us to study a communication system, in which
a sender sends different messages to different users (receivers) and each user is
only legal for his own message but illegal for the others. The following model was
introduced by N. Cai and K. Y. Lam [5] in 2000. Two messages M1 and M2 uni-
formly distributed on two finite sets M1 and M2 respectively, are encoded to an
input sequence xn and xn is sent to the two users via two noisy channels Wn and
V n, respectively. Like in broadcast channel, we require that the first (second)
user D1 (D2) decodes the output sequence yn of the channel Wn (the output
sequence zn of the channel V n) to the first message m̂1 (the second message m̂2)
such that the decoding error Pr{m̂1 = m1} (Pr{m̂1 = m1}) is arbitrarily small
when the length n of the code increases. In addition we want the information of
the other message obtained by each user to vanish i.e., 1

nI(M2;Y n) −→ 0 and

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1076–1078, 2006.
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1
nI(M1;Zn) −→ 0, where Y n and Zn are the output random variables of Wn

and V n generated by the pair (M1,M2) of messages. The capacity region of this
communication system is called private capacity region of broadcast channel.

A broadcast channel is called deterministic if there exists a pair of functions
φ : X −→ Y and ψ : X −→ Z such that W (y|x) = 1 iff y = φ(x) and V (z|x) = 1
iff z = ψ(x). Its (“non-private”) capacity region was determined by M. S. Pinsker
[11] in 1978. It was shown in [5] that the coding theorem for private capacity of
deterministic broadcast channel without randomization at encoder is equivalent
to the following combinatorial problem:

for a given 0− 1 matrix A (over a proper field) find an all 1 submatrix of its nth
Kronecker power with maximum size.

The problem for Yao’s lower bound [13] to two-way communication complexity
(e.g., [2]) has been studied by several authors and in general it is still open. The
private capacity region of deterministic broadcast channel was determined by N.
Cai and K. Y. Lam [5]. The main technique in the proof of the direct part is
coloring (or binning) on rows and columns of the 0− 1 matrix.

In general the coding problem to broadcast channel with private capacity
is still widely open. This provides us research area in multi-user Information
Theory.

Problem 1 is to find private capacity region of general broadcast channels or a
class of broadcast channels if it would be too hard for general channels.

Problem 2 is to find good inner bound and/or outer bound to the private
capacity. In particular, can one obtain an inner bound by applying coloring
(binning) technique to Marton’s inner bound for (ordinary) capacity region of
broadcast channels [9]?

An interesting direction in Information Theory started by J. Massey [10]
1981, is splitting a single channel to two correlated channels to reduce the cod-
ing complexity (more results are found in E. Arikan, [4]), which contains rich
problems for research. As an example J. Massey presented a channel with an
input alphabet {00, 01, 10, 11}, such that with probability ε an input symbol
x ∈ {00, 01, 10, 11} is erased (as ?) and otherwise is correctly transmitted to
the output. He showed that one may reduce the coding complexity by splitting
the channel to two correlated binary eraser channels without loosing the total
capacity. We notice that one can apply two codes to the two correlated binary
eraser channels separately such that the receiver for each channel can correctly
decode the message to him but has no knowledge about the message to the other
receiver. This provides us the next problem.

Problem 3 is to study how to split a single channel to two correlated channels
for protection of privacy or for reducing the coding complexity and protecting
privacy simultaneously.

The two channels obtained by splitting are more similar to an interference
channel (introduced and the non-single-letter capacity region determined by R.
Ahlswede [1], 1973 ; the best inner bound by T. S. Han and K. Kobayashi [8],
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1981; capacity region in the case of noiseless transmission for one receiver, by
R. Ahlswede and N. Cai [3]), whose single-letter capacity region in general is
still unknown.

Problem 4 is to study the private capacity region for the interference channel
and other multi-user channels.
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A Short Survey on Upper and Lower Bounds for

Multidimensional Zero Sums

C. Elsholtz

After giving some background on sums of residue classes we explained the follow-
ing problem on multidimensional zero sums which is well known in combinatorial
number theory:

Let f(n, d) denote the least integer such that any choice of f(n, d) elements
in Zdn contains a subset of size n whose sum is zero. Harborth [12] proved
that (n − 1)2d + 1 ≤ f(n, d) ≤ (n − 1)nd + 1. The lower bound follows from
the example in which there are n − 1 copies of each of the 2d vectors with
entries 0 or 1. The upper bound follows since any set of (n − 1)nd + 1 vec-
tors must contain, by the pigeonhole principle, n vectors which are equivalent
modulo n.

If d is fixed, the upper bound was improved considerably by Alon and Dubiner
[2] to cd n. Erdős, Ginzburg, and Ziv [6] proved that f(n, 1) = 2n−1 and Kemnitz
conjectured that f(n, 2) = 4n− 3. There are partial results due to Kemnitz [14],
as well as Gao [8], [9], [10], [11], Rónyai [16] and Thangadurai [17].

For example, Rónyai [16] proved that for primes p one has f(p, 2) ≤ 4p− 2,
which implies that f(n, 2) ≤ 4.1n. Gao [11] extended this to powers of primes:
f(pa, 2) ≤ 4pa − 2.

If n is fixed but d is increasing not very much is known.

f(2a, d) = (2a − 1)2d + 1 see Harborth [12],
f(3, 3) = 19 see Harborth [12], Brenner [3],
f(3, 4) = 41 see Brown and Buhler [4], Brenner [3],

Kemnitz [14],
91 ≤ f(3, 5) ≤ 121 see Kemnitz [13],

f(3, 18) ≥ 300 × 212 see Frankl, Graham, Rödl [7],

f(3, d) ≥ 2.179d for d ≥ d′ see Frankl, Graham, Rödl [7],

f(n, d) ≥ (1.125)�
d
3 � (n − 1)2d + 1 for odd n, see Elsholtz [5],

f(n, d) = o(nd) if n is fixed and d goes to infinity,
see Alon and Dubiner,

f(3, d) = O( 3d

d
) see Meshulam [15] .

The proof of our lower bound was the first nontrivial lower bound for any
value of f(n, d) with n > 3. It is based on a set of 9 vectors considered by
Harborth [12] tp prove that f(3, 3) = 19, but we consider these in Z3

n (not only
in Z3

3). 2
1
2

 ,

0
0
0

 ,

0
0
1

 ,

0
1
0

 ,

0
1
1

 ,

1
0
0

 ,

1
0
1

 ,

1
1
2

 ,

1
2
2

 .
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We proved:
Let n ≥ 3 be odd. If any n vectors taken from a multiset of the above 9 vectors
add to 0 ∈ Z3

n, then necessarily one has taken n times the very same vector.
Therefore, taking n− 1 copies of each vector only avoids zero sums of length n.

Remarks
It seems conceivable that starting off from other examples for small fixed n and
d, one might be able to improve the lower bound. But it is not at all obvious
that this will work for any particular value of f(n, d). The proof in Elsholtz [5]
is in principle elementary, and might be accessible to generalization, possibly
with the help of computers. Albeit, an exhaustive search to determine values of
f(n, d) seems out of reach even for moderate sized n and d.

I hope that this survey of existing results convinces the reader that there is
still a huge gap between the known upper and lower bounds.
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Binary Linear Codes That Are Optimal for

Error Correction

T. Kløve

When a binary linear [n, k] code C is used for error correction on the binary
symmetric channel with bit error probability p, and the decoding algorithm is
maximum likelihood decoding, the probability of correct decoding Pcd(C, p) is
given by

Pcd(C, p) =
n∑
i=0

αi p
i(1 − p)n−i,

where αi is the number of correctable errors (coset leaders) of weight i.

An [n, k] code C is optimal for p where 0 < p < 1/2, if

Pcd(C, p) ≥ Pcd(D, p)

for all [n, k] codes D.

General problem: For given n, k, and p find an [n, k] code that is optimal
for p.

Slepian [3] and Fontaine and Peterson [1] found optimal codes for all p for
some combinations of small n and k.

To present some conjectures, we find it convenient to describe the codes using
modular representation. The modular representation of a k × n generator ma-
trix G is the sequence (x0, x1, . . . , x2k−1) where let xj is the number of times
the binary representation of j appears as a column in G. This representation
determines G, and hence the code generated by G, up to equivalence (column
permutations).

It is easy to see that for an optimal code we have x0 = 0. Therefore, we
leave this out and say that x = (x1, . . . , x2k−1) represents the code gener-
ated by G. We also say that x is optimal when the corresponding code is
optimal.

Based on some limited computations, we put forward some conjectures and
problems.

Conjecture, dimension 2. For all n ≥ 2 and all p ∈ (0, 1/2) the following
table gives an optimal [n, 2] code:

n representing vector
3m+ 2 (1, 1, 0) +m(1, 1, 1)
3m+ 3 (2, 1, 0) +m(1, 1, 1)
3m+ 4 (2, 1, 1) +m(1, 1, 1)

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1081–1083, 2006.
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Conjecture, dimension 3. For all n ≥ 3 and all p ∈ (0, 1/2) the following
table gives an optimal [n, 3] code:

n representing vector range
7m+ 3 (1, 1, 0, 1, 0, 0, 0) +m(1, 1, 1, 1, 1, 1, 1) all p
7m+ 4 (1, 1, 0, 1, 0, 1, 0) +m(1, 1, 1, 1, 1, 1, 1) all p
7m+ 5 (1, 1, 0, 1, 0, 1, 1) +m(1, 1, 1, 1, 1, 1, 1) all p
7m+ 6 (1, 1, 0, 1, 1, 1, 1) +m(1, 1, 1, 1, 1, 1, 1) all p
7m+ 7 (2, 1, 0, 1, 1, 1, 1) +m(1, 1, 1, 1, 1, 1, 1) all p
7m+ 8 (2, 1, 1, 1, 1, 1, 1) +m(1, 1, 1, 1, 1, 1, 1) p ≤ pn

(2, 2, 0, 2, 1, 1, 0) +m(1, 1, 1, 1, 1, 1, 1) p ≥ pn
7m+ 9 (2, 2, 1, 1, 1, 1, 1) +m(1, 1, 1, 1, 1, 1, 1) all p

Remark. There seems to be no proof by simple induction on m since x+1 may
be non-optimal even if x is optimal. For example, (for k = 3): (1, 1, 0, 1, 0, 0, 1)
is optimal for all p, but (2, 2, 1, 2, 1, 1, 2) is not optimal for any p.

The values of p7m+8 have been computed for m ≤ 15, and are given by the
following table.

n pn n pn
8 0.5 15 0.3069390306

22 0.3496295543 29 0.3020650080
36 0.2994471641 43 0.2936566721
50 0.2934421679 57 0.2932733749
64 0.2945611733 71 0.2959098813
78 0.2977592280 85 0.2995913456
92 0.3016067869 99 0.3035678969

106 0.3055858254 113 0.3075366414

We see that the value of p7m+8 is approximately 0.3 for m ≤ 15.

Questions: Does limm→∞ p7m+8 exist?
What is the limit (if it exists)?

Conjecture, general k. For any given k there exists a finite set

{x1,x2, . . . ,xr} ⊂ {0, 1, 2, . . .}2k−1

with the property that for any n ≥ k and any p ∈ (0, 1/2) there exist a j ∈
{1, 2, . . . , r} and an m ≥ 0 such that xj + m1 represents an optimal [n, k] code
for p.
Problem. Find such sets for particular k ≥ 4.

Related problems

We briefly mentions some related problems.
1. Consider the same problem for non-binary linear codes.

2. Consider the same problem (with maximum likelihood decoding) for non-
linear codes. Do they sometimes do better than linear codes of the same length
and size?
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3. Similar problems can be stated for error detection. The probability of un-
detected error for a binary [n, k] code C with weight distribution A0, A1, . . . , An
is given by

Pue(C, p) =
n∑
i=1

Ai p
i(1 − p)n−i.

The code C is optimal for error detection for a given p, if

Pue(C, p) ≤ Pue(D, p)

for all [n, k] codes D. We note that a code may be optimal for error correction
without being optimal for error detection and vice versa. It has been shown that
for any k ≤ 4 and for any n there exists a code that is optimal for all p (see [2,
pp.85–91]). For k = 2 and k = 3 the following tables give optimal codes for error
detection for all p (for the table for k = 4, see [2]).

n representing vector
3m+ 2 (1, 1, 0) +m(1, 1, 1)
3m+ 3 (1, 1, 1) +m(1, 1, 1)
3m+ 4 (2, 1, 1) +m(1, 1, 1)

n representing vector
7m+ 3 (1, 1, 0, 1, 0, 0, 0) +m(1, 1, 1, 1, 1, 1, 1)
7m+ 4 (1, 1, 0, 1, 0, 0, 1) +m(1, 1, 1, 1, 1, 1, 1)
7m+ 5 (1, 1, 1, 1, 1, 0, 0) +m(1, 1, 1, 1, 1, 1, 1)
7m+ 6 (1, 1, 1, 1, 1, 1, 0) +m(1, 1, 1, 1, 1, 1, 1)
7m+ 7 (1, 1, 1, 1, 1, 1, 1) +m(1, 1, 1, 1, 1, 1, 1)
7m+ 8 (2, 1, 1, 1, 1, 1, 1) +m(1, 1, 1, 1, 1, 1, 1)
7m+ 9 (2, 2, 1, 1, 1, 1, 1) +m(1, 1, 1, 1, 1, 1, 1)

For k ≥ 5 nothing is known.
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Capacity Problem of Trapdoor Channel

K. Kobayashi

Abstract. The capacity problem of the trapdoor channel is one of fa-
mous long-standing problems. The trapdoor channel considered by
Blackwell[1] is a typical example of channel with memory. Ash[2] ex-
pressed the channel by using two channel matrices with four states,
while the expression does not necessarily make the problem tractable.
We provided an interesting recurrence giving the explicit expression of
the conditional distributions of the channel output sequences given input
sequences of length n [5]. In order to determine the capacity of this spe-
cial channel, we have to understand the fractal structure buried in the
channel matrices between input and output sequences of long length.

1 Preliminaries

The actions of the trapdoor channel are described as follows. The input alpha-
bet X and the output alphabet Y are binary. The channel has two trapdoors.
Initially, there is a symbol s ∈ {0, 1} called the initial symbol on one of trap-
doors, and no symbol on another trapdoor. Just after the first input symbol
x1 moves onto the empty trapdoor, one of trapdoors opens equiprobably, and
the symbol on the opened door falls to become an output symbol y1 ∈ {s, x1}.
After the door is closed, we are back to the same situation as at the initial in-
stant, but there is a symbol s or x1 on the non-empty door depending on the
output y1 = x1 or y1 = s, respectively. This process is repeated until an out-
put sequence y1y2 . . . yn has emitted from the channel for the input sequence
x1x2 . . . xn.

Without loss of generality, we can assume that the initial symbol is 0 as far
as our concern is on the capacity problem.

2 Recursion of Channel Matrices

Let Pn|s(x,y) be the conditional probability of output sequence y by n equiprob-
able trapdoor actions for the input sequence x with the initial symbol s. Then,
we can show that the conditional probability matrices obey the following recur-
sions:

Pn+1|0 =
[
Pn|0 0
1
2Pn|1

1
2Pn|0

]
, (1)

and

Pn+1|1 =
[

1
2Pn|1

1
2Pn|0

0 Pn|1

]
, (2)
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Fig. 1.

where the initial matrices are defined as

P0|0 = P0|1 = [1] . (3)

Fig. 1 is the density plot of the channel matrix P5|0 where dark color corresponds
to high probability. You can easily recognize the fractal structure contained in
this channel.

As far as we study the capacity problem, we can further restrict to study the
following half channel,

Wn+1 =
[
1
2
Pn|1

1
2
Pn|0

]
, (4)

because the difference between the capacity of Pn|0 and that of Wn is at most one.
Therefore, we will concentrate our discussions on the maximization of mutual
information for the lower half channel Wn by its input distribution.
Remark 1: By investigating the form of the channel matrices (1) and (2), we can
easily deduce that the zero error capacity of the trapdoor channel is one half.
This result was already obtained by Ahlswede and Kaspi ([3]).

3 Problem to Be Solved

By the chain rule, we can decompose the mutual information of input and output
sequences, Xn+1 = XnXn+1 and Y n+1 = Y nYn+1 of length n + 1 as follows.

I(Xn+1;Y n+1) = I(Xn;Y n) + I(Yn+1;Xn|Y n)
+I(Xn+1;Y n|Xn) + I(Xn+1;Yn+1|XnY n). (5)



1086 K. Kobayashi

Here we can show that the third term of (5) is zero due to the form of (4) and
the recursion (1). Moreover, the fourth term of (5) is also zero for the input
distribution attaining the maximal mutual information. Thus, the maximization
of I(Xn+1;Y n+1) is equivalent to that of I(Xn;Y n) + I(Yn+1;Xn|Y n).

Thus, the marginal distribution of the distribution attaining the maximal
I(Xn+1;Y n+1) might be different from the distribution attaining the maximal
I(Xn;Y n).

Actually, the marginal distribution of the total distribution attaining the max-
imum mutual information I(Xn+1;Y n+1) does “not” give the maximum value of
I(Xn;Y n) and reduces by about 0.1 from the maximum value by the numerical
calculations of next section.

Therefore, by using the special structure of recurrence of probability matrices
we need
“a systematic construction of the distribution of input sequences of length (N+1)
giving the maximal mutual information between Xn+1 and Y n+1 from that of
length N .”

4 Computation of Maximal Mutual Information

We calculated[6] the maximum values of the mutual information I(Xn;Y n) for
the channel Wn by finding the optimum input distribution of pXn for small n
up to 10. Fig. 2 shows the maximum values of I(Xn;Y n) for n = 1, . . . , 10. Fig.
3 and Fig. 4 show the first order and the second order difference of the data of
Fig. 2, respectively.

4 6 8 10

1

2

3

4

5

Fig. 2.

Note that as the second order difference is attenuated to zero in damped os-
cillation (Fig. 4), the increment of I(Xn;Y n) tends to a constant value around
0.572 · · · (Fig. 3). Here we emphasize that the asymptotic increment of I(Xn;Y n)
is the capacity to be determined. In [5], we argued that the capacity of trapdoor
channel satisfy C > 0.54.
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Hotlink Assignment on the Web

E.S. Laber

Abstract. Here, we explain the problem of assigning hotlinks to web
pages. We indicate the known results for this problem and the open
questions.

1 Introduction

Due the expansion of the Internet at unprecedented rates, continuing efforts
are being made in order to improve its performance. An important approach is
improving the design of web sites [3,7]. A web site can be viewed as a directed
graph where nodes represent web pages and arcs represent hyperlinks. In this
case, the node that corresponds to the home page is a source node. Hence, when
a user searches for an information i in a web site, it traverses a directed path in
the corresponding graph, from the source node to the node that contains i. We
assume that the user always knows which link leads to the desired information.
In this context, we define hotlinks as additional hyperlinks added to web pages
in order to reduce the number of accessed pages per search [7].

Since a “nice” web page cannot contain much information, the number of
hotlinks inserted in each page should be limited. This scenario motivates the
problem of inserting at most one hotlink in each web page, so as to minimize
the number of accesses required to locate an information. Two goals are consid-
ered: minimizing the maximum number of accesses and minimizing the average
number of accesses.

Here, we consider the version of the problem in which the given web site is
represented by a rooted directed tree T , where only the leaves contain infor-
mation to be searched by the user. We assume that the user always follows a
hotlink (u, v) from node u when searching for a leaf in the subtree rooted by v.
Due to this assumption, the insertion of a hyperlink (u, v) must be followed by
the deletion of any other arc that ends in v. As a result, the graph obtained after
inserting a hotlink in a tree is also a tree, as shown in Figure 1. In this figure,
we represent a tree T on the left, where the small triangle represents a subtree
T ′ of T . At the right side, we represent the tree obtained from T by inserting a
hotlink from the root of T to the root of T ′.

1.1 Problem Definition

An instance of the hotlink assignment problem is defined by a directed tree
T = (V,E), rooted at a node r ∈ V . We say that a node v is a descendant of
another node u in T when the only path in T that connects r to v contains
u. In this case, we also have that u is ancestor of v. A node u is a proper

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1088–1092, 2006.
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r

u

r

u

T T{(r,u)}

T1 T1 - Tu

Fig. 1. The insertion of a hotlink in a tree leads to another tree

descendant (ancestor) of v if u is a descendant (ancestor) of v and u = v. We
use Tu = (Vu, Eu) to denote the subgraph of T induced by the descendants of u,
that is, Vu = {v ∈ V | v is descendant of u}, and Eu = {(v, w) ∈ E | v, w ∈ Vu}.
Furthermore, we use L (Lu) to denote the subset of V (Vu) that contains all
leaves of T (Tu).

Given T = (V,E), a solution to the WCHS problem is a hotlink assignment,
defined as a set A ⊂ V × V . A hotlink assignment A is feasible iff it satisfies the
following conditions:

(i) for every arc (u, v) ∈ A, v is descendant of u in T ;
(ii) there are no pair of arcs (u, a), (v, b) ∈ A that simultaneously satisfy the

following conditions: u is a proper ancestor of v, v is a proper ancestor of a
and a is ancestor of b;

(iii) for every node u ∈ V , there is at most one arc (u, v) ∈ A.

Figure 2 is used to illustrate the motivation behind condition (ii). It represents
a hotlink assignment that does not satisfy this condition. In this figure, each
triangle represents a subtree and the root node of each subtree is indicated by
a circle. Hotlinks are represented by dashed arrows. Recall that we assume that
the user always follows a hotlink (u, a) from node u when searching for a leaf
in Ta. Since b is a node of Ta, we conclude that the hotlink (v, b) will never be
followed by the user. In this case, condition (ii) prevents the addition of such a
hotlink.

As we have mentioned before, the addition of hotlinks to a tree produces
another tree that we denote by improved tree.

Definition 1. Given T = (V,E), and a feasible hotlink assignment A, the im-
proved tree obtained from T through A is defined as TA = (V, (E − X) ∪ A),
where X = {(u, v) ∈ E |(y, v) ∈ A for some y ∈ V }.

In the definition above, X is the set of arcs in E whose heads receive some
hotlink from A. Given an improved tree TA rooted at r, we use dA(u) to denote
the distance between r and u in TA, that is, number of arcs in the path from r
to u in TA.

Below we consider two possible goals for the hotlink assignment problem.
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Fig. 2. A hotlink assignment that violates condition ii

The Worst Case Hotlink Search Problem (WCHS). Define

h(TA) = max
l∈L

dA(l)

Observe that some internal nodes of T may become leaves in TA. By definition,
these nodes do not belong to L. Thus, h(TA) may not be the height of TA

In this context, we define an optimal hotlink assignment to T as a feasible
hotlink assignment A∗ such that

h(TA
∗
) = min

A
h(TA),

where A is minimized over all possible feasible assignments. The objective of the
WCHS problem is to find an optimal hotlink assignment for T .

The Average Case Hotlink Search Problem (WCHS). Let p be a given
probability distribution over the nodes in L. For every l ∈ L, we use p(l) to
denote the probability of l being accessed. Define

c(TA) =
∑
l∈L

p(l)dA(l)

In this context, we define an optimal hotlink assignment to T as a feasible
hotlink assignment A∗ such that

c(TA
∗
) = min

A
c(TA),

where A is minimized over all possible feasible assignments. The objective of the
ACHS problem is to find an optimal hotlink assignment for T .

2 Known Results

The WCHS Problem: it was considered by Pessoa et. al. in [8], where the follow-
ing results are presented
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1. an exact algorithm that runs in O(n(nm)2.882) time requiring O(n(nm)1.441)
space, where n and m are the number of nodes (internal and external) and
the number of leaves in T , respectively.

2. a (14/3)-approximate algorithm for the same problem, that runs in a
O(n logm) time and requires a linear space.

3. A proof that h(TA
∗
) ≤ 1.441 logn+ 1

The exact algorithm is based on dynamic programming. However, it is worth
mentioning that the straightforward application of this technique leads to an
exponential algorithm. In order to obtain a polynomial algorithm, it is first
proved that there is an optimal hotlink assignment A∗ such that the height
of TA

∗
is O(log n). Then, a special decomposition technique is used to de-

vise an optimal algorithm with an exponential running time on the height of
TA

∗
.

The ACHS Problem: For a complete discussion of this problem and some
variants, including practical aspects, we refer to [6]. Bose et al. [2] show that

E(p)
log(d+ 1)

≤ c(TA
∗
),

where E(p) is the entropy [1] of the access probability distribution p and d is the
maximum node outdegree in the tree. In [5], Kranakis et al. present an O(n2)
time algorithm that produces a feasible assignment A such that

c(TA) ≤ E(p)
log(d+ 1) − (d/(d+ 1)) log d

+
d+ 1
d

.

By using the same techniques employed in [8] to devise a polynomial time al-
gorithm for WCHS, it is possible to obtain a polynomial time algorithm for the
version of ACHS where the height of the input tree T is fixed.

We remark that no algorithm with constant factor approximation is known
for the ACSH problem even for trees with uniform distribution probability.

2.1 Some Variants

In [4], Fuhrmann et al. considered the version of ACHS where multiple hotlinks
can be assigned from a single node. For k-regular complete trees, they proved up-
per bounds for general distributions and lower bounds for uniform
distributions.

Bose et al. [2] show that the ACHS problem is NP-complete when the in-
put graph, instead of a tree, is a DAG (Directed Acyclic Graph). The NP-
Completness holds even for an uniform distribution.

3 Open Questions

The main open question related to the hotlink assignment problems described
here is if there exists a polynomial time algorithm for the ACHS problem. The
results in [8] imply that one can solve this problem by giving a a logarithmic
upper bound on the height of TA

∗
.
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Some other interesting problems are

1. Find a polynomial time algorithm with constant approximation ratio for the
ACSH.

2. Improve the current known bounds for the WCHP: logn ≤ h(TA
∗
) ≤

1.441 logn+ 1.

We point out that a better upper bound on h(TA
∗
) automatically implies on a

polynomial algorithm for WCHP with lower time complexity [8].
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The Rigidity of Hamming Spaces

V.S. Lebedev

1 Notations and Definitions

We call a set B a base of a metric space L if every point of L is uniquely
determined by its distances to the points of B.

The minimal possible number of points of a base is called the rigidity of the
metric space and is denoted by r(L).

n-dimensional q-ary Hamming space is denoted by Hn,q.
The rigidity of the binary Hamming space was introduced in 1963 by P.Erdos

and A.Renyi (see [4]) for solving the following weighings problem: what is the
minimal number M(n) of weighings on an spring scale to determine all false
coins in a set of n coins (predetermined case). It is easy to see that the rigidity
of the binary Hamming space differs not more than on one from M(n).

B.Lindstrom [5] and later D.G.Cantor and W.H. Mills [2] proved that

M(n) =
2n

log2n
(1 + o(1))

2 The Rigidity of q-ary Hamming Spaces

Consider the case when q is fixed and n goes to infinity.

Theorem 1. (G.Kabatianskii). Asymptotic bounds:

2n
logqn

(1 + o(1)) ≤ r(Hn,q) ≤
c(q)n
logqn

(1 + o(1)),

where c(q) = 2logq(1 + (q − 1)q).
The upper bound followed from random coding method of constructing a base

of Hn,q. We suppose that for the considered problem random choice does not
give the final answer.

Theorem 2. (G.Kabatianskii and V.Lebedev). For q = 3 and q = 4 we have

r(Hn,q) =
2n

logqn
(1 + o(1)).

For q = 3 and q = 4 we give explicit constructions. For q > 4 such constructions
are not known.

Open problem. Find r(Hn,q) for q > 4.
We conjecture that r(Hn,q) = 2n

logqn
(1 + o(1)) for all q.
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A Conjecture in Finite Fields

U. Leck

1 The Conjecture

Let q ≡ 1 (mod 4) be a prime power. For a primitive element α of F := GF(q)
and an element 0 = t ∈ F we define a graph G = G(α, t) on the vertex set F by
E(G) = E1 ∪ E2, where

E1 =
{
{α2i, α2i+1} | i = 0, 1, . . . , (q − 3)/2

}
,

E2 =
{
{α2i+1 + t, α2i+2 + t} | i = 0, 1, . . . , (q − 3)/2

}
.

It is easy to verify that E1 ∩ E2 = ∅. Hence, all vertices of G have degree two,
except 0 and t which have degree one. In other words, one component of G is a
path connecting 0 and t, and all other components are cycles (of even length).
Moreover, if 0 = t, t′ ∈ F, then G(α, t) and G(α, t′) are isomorphic [4], justifying
the notation G(α).

Conjecture 1 ([4]). For every prime power q ≡ 1 (mod 4) there is a primitive
element α of GF(q) such that G(α) has just one component (i.e. is a path of
length q − 1).

The above conjecture has been confirmed by computer for all primes powers
q ≡ 1 (mod 4) with q < 2000.

2 Background

Let G be like above, and consider the collection G = {G+ x | x ∈ F} of graphs,
where G+ x is the graph on the vertex set F an with edge set {{u+ x, v + x} |
{u, v} ∈ E(G)}. It turns out that every {u, v} ⊂ F occurs as an edge in exactly
two graphs from G and that any two members of G share exactly one edge. In
other words, G is an orthogonal double cover (ODC) of the complete graph Kq
(on F) by G, and this ODC is generated by the additive group of GF(q).

ODCs arose first in the study of Armstrong representations of minimum size
for key and functional dependencies in the relational database model [1], the
paper [2] is a comprehensive survey on ODCs.

Let Pn denote the path with n vertices.

Conjecture 2 ([3]). Let T = P4 be a tree on n ≥ 3 vertices. Then there exists
an ODC of Kn by T .

In general, this conjecture is far from being settled, some results have been
obtained for special classes of trees (see [2]).
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Perhaps the most appealing special case is T = Pn, i.e. we are interested in
ODCs of complete graphs by Hamiltonian paths. If the graph G constructed
above has just one component, then the corresponding collection G is an ODC
of Kq by Pq for the corresponding prime power q. Moreover, G has an additional
property: It is two-colorable. This means, we can two-color

(
F

2

)
such that in each

path from G incident edges receive different colors. Such two-colorable ODCs are
particularly valuable because of the following multiplication theorem.

Theorem 1 ([6]). Let n ≥ 3 be an integer, and let q ≥ 5 be a prime power.
If there are an ODC of Kn by Pn and a two-colorable ODC of Kq by Pq, then
there is an ODC of Kqn by Pqn.

Two-colorable ODCs of Km by Pm have been constructed for m ∈ {23, 24, 25}
in [8], for all m of the form 4a2 + 1, 8a2 + 2, 2a2 + 2a+ 1, or 4a2 + 4a+ 2 in [5],
and for all m of the form (2a+1)2 or 2(2a2 +1)2 in [7]. Together with the above
theorem this gives an infinite class of ODCs of complete graphs by Hamiltonian
paths.
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Multiparty Computations in Non-private

Environments

M. Lískiewicz

1 Backgrounds

Private multi-party computations is an intensively studied subject of modern
cryptography. In general, private computation can be defined as follows: Consider
a set of players, where each player knows an individual secret. The goal is to
compute a function depending on these secrets such that after the computation
none of the players knows anything about the secrets of others that cannot
be derived from his own input and the result of the function. To compute the
function, the players exchange messages with each other using secure links. For
a formal definition of cryptographically secure privacy see [8] and for privacy in
information theoretic sense see [5,2].

It is well known that any Boolean function can privately be computed on
any 2-connected network of links. However, many networks which are used in
praxis, are not 2-connected. In [3] we have showd that there are many Boolean
functions, even simple ones like parity, disjunction, and conjunction, that can-
not privately be computed if the underlying network is 1-connected but not
2-connected. Hence, an interesting problem arises how to compute functions in
such non-private environments in such a way that each of them learns as little
as possible about the inputs of the other players.

Communication with secrecy constraints has been studied for two-party model
in [7]. This model corresponds to the simplest setting where a network consists
of two 2-connected components that have only one bridge node in common.
Leakage of information in the information-theoretical sense for two parties has
been considered in [1,6].

2 Our Contribution

We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on
a network of n players P1, . . . , Pn equipped with random tapes (the random
bits are private). Initially, each player knows a single bit of the input x. To
compute the function the players can send messages to other players via point-
to-point communication using secure links where the link topology is given by
an undirected graph G. When the computation stops, all players should know
the value f(x). The goal is to compute f(x) such that every Pi learns as little as
possible about x1, . . . , xi−1, xi+1, . . . , xn. In the following we define a measure
for the leakage of information for a protocol computing f . We argue that in
the case when no assumption about the probability distribution for the input
x1, . . . , xn is made, this is a suitable measure.
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Let A denote a protocol computing function f and let c1, c2, c3, . . . denote a
fixed enumeration of all communication strings seen by any player during the
execution of A. By Ci we denote a random variable of the communication string
seen by player Pi, and by Ri a random string provided to Pi.

Definition 1 ([4]). Let Ci be a random variable of the communication string
seen by player Pi while executing A. Then for a, b ∈ {0, 1} and for every random
string Ri provided to Pi, define the information source of Pi on a, b, and Ri as

SA(i, a, b, Ri) = {(µx(c1), µx(c2), . . .) | x ∈ {0, 1}n ∧ xi = a ∧ f(x) = b}

where µx(ck) = Pr[Ci = ck|Ri, x] and the probability is taken over the random
variables R1, . . . , Ri−1, Ri+1, . . . , Rn of all other players.

Basically SA(i, a, b, Ri) is the set of all different probability distributions on
the communication strings observed by Pi when the input x of the players
varies over all possible bit strings with xi = a and f(x) = b. We also define
sA(i, a, b, Ri) = |SA(i, a, b, Ri)|, where |A| denotes the cardinality of the set A,
and sA(i, a, b) = maxRi sA(i, a, b, Ri) for a given protocol A. Note that for pro-
tocol A the properties:

– sA(i, a, b) = 1 for every a, b ∈ {0, 1}, and
– A is private with respect to player Pi (for a formal definition see e.g. [3]),

are equivalent. Finally, for a network G = (V,E) with |V | = n, let

sG(i, a, b) = min
A

sA(i, a, b).

In [4] we show that it is sufficient to consider only bridge players (i.e. players
that correspond to bridge nodes in G) when considering protocols with minimum
loss of information. We proved that for any protocol A on an 2-edge-connected
G there exists a protocol A′ on G computing the same function as A such that
A′ is private with respect to every internal player and the loss of A′ to each
bridge player Pq is at most the loss of A to this bridge player (i.e. sA′(q, a, b) ≤
sA(q, a, b) for every a, b). Below we show that the players can easily distinguish
the distributions.

Let Pq be a bridge player of G, a, b ∈ {0, 1}, and Rq be the random string
provided to Pq. Let

X = {x ∈ {0, 1}n | xi = a ∧ f(x) = b}

and for any communication string ci let

ψ(ci) = {x ∈ X | µx(ci) > 0}.

Obviously, for every ci that can be observed by Pq on some input x ∈ X , Pq
can deduce that x ∈ ψ(ci). If sA(q, a, b) = sG(q, a, b) = 1, then we have either
ψ(ci) = X or ψ(ci) = ∅. Thus Pq does not learn anything in this case.
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Theorem 1 ([4]). If sG(q, a, b) > 1, then for any protocol A and every com-
munication string ci that can be observed by Pq on input x ∈ X, ψ(ci) is a
non-trivial subset of X, i.e. ∅ = ψ(ci) � X, and there exist at least sG(q, a, b)
different such sets.

Let µ and µ′ be two probability distributions over the same set of elemen-
tary events. The fidelity measures the similarity of µ and µ′ and is defined by
F (µ, µ′) =

∑
c

√
µ(c) · µ′(c).

Theorem 2 ([4]). If A is an optimal protocol for player Pq on a and b, i.e.
sA(q, a, b) = sG(q, a, b), then for every random string Rq and all probability
distributions µ = µ′ in SA(q, a, b, Rq) we have F (µ, µ′) = 0.

3 Open Problems

In case, when the bridge player can communicate with each 2-connected compo-
nent only once, the size of the information source while communicating in one
order can be exponentially larger than the size obtained by communication in
another order. This is true, even if we restrict ourselves to symmetric functions.

Problem 1 ([4]). Is it possible to minimize the loss of more than one bridge
players simultaneously for general functions?

There are several ways to quantify leakage of information for multiparty proto-
cols. In this paper we have discussed the information source. However one can
investigate also some other measures, i.g. in an information-theoretic setting.

Problem 2. What is the answer to Problem 1 if one defines the loss of infor-
mation by a protocol based on the mutual information?

References

1. R. Bar-Yehuda, B. Chor, E. Kushilevitz, and A. Orlitsky, Privacy, additional infor-
mation, and communication, IEEE Trans. Inform. Theory, 39, 1930–1943, 1993.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computation, 20th STOC, 1–10, 1988.
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5. D. Chaum, C. Crépeau, and I. Damg̊ard, Multiparty unconditionally secure proto-
cols, 20th STOC, 11–19, 1988.

6. Eyal Kushilevitz, Privacy and communication complexity, SIAM J. Discrete Math.,
5(2), 273–284, 1992.

7. A. Orlitsky and A. El Gamal, Communication with secrecy constraints, 16th STOC,
217–224, 1984.

8. A. C.-C. Yao, Protocols for secure computations, 23rd FOCS, 160–164, 1982.



Some Mathematical Problems Related

to Quantum Hypothesis Testing

Hiroshi Nagaoka

Abstract. We present two open problems related to the asymptotics of
quantum hypothesis testing, together with some discussions about their
mutual relation, the classical counterparts and a possible conjecture.

1 Preliminaries

Let A be a Hermitian matrix, {ai} ⊂ R be its eigenvalues and {πi} be the
orthogonal projection matrices for the corresponding eigenspaces, so that we
have

πi = π∗i = π2
i , πiπj = 0 if i = j,∑

i

πi = I, and A =
∑
i

aiπi.

We define [1]
{A > 0} :=

∑
i: ai>0

πi,

which is the orthogonal projection matrix for the linear subspace spanned by the
eigenvectors corresponding to the positive eigenvalues. As the notation suggests,
{A > 0} has an analogy with the notion of “the event that a random variable A
takes a positive value” in the usual probability theory. We can similarly define
{A ≥ 0}, {A < 0}, {A > B} = {A−B > 0}, etc.

Let ρ and σ be arbitrary density matrices of the same size; i.e., ρ and σ are
positive-semidefinite matrices with trace 1. Define

gn(a) := Tr
[
ρ⊗n

{
ρ⊗n − enaσ⊗n > 0

}]
for a ∈ R and n ∈ N, where ⊗n denotes the nth tensor power with respect to
the usual tensor product of matrices a11 · · · a1k

...
...

ak1 · · · akk

⊗B =

 a11B · · · a1kB
...

...
ak1B · · · akkB

 .
It is then shown [1] that gn : R → [0, 1] is monotonically nonincreasing and that

lim
n→∞

gn(a) =
{

1 if a < D(ρ ‖ σ)
0 if a > D(ρ ‖ σ) ,

where D(ρ ‖ σ) is the quantum relative entropy defined by

D(ρ ‖ σ) := Tr [ρ(log ρ− log σ)] .

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1100–1103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Some Mathematical Problems Related to Quantum Hypothesis Testing 1101

2 The First Problem

Problem I Determine the following convergence rates:

η(a) := − lim
n→∞

1
n

log (1 − gn(a)) for a < D(ρ ‖ σ),

and
η c(a) := − lim

n→∞

1
n

log gn(a) for a > D(ρ ‖ σ).

3 A Setting of Quantum Hypothesis Testing

Given two k × k density matrices ρ, σ and a kn × kn Hermitian matrix Tn
satisfying 0 ≤ Tn ≤ I, let

αn[Tn] := 1 − Tr
[
ρ⊗nTn

]
and βn[Tn] := Tr

[
σ⊗nTn

]
.

Considering the hypothesis testing for the two hypotheses H0 : ρ⊗n and H1 : σ⊗n

on the true state, and regarding Tn as the POVM (positive-operator valued mea-
sure) (Tn(H0), Tn(H1)) = (Tn, I−Tn) which represents a test for the hypotheses,
αn[Tn] and βn[Tn] are interpreted as the error probabilities of the 1st kind and
2nd kind, respectively;

αn[Tn] = Prob {H1 is accepted |H0 is true} ,
βn[Tn] = Prob {H0 is accepted |H1 is true} .

Let
β∗n(ε) := min {βn[Tn] |Tn : αn[Tn] ≤ ε} .

Then we have the following quantum Stein’s lemma [2,3]:

− lim
n→∞

1
n

log β∗n(ε) = D(ρ ‖ σ) for 0 < ∀ε < 1.

This result can be restated as

lim
n→∞

β∗n
(
e−nr

)
=
{

0 if r < D(σ ‖ ρ)
1 if r > D(σ ‖ ρ) .

4 The Second Problem

Problem II Determine the following convergence rates:

R(r) := − lim
n→∞

1
n

log β∗n
(
e−nr

)
for r < D(σ ‖ ρ)

and
R c(r) := − lim

n→∞

1
n

log
(
1 − β∗n

(
e−nr

))
for r > D(σ ‖ ρ).
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5 Relation Between the Two Problems

Assuming the existence of the limits in the definitions of η(a) and

ζ(a) := − lim
n→∞

1
n

log hn(a),

ζ c(a) := − lim
n→∞

1
n

log (1 − hn(a)) ,

where
hn(a) := Tr

[
σ⊗n

{
ρ⊗n − enaσ⊗n > 0

}]
,

we can prove [1] that

R(r) = sup {ζ(a) | a ∈ R s.t. η(a) ≥ r}
= inf {a+ η(a) | a ∈ R s.t. η(a) < r}

and

R c(r) = sup
a∈R

min {ζ c(a), r + a}

= inf
a∈R

max {ζ c(a), r + a} .

6 The Classical (or Commutative) Case

Assume ρσ = σρ. Then we have

ρ = U

p(1) 0
. . .

0 p(k)

U∗ and σ = U

 q(1) 0
. . .

0 q(k)

U∗
for some unitary matrix U and some probability distributions p = (p(1) . . . , p(k))
and q = (q(1) . . . , q(k)), and

gn(a) = Prob {pn(Xn) − enaqn(Xn) > 0}

= Prob

{
1
n

n∑
t=1

log
p(Xt)
q(Xt)

> a

}
,

hn(a) = Prob {pn(Y n) − enaqn(Y n) > 0}

= Prob

{
1
n

n∑
t=1

log
p(Yt)
q(Yt)

> a

}
,

where pn and qn are the nth i.i.d. extensions of p and q, and Xn = (X1, . . . , Xn)
and Y n = (Y1, . . . , Yn) are i.i.d. random variables obeying pn and qn, respective-
ly. In this case, the quantum relative entropy turns out to be the Kullback-Leibler
divergence;

D(ρ ‖ σ) = D(p ‖ q) =
n∑
x=1

p(x) log
p(x)
q(x)

.



Some Mathematical Problems Related to Quantum Hypothesis Testing 1103

Furthermore, letting

ψ(θ) := log
k∑
x=1

p(x)1+θq(x)−θ,

ϕ(a) := max
θ∈R

(θa− ψ(θ)) ,

we obtain from Cramér’s theorem for large deviations that

η(a) = ϕ(a) for a ≤ D(p ‖ q),

η c(a) = ϕ(a) for a ≥ D(p ‖ q),

ζ(a) = a+ ϕ(a) for a ≥ −D(q ‖ p),

ζ c(a) = a+ ϕ(a) for a ≤ −D(q ‖ p).

Applying these relations to those in the previous section, we can represent R(r)
and R c(r) in terms of ψ(θ) or ϕ(a), which are nothing but the theorem of
Hoeffding and that of Han-Kobayashi [4], respectively.

7 An Optimistic Conjecture

A possible conjecture is:

The classical results are extended to the general quantum case by simply
replacing

∑
x p(x)1+θq(x)−θ in the definition of ψ(θ) with Tr [ρ1+θσ−θ].
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Designs and Perfect Codes

F.I. Solov’eva

A Steiner triple system of order n (briefly STS(n)) is a family of 3-element blocks
(subsets or triples) of the set N = {1, 2, . . . , n} such that each not ordered pair
of elements of N appears in exactly one block.

Two STS-s of order n are called isomorphic if there exists a permutation on
the set N which transforms them into one another. It is well known that STS(n)
exists if and only if n ≡ 1 or 3 (mod 6).

The number N(n) of nonisomorphic Steiner triple systems STS-s of order n
satisfies to the following bounds

(e−5n)
n2
6 ≤ N(n) ≤ (e−1/2n)

n2
6 .

The lower bound was proved by Egorychev in 1980 using the result on perma-
nents of double stochastic matrices, see [1,2], the upper bound is straightforward.
It is well known that for n = 15 there are 80 nonisomorphic Steiner triple systems
of order 15.

Problem 1. Improve these bounds on the number of nonisomorphic Steiner
triple systems of order n > 15.

A code C is perfect if for any vector x from n-dimensional metric space over
the Galois field GF (2) with the Hamming metric there exists exactly one vector
y ∈ C such that d(x, y) ≤ 1.

Problem 2. Can every Steiner triple system of order n, STS(n), n = 2m − 1,
m > 4, be embedded into some perfect binary code of length n?

Remind that a Steiner quadruple system SQS(n) of order n is a collection of
4-element subsets of N , such that each not ordered 3-element subset of N is
contained in exactly one block.

Problem 3. Can every STS(n), n ≡ 1 or 3 (mod 6) be extended to some
SQS(n+1).

The result is true for n = 15.

Problem 4. Can every SQS(n) be embedded into some perfect binary extended
code of length n > 16?

Avgustinovich, 1995, see [3], proved that any perfect code of length n is
uniquely determined by its codewords of weight (n− 1)/2.

It gives the following upper bound on the number of different perfect binary
codes of length n:

Nn ≤ 22n− 3
2 log n+log log(en)

.
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The best lower bound on the number of different perfect binary codes of length
n given by Krotov in 2000 [4] is

Nn ≥ 22
n+1
2 −log2(n+1)

· 32
n−3

4 · 22
n+5

4 −log2(n+1)
.

Problem 5. Improve the bounds on the number of different perfect binary codes.

Remark. The investigation of the problem 5 can be started with the length 15.
It is known [5] that there exist Steiner quadruple system of order 16 that can
not be embedded into an extended perfect code of length 16. Analogous result
was recently done for Steiner triple systems of order 15, see [6].
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Levon H. Khachatrian

(1954–2002)

(by Harout Aydinian with Rudolf Ahlswede)
His sudden death came as a shock to all those who had the privilege of knowing
him well, to those who admired him for his human qualities and his contributions
in Number Theory and Combinatorics. Levon Khachatrian died in Bielefeld,
Germany, on January 30, 2002 of heart attack.

He was born on January 5, 1954 in Yerevan, Armenia. Khachatrian received
his M.S. degree from the State University of Yerevan in 1976 and the degree
Candidate of Science (an equivalent of Ph.D.) from the Computing Center of
the Soviet Academy of Sciences, Moscow, Russia, in 1983. He served two years
1976–1978 at the Research Institute of Mathematical Machines, Yerevan, as an
engineer. During the years 1978–1981 Khachatrian was a postgraduate student at
the Institute of Problems of Information Transmission, Moscow, where he wrote
his doctoral thesis Ärrays with some peoperties of regularityünder the direction
of Victor Zinoviev. Then he joined the Institute of Problems of Infromatics and
Automation, Armenian Academy of Sciences, Yerevan, as a resarch scientist. He
wrote a series of papers on pseudorandom arrays and sequences, fault-tolerant
coding and networks. Khachatrian received the position of a Leading Research
Fellowship of the Institute in 1990 and continued to work there until midyear
1991.

In 1991 Khachatrian was invited to to visit the University of Bielefeld, as a
guest of a Research Project (SFB 343, Diskrete Strukturen in der Mathematik).
Since then he remained at the Bielefeld University for the rest of his life. In
Bielefeld Khachatrian began a very fruitful collaboration with R. Ahlswede,
which continued for more than ten years. As a result, two famous problems
of Erdős were completely settled during the years 1993–1995. The first one in
Number theory, the Coprimality problem raised in 1962, and the second, in
Extremal Set Theory, the Intersection Problem raised in the seminal paper by
Erdős, Ko and Rado, written already in 1938 and published in 1961. Khachatrian
together with R. Ahlswede, proved the long-standing conjecture of Frankl, which,
in particular, implies the famous “4m–conjecture” of Erdős, Ko and Rado (1938),
for which Erdős awarded 500$.

The powerful methods developed for solving these problems and their exten-
sions have been successfully applied to obtain many other significant results in
Combinatorial Number Theory and Extremal Combinatorics. Among them, the
proof of a conjecture of Erdős and Graham on sets of integers with pairwise com-
mon divisors (1996), Density inequalities for sets of multiples (1995), Results on
primitive and cross-primitive sequences (1997), Solution of the Diametric The-
orem for Hamming spaces (1998) (all with R.Ahlswede) etc. A survey of these
results can be found in [R. Ahlswede, Advances in Extremal Problems in Num-
ber Theory and Combinatorics, European Congress of Mathematics, Barcelona
2000, vol.1, 147–175].
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During the next years Khachatrian continued his intensive work in Number
Theory and Combinatorics. A series of remarkable papers on divisibility (prim-
itivity) of sequences of integers have been written with R. Ahlswede and A.
Sárközy. Extremal problems under dimension constraints was another subject
introduced and studied by Khachatrian (with R. Ahlswede and H. Aydinian)
during the last years.

Being with the University of Bielefeld, Khachatrian gave courses of lectures for
graduate students, (in Combinatorics, Number Theory, Coding Theory, Graph
Theory, Complexity Theory, Cryptography, etc.). His lectures were distinguished
by lucidity and simplicity of presentation. He avoided unnecessary formalism,
however, always giving rigorous proofs. Many complicated and involved proofs
became attractive and friendly in his presentation. Often he found unexpected
simple proofs, for known results, during his preparations of the lectures.

************
Levon was a kind and modest man, and a wonderful friend. The mathematical

community lost a brilliant mathematician.
He will be missed by his friends and colleagues.
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Review, to appear in a book by G. Katona. Recently included in General Theory
of Information Transfer and Combinatorics, Report on a Research Project at the
ZIF (Center of interdisciplinary studies) in Bielefeld Oct. 1, 2001 – August 31,
2004, edited by R. Ahlswede with the assistance of L. Bäumer and N. Cai.
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ITW, Krüger National Park, South Africa, June 20–25, 85–87.

[150] Nonstandard coding method for nonbinary codes correcting localized errors,
(with L. Bassalygo and M. Pinsker), Proceedings 1999 IEEE ITW, Krüger Na-
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ta, Rosa Maria Miró–Roig, Joan Verdera, Sebastiá Xambó–Descamps (Eds.),
Progress in Mathematics, Vol. 201, Birkhäuser Verlag, Basel–Boston–Berlin.
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[185] Large families of pseudorandom sequences of k symbols and their complexity,
Part II, (with C. Mauduit and A. Sárközy), General Theory of Information
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version: Concepts of performance parameters for channels, Preprint 00–126, SFB
343 “Diskrete Strukturen in der Mathematik”, Universität Bielefeld).

[196] Report on models of write–efficient memories with localized errors and defects,
(with M.S. Pinsker), General Theory of Information Transfer and Combina-
torics, Report on a Research Project at the ZIF (Center of interdisciplinary
studies) in Bielefeld Oct. 1, 2001 – August 31, 2004, edited by R. Ahlswede with
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Bäumer and N. Cai.

[205] On Logarithmically Asymptotically Optimal Testing of Hypothesis and Identi-
fication, (with Evgueni Haroutunian), General Theory of Information Transfer
and Combinatorics, Report on a Research Project at the ZIF (Center of inter-
disciplinary studies) in Bielefeld Oct. 1, 2001 – August 31, 2004, edited by R.
Ahlswede with the assistance of L. Bäumer and N. Cai.
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